
CSC 202 Mathematics for Computer Science

Lecture Notes

Marcus Schaefer

DePaul University1

1 c© Marcus Schaefer, 2006

2

Part I

Databases and Logic

3

Chapter 1

Databases and

Propositional Logic

1.1 A Simple Database

Even if you have never seen a database before, you probably will not find the
data in the following table hard to read.

Student

LastName FirstName SID SSN Career Program City Started

Brennigan Marcus 90421 987654321 UGRD COMP-GPH Evanston 2001

Patel Deepa 14662 null GRD COMP-SCI Evanston 2003

Snowdon Jonathan 08871 123123123 GRD INFO-SYS Springfield 2005

Starck Jason 19992 789789789 UGRD INFO-SYS Springfield 2003

Johnson Peter 32105 123456789 UGRD COMP-SCI Chicago 2004

Winters Abigail 11035 111111111 GRD PHD Chicago 2003

Patel Prakash 75234 null UGRD COMP-SCI Chicago 2001

Snowdon Jennifer 93321 321321321 GRD COMP-SCI Springfield 2004

Example 1.1.1. Jennifer Snowdon is a graduate student in computer science,
living in Springfield. She started in 2004; her student SID is 93321 and her
social security number is 321321321.

A table consists of multiple rows, also known as records. Each row records
a point of data. The columns of the table correspond to the different fields or
attributes of a record, that is, the properties or characteristics of the record that
are being stored. A relational database allows us to store and organize many
tables that contain related information.

Remark 1.1.2. For this course I suggest you use the H2 database (see Ap-
pendix A). You can also use Microsoft Access or MySQL, but these do not
handle all of the examples we will see.

Data in a database is typically accessed using SQL (Structured Query Lan-
guage). A simple SQL select query consists of three clauses, the SELECT clause,

5

6 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

specifying what information we want to retrieve, the FROM clause, specifying
which table or tables we want to retrieve the information from, and the WHERE

clause, in which we can restrict what information we want to see. For example,

SELECT *

FROM Student;

will return all the data in the Student table. We can also select particular fields
of the table. For example,

SELECT LastName

FROM Student;

will return the last names of students. If we run it on the Student table above,
we get:

LastName

Brennigan

Patel

Snowdon

Winters

Starck

Patel

Snowdon

Johnson

Depending on whether the table contains only current students or all stu-
dents, the query returns the last names of current students (or all students).
Note that SQL does not remove duplicates in its output, so if two students have
the same last name, that last name will occur twice in the output table (this
happens twice in the example above). To remove duplicates, you can use SELECT
DISTINCT in place of SELECT. For example, try running the following query:

SELECT DISTINCT LastName

FROM Student;

We can also select several attributes at once:

SELECT SID, LastName, FirstName, SSN, Career

FROM Student;

gives us a short list of student names, social security numbers and the degree
they enrolled for.

Exercise 1.1.3. What are the outputs of the following queries? (Compute the
output tables, and try to interpret the data.)

SELECT Career

FROM Student;

SELECT LastName, SSN

FROM Student;

1.1. A SIMPLE DATABASE 7

SELECT SSN

FROM Student;

As we mentioned earlier, a select query can contain a WHERE clause with
which we can limit the output. For example,

SELECT SID, LastName, FirstName, SSN, Career

FROM Student

WHERE Career = ’UGRD’;

will list all undergraduate student information.

Exercise 1.1.4. Write queries for the following tasks:

1. (S) List the social security numbers of all graduate students.

2. List the first names of all students whose last name is ‘Patel’.

3. (S) List complete name and SID of each student who is in computer sci-
ence.

4. List complete name and SID of each student who started before 2004.

If we were asked for a list of all students, what attributes should we select?
Just the last name is a bad idea, but even first and last name is dangerous:
there could be two students with the same last and first name. One more try:
how about selecting last name and social security number (that number should
be unique). That idea also fails for our student database, because we have two
foreign students without a social security.

What we are looking for is called a key: a set of attributes in the table that
uniquely identifies a single row, does not contain null values, and which does not
contain any superfluous attributes. We saw that for the student table LastName
and FirstName would not make a good key; similarly, SSN is not good, either
(while it is unique if it exists, it does not always exist and null values are
forbidden in key fields). If a table does not contain a good natural key, then the
best solution is to introduce a key; for example, our fictitious Chicago university
issues student ID numbers to every student that are promised to be unique (and
every student does have an ID number). So whenever we write a query listing
students, we should include the SID field, so we can really distinguish different
students.

Note that while SID is a key for the student table, SID and LastName is
not: they do uniquely identify a row, but LastName is superfluous, SID by itself
already identifies a row.

Remark 1.1.5. Declaring a set of attributes the key of a table—known as the
primary key—is a design decision. It is a restriction you voluntarily base on your
table: the key has to be unique and its values have to be different from null.
The database will not allow you to enter a record violating these conditions.

8 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

1.2 The Logic of Databases

The whole point of putting data into a database is so we can retrieve it later.
Even better, we can now analyze the data as a whole, e.g. calculate the average
salary of a company’s employees, or determine which courses have high or low
enrollment before scheduling them again.

Questions like these can be answered using the select statement. Let us start
with a simple request: we want to list all students that are not undergraduates.
If our university only has two types of students, graduates and undergraduates,
then we can solve this problem as follows:

SELECT LastName, FirstName, SID

FROM Student

WHERE Career = ’GRD’;

However, this query will stop working as soon as you add a new career option
such as ’SAL’ for students-at-large (students who are taking classes without
working towards a degree). So it would be better to rewrite the query so it
works even in that contingency. We need a way to say that Career is not
’UGRD’. Indeed, SQL allows us to write NOT in front of a condition to express
that we want the condition to fail. The query

SELECT LastName, FirstName, SID

FROM Student

WHERE NOT Career = ’UGRD’;

will list all students who are not undergraduates.1 Let us review how SQL
actually processes this select statement: first, it opens the table specified in the
FROM clause (Student). It then looks at each row in the table, one at a time.
For each row, it checks the condition in the WHERE clause (checking whether
the career path is not undergraduate). If the condition is true, then the row
is chosen, and a row containing the values in the fields selected in the SELECT

clause are added to the output table.
Let us try another question: we want to list all undergraduate students in

computer science. We have seen earlier how to list all undergraduate students,
and we could certainly list all computer science students, but how do we restrict
ourselves to students who are both undergraduates and in computer science? As
SQL checks a particular record, it has to verify that both conditions are true.
This is done using an AND to combine the two conditions:

SELECT LastName, FirstName, SID

FROM Student

WHERE Career = ’UGRD’ AND Program = ’COMP-SCI’;

1There is a little subtlety here: a student could return as a graduate student after finishing
their undergraduate degree. That is, we would list the same student twice, once as an under-
graduate, once as a graduate (we would need two records for the student, so we would have
to assign two different SIDs). Should that student be listed by the query or not? One basic
lesson to learn in databases is that user requests are rarely precise. Interpretation is often
necessary. And dangerous.

1.2. THE LOGIC OF DATABASES 9

In this query every record is checked, and only those records for which both
the career and the program information are according to specifications are se-
lected.

Exercise 1.2.1. Find queries to answer the following questions. Listing a
student means selecting their last name, first name and SID.

1. (S) List all graduate students in computer science.

2. List all graduate students not in computer science.

3. List all undergraduate students who started before 2003.

4. (S) List all computer science students who are not from Chicago.

5. List all computer science students from Chicago who started before 2003.

6. List all students who are not from Chicago and are not in computer science.

Some of the exercises already made the point that we can have more than two
conditions and that some of them might be negated. Let us do another example:
we want to list all Chicago graduate students who have a social security number.
That is we want to require City = ’Chicago’ and Career = ’GRD’ and that
the student has a social security number. We don’t yet know how to do the last
part, but we see that the SSN field contains the value null for some records. To
check whether the SSN field contains the null value, we write SSN is null. (We
do not write SSN = null, which suggests that null is a value; on the contrary,
null expresses the absence of a value. However, see the remark below.) Since
we want the student to have a social security number, we need to require that
NOT SSN is null. The whole query then becomes

SELECT LastName, FirstName, SID

FROM Student

WHERE Career = ’GRD’ AND City = ’Chicago’ AND NOT SSN is null;

Note that it does not matter in what order we write the conditions; that is,
we might just as well have written:

SELECT LastName, FirstName, SID

FROM Student

WHERE NOT SSN is null AND City = ’Chicago’ AND Career = ’GRD’;

Remark 1.2.2. The ANSI standard requires that SQL check for null values
using is null, a feature that H2 supports. Many systems also allow SSN =

null, which we will avoid, since it makes null look like just another value,
which it is not. There are two ways of saying that a value is not a null: as we
did above, writing NOT SSN is null, or using is not null, that is, writing
SSN is not null in the example. Note that is not null is a special phrase
like is null (which is why we used a lowercase not); for example, it is not
allowed to write SSN is not not null, whereas we could write NOT NOT SSN

10 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

is null. For this reason we will also avoid is not null, though this is what
you will see in real queries.

One more point: Any WHERE condition we write that checks a field containing
a null value through any method other than is null (or equivalent methods
allowed in the system), will fail automatically. For example,

SELECT LastName, FirstName, SID

FROM Student

WHERE SSN = SSN;

will not return all records in the Student table, but just the ones whose SSN

field contains a non-null value. We will see later when talking about foreign
keys, why this convention makes sense.

Suppose somebody asked you for all the students in the computer science
and the information systems degrees. What would a query for that look like?
Maybe like the following query?

SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’INFO-SYS’ AND Program = ’COMP-SCI’;

Well, no. There is not a single record that matches this query: Program

cannot have two different values for the same record. The point is that the
WHERE clause checks the table entries record by record. We rather carelessly
misinterpreted ”computer science and information systems” at the record level.
The ”and” in this phrase has a slightly different meaning, suggesting combining
the computer science and the information systems students (it corresponds to
the union of two sets as we will see in the next chapter).

Let us look at the request again: we want to list students in computer science
and information systems. Looking at a particular record, we want to list that
record, if Program is either ’COMP-SCI’ or ’INFO-SYS’. SQL offers the OR for
that:

SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’INFO-SYS’ OR Program = ’COMP-SCI’;

This will now give us the correct answer.

Exercise 1.2.3. Find queries to answer the following questions. Listing a
student means selecting their last name, first name and SID. Some might require
OR some might require AND.

1. List all students from Chicago and Springfield.

2. (S) List all students that started in 2001 or 2002.

3. List all Chicago graduate students.

1.3. A PRIMER OF PROPOSITIONAL LOGIC 11

4. List all graduate students together with all students in computer science.

5. List all undergraduate and PhD students (a PhD student has PROGRAM =

’PhD’).

6. (S) List Graduate students without social security number.

7. List Graduate computer science students without social security number.

8. List all PhD students not from Chicago.

One comment about the nature of OR; it is an inclusive or that is, the query

SELECT LastName, FirstName, SID

FROM Student

WHERE Started = 2004 OR City = ’Chicago’;

will list the entry for Peter Johnson (32105) who fulfills both conditions. An
inclusive or requires that at least one, but possibly more, of its conditions be
fulfilled. This is in sharp contrast to a common colloquial use of “or”, as when
we say: “you can either have your cake or eat it”. It is implied that you cannot
do both. Such an or is called exclusive or, we will encounter it again.

1.3 A Primer of Propositional Logic

Let us take a step back and look at what we have been doing: in order to
increase the expressive power of select statements we developed a logic of queries
which allowed us to combine conditions using operations such as NOT, AND and
OR. The underlying structure—called propositional logic—is much older than
databases and has applications in many other areas as well; for example, you
will encounter it when writing “if” statements in programming languages. Our
goal is to understand the abstract structure of propositional logic, so we can
apply it to any domain we wish.

Propositional logic has an ancient ancestor in Aristotelian logic2, but it
actually is a radical departure from the viewpoint of Aristotelian logic, due to
George Boole3 (which is why it is also sometimes called Boolean logic). Boole’s
point of view was mathematical and algebraical rather than philosophical. In
only fifty years, his approach shaped a new form of logic: mathematical logic.

Propositional logic is the logic of propositions, that is, statements to which
we can assign a truth-value, namely, true or false.

Remark 1.3.1. Already, some subtle distinctions are creeping in: let us have
another look at an earlier query:

2Aristotle lived in the third century BC. His logic is contained in six books known as the
Organon. These books shaped logic for two millennia.

3Boole published his Laws of Thought in 1856.

12 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

SELECT LastName, FirstName, SID

FROM Student

WHERE Career = ’UGRD’ AND Program = ’COMP-SCI’;

Note that, strictly speaking, Career = ’UGRD’ and Program = ’COMP-SCI’ are
not propositions, since they are neither true nor false by themselves. They only
become true or false, when we look at a particular row in the table, say the
entry for Jason Starck (SID=19992) and replace Career and Program with the
values in that row. In the example, the condition turns into the proposition

’UGRD’ = ’UGRD’ AND ’INFO-SYS’ = ’COMP-SCI’

which is obviously false, so the record is not included in the output. On the
other hand, Peter Johnson’s record (SID = 32105) leads to the proposition

’UGRD’ = ’UGRD’ AND ’COMP-SCI’ = ’COMP-SCI’

which is true. We will return to this distinction when talking about first-order
logic.

Basic propositions can be combined by operations to form compound propo-
sitions; we have already seen three operators in the context of databases: NOT,
AND and OR. In propositional logic, these operators are known as negation (writ-
ten ·), conjunction (written ∧), and disjunction (written ∨).

In the following discussion we need to clearly distinguish two aspects of
propositional logic, or any formal logic: the syntactical (how is it written?) and
the semantical (what does it mean?). For example, we described how to write
SQL queries correctly, so the database engine would accept them. Separately
from that we also explained what the queries meant, that is, how they get
interpreted. The same distinction exists in propositional logic. On the one
hand, we will see how to write formulas, while on the other hand, we explain
what these formulas express about propositions.

Let us take a simple example; say we have two propositions we want to argue
about. We represent these by two variables p and q, also called propositional
variables. We will talk about the proposition p and the proposition p being true
or false, but, of course, p itself is not a proposition and it is not itself true or
false; what we mean is that the proposition represented by p is true or false;
we shorten this, confusingly, but conveniently, to “p is true or false”. (Compare
this to the situation in SQL. We say that a select query lists outputs we are
interested in, but it does no such thing. The query itself is just a piece of text,
the database management system and the computer that process the query list
the outputs.) Now the compound formula p ∧ q corresponds to the condition
requiring both propositions p and q to be true.

Starting with two propositions p and q, we can form the following compound
formulas: p, p∧q and p∨q to denote “not p”, “p and q”, and “p or q” respectively.
One important characteristic of propositional logic is that the truth-value of a

1.3. A PRIMER OF PROPOSITIONAL LOGIC 13

compound formula only depends on the truth-values of its parts4. Hence we can
use simple tables to explain the meaning (semantics) of the three operators, ·,
∧ and ∨ we have introduced.5 To make the tables more compact we write ⊥ in
place of false and ⊤ in place of true (this is easy to remember, since ⊤ looks
like a T). The variables ϕ and ψ are arbitrary formulas.

ϕ ϕ
⊥ ⊤
⊤ ⊥

ϕ ψ ϕ ∧ ψ
⊥ ⊥ ⊥
⊥ ⊤ ⊥
⊤ ⊥ ⊥
⊤ ⊤ ⊤

ϕ ψ ϕ ∨ ψ
⊥ ⊥ ⊥
⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊤

Here is an example of how to read these tables: if ϕ is a formula we have
determined to be false, and ψ is a formula we have determined to be true, then
ϕ ∨ ψ is true, by the third line of the table for ∨, while ϕ ∧ ψ is false, by the
third line of the table for ∧. Going back to our database examples, in

’UGRD’ = ’UGRD’ AND ’INFO-SYS’ = ’COMP-SCI’

ϕ is ’UGRD’ = ’UGRD’ and ψ is ’INFO-SYS’ = ’COMP-SCI’. Here ϕ is true,
and ψ is false, so ϕ ∧ ψ is false, but ϕ ∨ ψ is true (by the third row of the
truth-tables).

Nothing stops us, of course, from forming even more complex formulas. Con-
sider, for example

(p ∨ q) ∧ r.
At this point using parentheses becomes important. Compare, for example

(p ∨ q) ∧ r

to

p ∨ (q ∧ r).

Rather like (3 + 4) × 2 is not the same as 3 + (4 × 2), neither are these two
formulas. We can see this, by letting p be true, q false, and r true: then p ∨ q
is true and r is false, so (p ∨ q) ∧ r is false. On the other hand, q ∧ r is false,
but p ∨ (q ∧ r) is true, since p is true. In other words, the first formula is true,
and the second is false, so they cannot be the same. They actually differ on
another truth assignment to p, q and r. We can find that truth assignment
by systematically trying all possible truth-assignments (each proposition can be
true or false, that is two possible choices; since we have three variables, we have
2 ∗ 2 ∗ 2 = 8 possible assignments).

4Something that is not true in general. Bertrand Russell uses the example of “A believes
the proposition p is true”. Whether A believes p or not, might not just depend on the truth
of p (which might not even be known).

5History of truth-tables: Frege, Peirce, Schroeder, Wittgenstein.

14 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

p q r p ∨ q r (p ∨ q) ∧ r q ∧ r p ∨ (q ∧ r)
⊥ ⊥ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥
⊥ ⊥ ⊤ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊤ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤
⊥ ⊤ ⊤ ⊤ ⊥ ⊥ ⊥ ⊥
⊤ ⊥ ⊥ ⊤ ⊤ ⊤ ⊥ ⊤
⊤ ⊥ ⊤ ⊤ ⊥ ⊥ ⊥ ⊤ ∗
⊤ ⊤ ⊥ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊤ ⊤ ⊤ ⊥ ⊥ ⊥ ⊤ ∗

In the table we evaluate the formula step by step by breaking it down into
smaller pieces. We have marked the two rows in which the truth-value of the
two formulas differ.

Exercise 1.3.2. 1. (S) Create a table with all possible truth-assignments
for the formulas ϕ = p ∨ q and ψ = p ∧ q. Do they differ? If so, give a
truth-assignment to p and q that yields different truth-values for ϕ and ψ.

2. Create a table with all possible truth-assignments for the formulas ϕ = p
and ψ = p ∨ (q ∧ p). Do they differ? If so, give a truth-assignment to p
and q that yields different truth-values for ϕ and ψ.

In arithmetic, when we write

−3 + 4 ∗ 5,

we compute the result as (−3) + (4 ∗ 5) = 17 rather than (−3 + 4) ∗ 5 = 5 or
−((3 + 4) ∗ 5) = −35 or −(3 + (4 ∗ 5)) = −23. The reason are the rules of prece-
dence: a negation sign binds stronger than multiplication and multiplication
binds stronger than addition. In logic we have a similar rule: logical negation
binds stronger than logical and which binds stronger than logical or. So when
we write

p ∨ q ∧ r,
every logician would understand this to mean (p)∨(q∧(r)). However, if you want
to avoid confusion, add parentheses. (The same is true in SQL: when you start
modifying your queries you will often wish you had added some parentheses).

Consider the formula
p ∨ p.

This formula is different from other formulas we have seen in that it cannot be
made false: whatever truth-value p has, p ∨ p will be true, since either p or p
will be true. Formulas that are always true, regardless of the truth-values of the
propositions occurring in the formula are called tautologies. If ϕ is a tautological
formula, we write ⊢ ϕ (the notation is due to Frege), e.g. when we write

⊢ p ∨ p,
we claim that p∨p is always true, whatever the truth-value of p. The particular
formula p ∨ p is known as the Law of the Excluded Middle, since it excludes

1.3. A PRIMER OF PROPOSITIONAL LOGIC 15

the possibility of a third truth-value: a proposition has to be either true or
false. This is not very surprising in propositional logic, since we built it into the
system.

At the other end from tautologies we have falsehoods: formulas that are
always false. More formally, ϕ is a falsehood if

⊢ ϕ.

Neither tautologies or falsehoods seem very useful in a WHERE clause: WHERE

Program = ’COMP-SCI’ OR NOT PROGRAM = ’COMP-SCI’ is superfluous, since
it is always true. For a condition to be interesting, there must be a way to make
it true (satisfy it) and a way to make it false (falsify it). That does not mean,
however, that tautologies are useless. To the contrary, they are extremely useful
in rewriting and simplifying formulas.

Let us say we want to list students that are neither in computer science nor
in information systems, we can write

SELECT LastName, FirstName, SID

FROM Student

WHERE NOT Program = ’COMP-SCI’ AND NOT Program = ’INFO-SYS’;

Alternately, being neither in computer science nor in information systems could
be phrased as saying that a student is not: in computer science or in information
systems, which we could write

SELECT LastName, FirstName, SID

FROM Student

WHERE NOT (Program = ’COMP-SCI’ OR Program = ’INFO-SYS’);

So which query is correct? Both, since they are equivalent, the conditions will
be true of exactly the same rows. Going back to propositional logic, we can see
this as follows: we compare the truth tables of the two formulas p∧ q and p ∨ q:

p q p q p ∧ q p ∨ q p ∨ q

⊥ ⊥ ⊤ ⊤ ⊤ ⊥ ⊤
⊥ ⊤ ⊤ ⊥ ⊥ ⊤ ⊥
⊤ ⊥ ⊥ ⊤ ⊥ ⊤ ⊥
⊤ ⊤ ⊥ ⊥ ⊥ ⊤ ⊥

Since the truth tables of the two formulas are always the same whatever the
truth-values of p and q may be, it does not matter which of the two formulas
we use as far as the logic is concerned.

This rule is known as DeMorgan’s law.6 Colloquially, one could summarize
it as saying that “not either” is the same as “neither”. From a database point
of view it often allows the simplification of a formula. Compare again

6Augustus DeMorgan.

16 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

SELECT LastName, FirstName, SID

FROM Student

WHERE NOT Program = ’COMP-SCI’ AND NOT Program = ’INFO-SYS’;

to

SELECT LastName, FirstName, SID

FROM Student

WHERE NOT (Program = ’COMP-SCI’ OR Program = ’INFO-SYS’);

Imagine a large database. The first query has to evaluate the truth of each
of Program = ’COMP-SCI’ and Program = ’INFO-SYS’ and then perform 3 op-
erations (two NOT and one AND). The second query also has to evaluate the two
basic propositions, but then performs only two operations, one OR and one NOT.
So the second query will be faster than the first.

On the other hand, the first version of the query might be easier to read.
A database system might present the query in one form and process it in a
different form (query optimizers do just that: they look for equivalent queries
that are faster to perform).

So it seems important that we understand the idea of logical equivalence.
To define that notion formally, we introduce the equivalence operator ↔ by the
following truth-table:

ϕ ψ ϕ↔ ψ
⊥ ⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊥
⊤ ⊤ ⊤

We say that two formulas ϕ and ψ are equivalent if

⊢ ϕ↔ ψ.

For example, DeMorgan’s law can be stated as

⊢ (p ∧ q) ↔ p ∨ q.
(Note that ↔ binds less strongly than ·, ∨, and ∧.) As a proof we can now

use the earlier truth-table:

p q p ∧ q p ∨ q (p ∧ q) ↔ p ∨ q
⊥ ⊥ ⊤ ⊤ ⊤
⊥ ⊤ ⊥ ⊥ ⊤
⊤ ⊥ ⊥ ⊥ ⊤
⊤ ⊤ ⊥ ⊥ ⊤

Exercise 1.3.3. Using truth-tables show that p ↔ q is equivalent to (p ∧ q) ∨
(p ∧ q).

1.3. A PRIMER OF PROPOSITIONAL LOGIC 17

Here are some other equivalences that can be verified directly from the truth-
tables of the formulas involved:

ϕ↔ ϕ,

that is, double negation is the same as assertion (i.e. no negation).

ϕ ∧ ϕ↔ ϕ,

that is, there is no need to require a particular condition twice, since this is
equivalent to requiring it once. Also,

ϕ ∧ ψ ↔ ψ ∧ ϕ, and

ϕ ∨ ψ ↔ ψ ∨ ϕ,
that is, with ∧ and ∨ the order of the formulas does not matter.

There are many other basic laws of logic, many of them named. Recognizing
one of them and applying it can help simplify a formula quickly.

ϕ↔ ϕ (Double-Negation)

ϕ ∧ ϕ↔ ⊥ (Law of Contradiction)
ϕ ∨ ϕ↔ ⊤ (Law of Exluded Middle)

ϕ ∨ ⊥ ↔ ϕ
ϕ ∨ ⊤ ↔ ⊤
ϕ ∧ ⊥ ↔ ⊥
ϕ ∧ ⊤ ↔ ϕ

ϕ ∧ ϕ↔ ϕ (Idempotence of ∧)
ϕ ∨ ϕ↔ ϕ (Idempotence of ∨)

ϕ ∧ (ψ ∧ θ) ↔ (ϕ ∧ ψ) ∧ θ (Associativity of ∧)
ϕ ∨ (ψ ∨ θ) ↔ (ϕ ∨ ψ) ∨ θ (Associativity of ∨)

ϕ ∧ ψ ↔ ψ ∧ ϕ (Commutativity of ∧)
ϕ ∨ ψ ↔ ψ ∨ ϕ (Commutativity of ∨)

ϕ ∧ ψ ↔ ϕ ∨ ψ (DeMorgan)

ϕ ∨ ψ ↔ ϕ ∧ ψ (DeMorgan)

ϕ ∧ (ψ ∨ θ) ↔ (ϕ ∧ ψ) ∨ (ϕ ∧ θ) (Distributivity of ∧ over ∨)
ϕ ∨ (ψ ∧ θ) ↔ (ϕ ∨ ψ) ∧ (ϕ ∨ θ) (Distributivity of ∨ over ∧)

Exercise 1.3.4. Using truth-tables prove the laws of propositional logic above.

Remark 1.3.5. Note that all the equivalences involving ∧ or ∨ come in two
forms; any equivalence between two formulas remains true if all ∧s and ∨s
are exchanged, and every ⊥ is switched to a ⊤ and vice versa. The reason
is DeMorgan’s rule, as one sees when working it out with an example (try
associativity, for example).

Example 1.3.6. If you are asked to list all graduate students in computer
science together with all graduate students in computer graphics, you might
write the following query:

18 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

SELECT LastName, FirstName, SID

FROM Student

WHERE (Career = ’GRD’ AND Program = ’COMP-SCI’) OR

(Career = ’GRD’ AND Program = ’COMP-GPH’);

By distributivity, we can write the same query as

SELECT LastName, FirstName, SID

FROM Student

WHERE Career = ’GRD’ AND

(Program = ’COMP-SCI’ OR Program = ’COMP-GPH’);

which is easier to read and understand: look for all graduate students in com-
puter science and computer graphics.

Let us see how to apply the laws above to rewrite formulas. For example,
we want to show that

⊢ (p ∨ q) ∧ (p ∨ q) ↔ (p ∧ q) ∨ (p ∧ q).

We could do this using a truth-table, but now we can see why this is true
more quickly:

Starting with
(p ∨ q) ∧ (p ∨ q),

we can distribute the ∧ over the second formula (p∨ q), i.e. we use ϕ = (p∨ q),
ψ = p and θ = q and apply the distributivity of ∧ over ∨. We get an equivalent
formula

((p ∨ q) ∧ p) ∨ ((p ∨ q) ∧ q).
In both ((p ∨ q) ∧ p) and ((p ∨ q) ∧ q) we now distribute the ∧ over the ∨
(using commutativity of ∧ to argue that the order does not matter) obtaining
an equivalent formula

((p ∧ p) ∨ (q ∧ p)) ∨ ((p ∧ q) ∨ (q ∧ q)).

Now p ∧ p and (q ∧ q) are both equivalent to ⊥ by the law of contradiction, so
we get

(⊥ ∨ (q ∧ p)) ∨ ((p ∧ q) ∨ ⊥),

and we can continue to
(q ∧ p) ∨ (p ∧ q),

which, using commutativity of ∧ and ∨, we can reorder to get

(p ∧ q) ∨ (p ∧ q).

In summary, we showed that (p∨ q)∧ (p∨ q) and (p∧ q)∨ (p∧ q) are equivalent,
i.e.

⊢ (p ∨ q) ∧ (p ∨ q) ↔ (p ∧ q) ∨ (p ∧ q).

1.3. A PRIMER OF PROPOSITIONAL LOGIC 19

This last formula we proved might seem unwieldy, but that’s because we did
not look at it in the best possible way. The second part of the equivalence was

(p ∧ q) ∨ (p ∧ q),

which is equivalent to p ↔ q. Maybe the first part can be expressed better as
well: consider the piece q ∨ p. Either q is true, or p is false. That is, if p is true,
then q has to be true as well for q∨ p to be true. In other words, q∨ p expresses
implication, and we can define ϕ→ ψ as ϕ ∨ ψ. Or, using truth-tables:

ϕ ψ ϕ→ ψ
⊥ ⊥ ⊤
⊥ ⊤ ⊤
⊤ ⊥ ⊥
⊤ ⊤ ⊤

What does this implication do for us? If we know ϕ → ψ to be true, and we
know that ϕ is true, then we can conclude that ψ is true. (Check that using
truth-tables.) If ϕ is false, we cannot draw any conclusions about ψ.

Exercise 1.3.7. The version of implication, →, defined above is known as ma-
terial implication. It is a rather weak type of implication, not very suitable to
model stronger types of connections such as causality. Nevertheless for proposi-
tional logic it is just what we need. Consider alternative definitions, by looking
at the other three possibilities for replacing the ? in the following table (the

values for ϕ = ⊤ are rarely questioned) for a fictitious implication operator
∗→:

ϕ ψ ϕ
∗→ ψ

⊥ ⊥ ?
⊥ ⊤ ?
⊤ ⊥ ⊥
⊤ ⊤ ⊤

Show that all possible variants either lead to operations we know or trivial
operators none of which are useful in capturing implication.

Using the definition of implication, we can now give

⊢ (p ∨ q) ∧ (p ∨ q) ↔ (p ∧ q) ∨ (p ∧ q)

a more intuitive form; it says that

⊢ (p→ q) ∧ (q → q) ↔ (p↔ q).

That is, two propositions are equivalent if they imply each other. Intuitively,
exactly what we would want.

Exercise 1.3.8. Solve the following two problems.

20 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

1. You have been in the business of designing business cards for years. Your
business cards always have writing (names) on the front side and graphics
on the back. One rule you have stuck to is that if there is a flower motive
on the back of a business card, then the writing on the front must use
fancy, rather than plain, lettering. On the table in front of you are four
new designs for business cards submitted by your employees (some front
side up, some back side up). Determine which card(s) you have to turn
around to determine whether they follow your rule about lettering:

Gio‰nni Barreta

Cabinetmaker

Giovanni Barreta
Cabinetmaker

2. You are working as a bartender at a party where everybody gets issued
a card which has their name and age on one side and a color code on
the other side for whether they want alcoholic (“green”) or non-alcoholic
(“red”) drinks. Since the legal drinking age in your state is 21, the guests
may not have a green-backed card unless they are at least 21. After the
party you are looking at some cards and you are suspicious that some
might have been faked. Which ones do you need to turn around to tell
which might be fake?

Angela
Bennett
Age: 20

Giovanni
Barreta
Age: 46 Red Green

3. What is the relevant logical structure of the two exercises above? Show
how this explains which cards have to be turned over.

Here are some basic rules about implication:

ϕ→ ϕ
⊥ → ϕ (ex falso quodlibet7)
(⊤ → ϕ) → ϕ
(ϕ→ ⊥) → ϕ (Proof by contradiction)
(ϕ ∧ ϕ→ ψ) → ψ (Modus Ponens)
(ϕ→ ψ ∧ ψ → θ) → (ϕ→ θ) (Modus Barbara)
(ϕ ∧ ψ) → ϕ (∧-weakening)
ϕ→ (ϕ ∨ ψ) (∨ strengthening)

(ϕ→ ψ) → (ψ → ϕ) (contrapositive)
((ϕ→ ψ) → ϕ) → ϕ (Peirce’s law)

7From falsehood, anything.

1.4. MORE DATABASE LOGIC 21

Not surprisingly, most of these rules (and names) are relevant for logical
reasoning and logical proof and less useful for databases. We will talk about
this at the appropriate time.

Exercise 1.3.9. Using truth-tables prove the laws of propositional logic above.

1.4 More Database Logic

A database typically consists of more than one table, and so does our sample
student database. See the Appendix B for a complete listing of all tables in the
database. Let us have a look at the Enrolled table. What does the second row
in that table mean?

StudentID CourseID Quarter Year

11035 1092 Fall 2005

The first entry is the student’s ID, the second the course ID. So we can read
this row as saying that the student with ID 11035 is enrolled in the course with
ID 1092 in fall of 2005. After looking up the student and course information,
we see that this means that Abigail Winters is enrolled for Cryptography in fall
of 2005.

In database terminology StudentID and CourseID in the Enrolled table are
foreign keys8 pointing at the primary key fields of another table and identifying
a particular record in that table. StudentID points at the primary key SID

of Student, identifying a particular student, and CourseID points at CID in
Courses identifying a particular course.

Exercise 1.4.1. 1. Interpret the other rows of the Enrolled table.

2. (S) What would you have to add to the database to record that Peter
Johnson took the database course IT 240 in the spring of 2004?

Remark 1.4.2. This is not the place to discuss in detail why information is
split into multiple tables, but we can give a quick answer. Suppose we kept all
the data about students, courses, and which courses they are enrolled in, in a
single table. Consider Abigail Winters. Since we have two records of her being
enrolled, our single-table database would also need to have two rows for Abigail
Winters, both of which repeat all of her personal information (name, city, ssn,
etc.):

LN FN SID SSN Cr Prg City Start CID CN Dpt Nr Qrt Yr

Winters . . . 11035 . . . GRD PHD Chicago 2003 1092 . . . CSC 440 Fall 2005

Winters . . . 11035 . . . GRD PHD Chicago 2003 1020 . . . CSC 489 Fall 2005

What’s the problem with a table like this: storage space? No. Consistency! If
Abigail moves anywhere else, we have to change all records which include her
information. If we update inconsistently, we will have multiple Abigail Winter
personas. So we place information for different objects (entities in database
language) into separate tables.

8In case you are wondering: a foreign key is not a key by definition; it just points to a key.

22 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

In SQL we can choose multiple tables in the FROM clause of the SELECT

statement. If we do so, SQL will create all possible combinations of records
from the tables. We need to limit the output to the meaningful records. For
example, if we wrote

SELECT LastName, SID, CID, CourseName

FROM Student, Enrolled, Course

we would get 8 ∗ 6 ∗ 7 = 336 records, including many spurious ones. We only
want records where the ID information between the Enrolled table and the
other two tables matches. We can add this as a simple condition, similar to
what we have done before:

SELECT LastName, SID, CID, CourseName

FROM Student, Enrolled, Course

WHERE SID = StudentID AND CourseID = CID;

Remark 1.4.3. The reason the student ID is called SID in Student and
StudentID in Enrolled should be obvious now: if we had given them the same
name, SID, say, SQL wouldn’t be able to distinguish them, and we would have to
write code like Student.SID = Enrolled.SID AND Course.CID = Enrolled.CID,
which is always possible, and sometimes unavoidable, but cumbersome.

Here is a simple task: list all students who are enrolled in the course on theory
of computation. We can start with the earlier query we saw that combines the
Student, Enrolled and Course tables. Now we add the specific restriction that
we want to limit ourselves to students enrolled in theory of computation. The
result could look like this:

SELECT LastName, FirstName, SID

FROM Student, Enrolled, Course

WHERE SID = StudentID AND CourseID = CID AND

CourseName = ’Theory of Computation’;

Note that we did a piece of interpretation here: when we asked for all stu-
dents enrolled in theory of computation, we read this to say all students enrolled
in a course called theory of computation. Indeed, there are two such courses,
and the client might have really meant CSC 489, in which case the query should
have been

SELECT LastName, FirstName, SID

FROM Student, Enrolled, Course

WHERE SID = StudentID AND CourseID = CID AND

Department = ’CSC’ and CourseNr = "489";

Remark 1.4.4. When writing a simple database query, proceed as follows:

(i) Determine which tables are involved (FROM clause).

1.4. MORE DATABASE LOGIC 23

(ii) Determine how to connect the foreign keys in those tables with the at-
tributes they point at (first part of the WHERE clause).

(iii) Add specific requirements (remainder of the WHERE clause).

How about finding all students who have not taken theory of computation?
A first attempt could look like this:

SELECT LastName, SID, CID, CourseName

FROM Student, Enrolled, Course

WHERE SID = StudentID AND CourseID = CID AND

NOT CourseName = ’Theory of Computation’;

When you run this query, you will see that it lists (among others) Abigail
Winters, although she has taken theory of computation. Why? (Think about
this carefully.)

With the tools currently at our disposal, we cannot resolve the request. We
will return to it in the next section.

Exercise 1.4.5. There is one query in the following set that you cannot solve
yet. Figure out which one it is, and solve the others. Use SELECT DISTINCT

when appropriate.

1. (S) List all students who are presidents of a student organization. (For this
query note how the convention that conditions involving fields containing
null values always fail, makes sense.)

2. List all students who have taken a course in the CSC department.

3. List students who enrolled in a class in 2006.

4. List students who were not enrolled in a class in 2006.

5. List students who have taken courses in the GPH or DC department.

SQL allows so-called check constraints (H2 supports these directly, in Access
you can only add them through the database engine). When setting up a table
you can specify that certain conditions need to be met. For example, here is
part of some SQL code that could be used to set up the Student table.

CREATE TABLE student (

LastName Text,

...

CHECK (NOT SSN is null)

)

The check constraint at the end will be tested every time a new record is
added to the table. If we try to add a student without a social security number
that record is rejected (so this is probably not a good constraint). Within the

24 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

CHECK part of the CREATE TABLE statement, we can use the same conditions we
use in the WHERE part of a SQL statement (the only difference is that we have to
restrict the condition to the particular table we are creating). So if we wanted
to require that a SSN is entered for a new student record, and the start year of
the student is at least 1900 (which seems reasonable), we would write:

CHECK (NOT SSN is null AND Started >= 1900)

Exercise 1.4.6. Write check constraints to verify the following conditions (not
all of them are realistic):

1. (S) There is no course with the number ’000’.

2. All courses are in the departments ’CSC’, ”IT”, ’GPH’, ’IS’, or ’DC’.

3. Nobody was enrolled in Fall of 1999.

4. You cannot be a PhD student unless you are a graduate student.

5. You cannot be a PhD student unless you are a graduate student and live
in Chicago.

6. All students are either ’GRD’ or ’UGRD’ or ’SAL’ (student-at-large).

7. All graduate students have a social security number on file.

8. There are five quarters: Fall, Winter, Spring, Summer I, Summer II.

You can also add check constraints after the table has been created using
the ALTER TABLE command). For example,

ALTER TABLE student

ADD CONSTRAINT city_constraint

CHECK (City in (’Chicago’, ’Evanston’));

If you then tried to insert a new student, through

INSERT INTO student (LastName, FirstName, SID, City)

VALUES (’Petrarca’, ’Manilo’, 92200, ’Firenze’);

this request would be rejected as a violation of the constraint city_constraint.
(You do need to give a new name to every constraint you add through the ALTER
TABLE command.) Compare this to

INSERT INTO student (LastName, FirstName, SID, City)

VALUES (’Petrarca’, ’Manilo’, null, ’Chicago’);

which causes a primary key violation (SID may not be null). If you want to
remove the constraint, simply say:

ALTER TABLE student

DROP CONSTRAINT city_constraint;

1.5. MORE PROPOSITIONAL LOGIC 25

1.5 More Propositional Logic

1.5.1 Truth-functions and Normal Forms

A truth-function is a proposition whose truth only depends on the truth of a set
of propositions p1, p2, . . . , pn. For example, p ∨ q is a truth-function of p and q.
In general, we can define a truth-function through a truth-table. Consider, for
example, the following table, defining the behavior of a truth-function f :

p q r f(p, q, r)
⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊤ ⊤
⊥ ⊤ ⊥ ⊤
⊥ ⊤ ⊤ ⊥
⊤ ⊥ ⊥ ⊤
⊤ ⊥ ⊤ ⊥
⊤ ⊤ ⊥ ⊥
⊤ ⊤ ⊤ ⊥

The truth-function f(p, q, r) expresses that exactly one of p, q and r is true.
The question we ask, is whether f(p, q, r) can be expressed as a formula using
propositions p, q and r. Indeed this is true, and there is a very general method
to construct the formula. We do not care about the cases where f(p, q, r) is
false, but if it is true, we also have to make our formula true. To do this we
simply take the disjunction of all those cases where the function f has to be
true. In our example, there are three such cases: p∧ q∧ r, p∧ q∧ r and p∧ q∧ r.
So, f(p, q, r) can be written as the formula:

(p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ q ∧ r).

Let us return to an earlier example: p ↔ q is true if p and q have the same
truth value. We saw the truth-table for logical equivalence earlier:

p r p↔ q
⊥ ⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊥
⊤ ⊤ ⊤

Following the procedure described above, we have two cases that make p↔ q
true: p ∧ q and p ∧ q. Taking the disjunction of these two cases, gives us
(p ∧ q) ∨ (p ∧ q), a formula we saw earlier.

Exercise 1.5.1. 1. (S) Write a formula that is true if and only if an even
number of the variables p, q and r is true.

2. Write a formula that is true if and only if exactly one of the variables p,
q or r is false.

26 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

3. Write a formula that is true if and only if none of p, q or r is true.

4. Write a formula that is true if and only if exactly two of p, q or r are true.

5. Write a formula that is true if p and q have opposite truth-values.

The procedure we used in the examples works in general; if f(p1, . . . , pn) is
a truth-function of propositional variables p1, . . . , pn, then f can be written as
a formula as the disjunction of all truth-assignments which make f true.

The formulas we derive using process all have the same form; consider again
our first example:

(p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ q ∧ r).
This formula is a disjunction of smaller formulas, each of which is a conjunc-

tion of propositional variables or their negation. Propositional variables and
their negations are called literals, and a conjunction or disjunction of literals is
called a clause. Using this terminology, we see that the formula we derived, in-
deed, any formula derived using the process described is a disjunction of clauses
which are themselves conjunctions of literals. This way of writing a formula is
known as the disjunctive normal form (DNF). In other words, we have shown
the following theorem:

Theorem 1.5.2. Every truth-function can be written as a formula in disjunctive
normal form.

From this we can conclude (mathematicians call this a corollary):

Corollary 1.5.3. Every formula is equivalent to a formula in disjunctive nor-
mal form.

Proof. Every formula defines a truth-function, hence by the theorem it is equiv-
alent to a formula in disjunctive normal form.

We already saw an instance of the corollary, when we showed how p↔ q can
be written in DNF. For some formulas, the disjunctive normal form can consist
of a single disjunction (e.g. p∨ q) or a single conjunction (e.g. p∧ q). Those are
special cases of the definition.

Exercise 1.5.4.

(S) Find the disjunctive normal form of p ∧ (q ∨ r). (You can use either truth-
tables or transformations.)

Not surprisingly, there is a dual concept, called the conjunctive normal form.
A formula is in conjunctive normal form (CNF) if it is the conjunction of dis-
junctions of literals.

Corollary 1.5.5. Every truth-function, in particular every formula, can be
written in conjunctive normal form.

1.5. MORE PROPOSITIONAL LOGIC 27

Proof. Suppose we are given a truth-function or formula ϕ. By Theorem 1.5.2,
ϕ can be written as a formula ψ in disjunctive normal form. Then ψ is in
conjunctive normal form (after applications of DeMorgan to move the negation
to the literal level).

Exercise 1.5.6. Find the conjunctive normal form of the following truth-
functions.

1. ϕ(p, q, r) is true if and only if exactly one of p, q, or r is true.

2. ϕ(p, q, r) is true if at most two of p, q and r are true.

3. ϕ(p, q, r) is true if at most one of p, q and r is true.

1.5.2 Logical Bases

Theorem 1.5.2 showed that every truth-function can be written using conjunc-
tion, disjunction and negation. There are several questions we can ask at this
point: what other logical operators are there? Which of them do we actually
need?

To find out what operators there are, we can see what freedom we have in
defining them using truth-tables. For unary operators a truth-table looks as
follows:

p ?p
⊥ ?
⊤ ?

How many possibilities are there, and which of these have we seen?
More interesting is the study of binary operators:

p q p ⋄ q
⊥ ⊥ ?
⊥ ⊤ ?
⊤ ⊥ ?
⊤ ⊤ ?

Exercise 1.5.7. How many ways are there to define a binary logical operator
⋄?

Are there any more interesting binary logical operators we have not encoun-
tered yet? Indeed, there are, for example, p ↑ q, called nand or the Sheffer
stroke (it is sometimes written as p|q, which is misleading if you use modern
programming languages). It represents the case that not both p and q are true.

p q p ↑ q
⊥ ⊥ ⊤
⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊥

28 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

We also have p ↓ q, also known as nor or the Peirce arrow, which represents
“neither p nor q”.

p q p ↓ q
⊥ ⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊥
⊤ ⊤ ⊥

Exercise 1.5.8. Construct the truth-table for “p unless q” and find an equiv-
alent formula using only p, q, and any of the logical operations ∧, ∨, and ·.

Let us return to the second question: which of all these operators do we
need in logic. Theorem 1.5.2 showed that conjunction, disjunction and negation
are sufficient. Indeed, we can do without either conjunction or negation, since
DeMorgan allows us to define them in terms of each other: Since p ∨ q ↔ p∧ q,
we have

ϕ ∨ ψ ↔ ϕ ∧ ψ,
that is, we can always replace an ∨ in a formula using negation and conjunction.
Similarly,

ϕ ∧ ψ ↔ ϕ ∨ ψ,
so we could base logic on conjunction and negation, if we wanted to. Interest-
ingly, a single logical operator is sufficient, as Charles Peirce observed. Indeed,
either the logical nor or the logical nand are sufficient to define any of the other
logical operators.

Exercise 1.5.9. 1. Use logical nands only to define negation; that is, find a
formula equivalent to p only using p and ↑.

2. Use logical nors only to define negation; that is, find a formula equivalent
to p only using p and ↓.

3. Show how to define nor using only nand, and nand using only nor. Hint:
Show, and use, p ↓ q ↔ p ↑ q.

4. Show how to define or using nand.

5. Show how to define and using nand.

In the exercises we saw that disjunction and negation can be expressed using
the logical operator nand only. Since we already know that any truth-function
can be expressed using only disjunction and negation, we have the following
conclusion.

Corollary 1.5.10. Every truth-function, in particular every formula, can be
written using only the nand operator. (And the same is true for the nor opera-
tor.)

1.6. EXERCISES ON DATABASES AND LOGIC 29

Exercise 1.5.11. 1. Write p→ q using only nand.

2. Write p↔ q using only nand.

The corollary is often expressed as saying that ↑ is a base for propositional
logic in the sense that any truth function can be expressed using only proposi-
tional variables and the operator ↑. So we can summarize our results as saying
that the following are bases:

• ↑

• ↓

• ∨ and ·

• ∧ and ·

Exercise 1.5.12. Show that ∧ and ∨ (that is, no negation) are not a base for
propositional logic. Hint: show that formulas built solely using ∧ and ∨ have
a property called monotonicity: changing the assignment of a propositional
variable from ⊥ to ⊤ in the truth-table cannot turn the value of such a formula
from ⊤ to ⊥ (as negation does).

1.6 Exercises on Databases and Logic

1. Construct the truth-table for “either p or q (but not both)” and find an
equivalent formula using only p, q, and any of the logical operations ∧, ∨,
and ·. Note: This operator is known as “xor” or exclusive or.

2. A year is a leap year if it is divisible by 4, unless it is also divisible by 100,
in which case it has to be divisible by 400 to be a leap year. Complete the
following C++ code to determine whether a year is a leap year or not:

cin >> year; // reading input from standard input into variable year

if (?) {

cout << "year is leap year";}

else {

cout << "year is not leap year";

}

Note: In C++ you write ‖ for ∨, && for ∧, and ! for negation (before the
condition to be negated). To test whether a number is divisible by another
number use division by remainder. E.g. year % 100 == 0 tests whether
the remainder of dividing year by 100 is equal to 0, that is, whether year
is divisible by 100. So, for example, !(year % 4 == 0) && (year % 5)

returns true if year is divisible by 5 but not by 4. Hint: Recall Maass’
4th piece of advice and approach the full problem in two steps.

30 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

3. Some programming languages (functional languages in particular) contain
an if-then-else expression. That is you write if condition then a else b,
and if the condition holds, the value returned will be that of a and if not,
the value of b.9 Let’s do this with propositional variables:

(a) Find the truth-table of the truth-function “if p then q else r”.

(b) Find the disjunctive normal form for “if p then q else r”.

(c) Simplify the disjunctive normal form (there should be two clauses
with two variables each).

4. Find the flaw in the following argument. Hint: the conclusion is correct
and the method described was actually used, but the argument showing
that the method works is wrong. Note: Assume an ideal rope in which
knots do not shorten the rope, so the sides of the triangle really correspond
to 3, 4 and 5 units.

You probably know Pythagoras theorem: in a right triangle, the sides a,
b and c relate to each other as c2 = a2 + b2, where c is the side opposite
the right angle. For example, 32 + 42 = 52. Pythagoras’ theorem can
be practically used as follows: take 12 pieces of rope of the same length
and knot them together into one long cycle. Then place the cycle on the
ground so that it forms a triangle with sides consisting of 3, 4 and 5 pieces
of rope (you can do that by pulling the pieces taught at the corners). By
Pythagoras’ theorem, the angle opposite the side with the 5 pieces of rope
is a right angle which you can now use in construction.

5. (due to Martin Gardner) Multiple choice question: which of the following
statements is true (assuming at least one is true)?

(i) Exactly one of these statements is true.

(ii) Exactly two of these statements are true.

(iii) Exactly three of these statements are true.

(iv) Exactly four of these statements are true.

(v) Exactly five of these statements are true.

6. An old English nursery rhyme goes as follows:

For want of a nail the shoe was lost.
For want of a shoe the horse was lost.
For want of a horse the rider was lost.
For want of a rider the battle was lost.
For want of a battle the kingdom was lost.
And all for the want of a horseshoe nail.

9In C you could write (a <= b ? a : b) to compute the minimum of a and b.

1.7. NOTES 31

What is the logical structure of this nursery rhyme? Introduce appropriate
atomic propositions (one for each object), and then use these propositions
to describe the statements in the rhyme.

7. [Interview Question] You have three picnic baskets filled with fruit. One
has apples, one has oranges, and the third has a mixture of apples and
oranges. You cannot see the fruit inside the baskets. Each basket is clearly
labeled. Each label is wrong. You are permitted to close your eyes and
pick one fruit from one basket of your choice, then examine it. How can
you determine what is in each basket?

1.7 Notes

176 CHAPTER 1. DATABASES AND PROPOSITIONAL LOGIC

Chapter 14

Hints

14.1 Chapter 1

Exercise 1.1.3 All tables have 8 rows, the second table has two columns, the
other two tables have one column.

Exercise 1.1.4 Here are the outputs you should see:

SSN

null

123123123

111111111

321321321

FirstName

Deepa
Prakash

LASTNAME FIRSTNAME SID

Patel Deepa 14662
Johnson Peter 32105
Patel Prakash 75234
Snowdon Jennifer 93321

LASTNAME FIRSTNAME SID

Brennigan Marcus 90421
Patel Deepa 14662
Starck Jason 19992
Winter Abigail 11035
Patel Prakash 75234

177

178 CHAPTER 14. HINTS

Exercise 1.2.1 The number of records returned by the queries are: 1. 2
records, 2. 2 records, 3. 2 records, 4. 2 records, 5. 1 record, 6. 3
records.

Exercise 1.2.3 The number of records returned by the queries are: 1. 6
records, 2. 2 records, 3. 1 record, 4. 4 records, 5. 6 records, 6. 1
record, 7. 1 record, 8. 0 records.

Exercise 1.3.2 1. They differ. 2. They differ.

Exercise 1.4.5 Use SELECT DISTINCT for all of these queries, since you want
a list of students, duplicates would be meaningless. With duplicates re-
moved, the number of records in the output to the queries is as follows:
1. 3 records, 2. 2 records., 3. 2 records, 4. not possible yet, 5. 1 record.

Exercise 1.5.1 1. Even number means 0 or 2 in this case, that is, either all
three propositional variables have to be false, or exactly one of them is
false.

Exercise 1.5.4 If you follow the procedure, your solution will be a conjunction
of three clauses (which are disjunctions of literals). If you use transforma-
tions or simplify your solution, you can obtain a formula in DNF which is
the conjunction of two clauses, each of which contains two variables.

Exercise 1.5.9 1. Consider p ↑ p.
Exercise 1.5.11 Convert the formulas to DNF, and then use the results from

the previous exercise.

Exercise 2.2.4 The main table for the second query is StudentGroup, not
Student. Concentrate on getting the list of IDs. (This will be a nested
query.) With the outer query for presentation, the solution will be a
doubly nested SQL query.

Exercise 2.6.1 For the first question find the student groups that do have
members first. For the fifth question (tricky), do not use EXCEPT, but
rephrase the query using propositional logic instead of set operations.

Exercise 2.6.3 For the first question, concentrate on a particular student:
what courses is the student enrolled in (set A), and what are the CSC
courses (set B)? The requirement translates to A ⊆ B.

Exercise 3.1.3 Here is the definition of sibling from Merriam-Webster: “one
of two or more individuals having one common parent”.

Exercise 3.1.12 These properties are directly due to the corresponding prop-
erties of set membership.

Exercise 3.1.20 If x is brother to y, what is y to x? Moreover, don’t forget
that we know something about x.

Exercise 3.3.7 Division does not help at all. Multiplication does.

Chapter 15

Solutions To Selected

Exercises

15.1 Chapter 1

Exercise 1.1.4 The query for the first question is

SELECT SSN

FROM Student

WHERE Career = ’GRD’;

The query for the third question is

SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’COMP-SCI’;

Exercise 1.2.1 The query for the first question is

SELECT LastName, FirstName, SID

FROM Student

WHERE Career = ’GRD’ AND Program = ’COMP-SCI’;

The query for the fourth question is

SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’COMP-SCI’ AND NOT City = ’Chicago’;

Exercise 1.2.3 The query for the second question is

179

180 CHAPTER 15. SOLUTIONS TO SELECTED EXERCISES

SELECT LastName, FirstName, SID

FROM Student

WHERE Started = 2001 OR Started = 2002;

The query for the sixth question is

SELECT LastName, FirstName, SID

FROM Student

WHERE Career = ’GRD’ AND SSN is null;

Exercise 1.3.2 1. They differ on p = ⊤ and q = ⊤.

Exercise 1.3.4 The equivalence of double-negation with assertion is proved by
the following truth-table:

ϕ ϕ ϕ ϕ↔ ϕ
⊥ ⊤ ⊥ ⊤
⊤ ⊥ ⊤ ⊤

The idempotence of ∧ is shown by the following truth-table:

ϕ ϕ ∧ ϕ ϕ↔ ϕ ∧ ϕ
⊥ ⊥ ⊤
⊤ ⊤ ⊤

Exercise 1.4.1 You’d need to add the following row to the Enrolled table.

StudentID CourseID Quarter Year

32105 9219 Spring 2003

Exercise 1.4.5 Solution to first query.

SELECT DISTINCT LastName, FirstName, SID

FROM Student, Studentgroup

WHERE SID = PresidentID;

Exercise 1.4.6 First check constraint: the following line has to be added to
the Course table.

CHECK (NOT CourseNr = ’000’)

Exercise 1.5.1 1. (p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ q ∧ r).

Exercise 1.5.4 The simplified solution is (p ∧ q) ∨ (p ∧ r).

15.2. CHAPTER 2 181

15.2 Chapter 2

Exercise 2.2.1 The following query lists presidents of student groups founded
before 2000.

SELECT LastName, FirstName, SID

FROM Student

WHERE SID IN

(SELECT PresidentID

FROM StudentGroup

WHERE Founded < 2000);

Exercise 2.2.2 The first query lists all students who are not members of HerCTI,
the second all students who are members of some group other than HerCTI.
There are two differences: the first query will list students who are not
members of any student group (which are not listed by the second query),
and the second query will list students that are members of HerCTI, as
long as they are also member of some other group.

Exercise 2.2.4 Solution to the first query:

SELECT Name

FROM StudentGroup

WHERE EXISTS

(SELECT StudentID

FROM MemberOf

WHERE Name = GroupName);

Exercise 2.2.6 Solution to the second query:

SELECT LastName, FirstName, SID

FROM Student

WHERE SID IN

(SELECT PresidentID

FROM studentgroup

WHERE presidentID NOT IN

(SELECT StudentID

FROM MEMBEROF

WHERE groupname = name));

Exercise 2.3.2 The solution to the first question is {Lisa}.

Exercise 2.3.6 (1): A ∩A = A. (6): A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Exercise 2.5.3 (2): A ∩A = ∅.

Exercise 2.6.1 The solution to the first query can be written as

182 CHAPTER 15. SOLUTIONS TO SELECTED EXERCISES

(SELECT Name

FROM StudentGroup)

EXCEPT

(SELECT GroupName

FROM MemberOf);

Exercise 2.6.3 The solution to the first query is as follows:

SELECT LastName, FirstName, SID

FROM Student

WHERE NOT EXISTS (

SELECT CID

FROM Enrolled

WHERE StudentID = SID

EXCEPT

SELECT CID

FROM Course

WHERE Department = ’CSC’);

Exercise 2.8.3 (1): 25 = 32.

15.3 Chapter 3

Exercise 3.1.3 (1) (see definition in Hints): nobody is their own sibling, so
reflexivity fails very strongly (the relation is anti-reflexive: R(x, x) fails
for all x); the relation is symmetric, since if x and y have at least one
common parent, so do y and x. On the other hand, R is not transitive,
since x and y could have a common parent, and y and z could have a
common parent, without x and z having a common parent.

Exercise 3.1.8 The following query lists the first and last year for each pro-
gram that a student started in it.

SELECT Program, min(started), max(started)

FROM Student

GROUP BY Program;

Exercise 3.1.11 Student groups that have no members:

SELECT Name, count(*)

FROM StudentGroup, MemberOf

WHERE GroupName = Name

GROUP BY Name

HAVING count(*) = 0;

Exercise 3.2.8 The transitive closure of “is child of” is “is predecessor of”.

15.4. CHAPTER 8.1 183

Exercise 3.3.1 (1) expresses that for every x, if x has a social security number,
then x is American. In plain English: everybody who has a social security
number is American, that is, only Americans have social security numbers.

Exercise 3.3.5 (1) R is anti-reflexive:

(∀x)[R(x, x)].

(4) R is not reflexive:
(∀x)[R(x, x)].

Exercise 3.3.8 Two possible ways to define even: x is even if and only if
(∃y)[y = x+ x], or simply 2|x.

Exercise 3.3.10 (1) says that there is an x that is less than or equal to all y
(the same x for all y!). In other words: there is a smallest element. This
is true for the natural numbers, x = 1, but it is not true for either integers
or real numbers.

15.4 Chapter 8.1

Exercise 8.1.9 Here’s the queue reached during the run of breadth-first search
together with the distance calculated for the elements popped.

{s} pop s, add a distance[s] = 0
{a} pop a, add b and h not s distance[a] = 1
{b, h} pop b, add c and d not a distance[b] = 2
{h, c, d} pop h, add g and i not a distance[h] = 2
{c, d, g, i} pop c, do not add b distance[c] = 3
{d, g, i} pop d, add e and f not b distance[d] = 3
{g, i, e, f} pop g,do not add h distance[g] = 3
{i, e, f} pop i, add j and k not h distance[i] = 3
{e, f, j, k} pop e, do not add d distance[e] = 4
{f, j, k} pop f , do not add d distance[f] = 4
{j, k} pop j, do not add i distance[j] = 4
{k} pop k, add l and n not i distance[k] = 4
{l, n} pop l, do not add k distance[l] = 5
{n} pop n, add m and t not k distance[n] = 5
{m, t} pop m, do not add n distance[m] = 6
{t} pop t, found exit, return true distance[t] = 6

15.5 Chapter 10

Exercise 10.0.8 For the first problem, m = 3 or m = 6 would work.

Exercise 10.0.9 4 6≡ 5 mod 2, since 2 does not divide 4−5 = −1, and similarly,
4 6≡ 5 mod 3, since 3 also does not divide 4− 5 = −1. Also, 4 6≡ 9088 mod
5, since 4 − 9088 = −9084 is not a multiple of 5.

184 CHAPTER 15. SOLUTIONS TO SELECTED EXERCISES

Appendix A

Some Words on H2

If you want to run the queries using set intersection and difference, you will
need a relational database system supporting INTERSECT and EXCEPT. A nice,
easy-to-install package is the H2 database engine which you can download at
http://www.h2database.com.

After installation run the H2 console (not in command line mode); this
should bring up a browser window with the following login screen.

Figure A.1: H2 login.

185

186 APPENDIX A. SOME WORDS ON H2

Click on the “connect” button, and you should see a window as in Figure A.2:

Figure A.2: H2 console.

You can use the window on the right to input SQL (below you will see the
results. To create the university database, copy/paste the file “university.sql”
into the window, and hit the “run” button. As a result you should see something
like the screen in Figure A.3. You can now try running a simple query as in the

Figure A.3: H2 console with database.

screen shot in Figure A.4. To log out, hit the red symbol on the top left.

187

Figure A.4: H2 console with results of query.

188 APPENDIX A. SOME WORDS ON H2

Appendix B

The University Database

Student

LastName FirstName SID SSN Career Program City Started

Brennigan Marcus 90421 987654321 UGRD COMP-GPH Evanston 2001

Patel Deepa 14662 null GRD COMP-SCI Evanston 2003

Snowdon Jonathan 08871 123123123 GRD INFO-SYS Springfield 2005

Starck Jason 19992 789789789 UGRD INFO-SYS Springfield 2003

Johnson Peter 32105 123456789 UGRD COMP-SCI Chicago 2004

Winters Abigail 11035 111111111 GRD PHD Chicago 2003

Patel Prakash 75234 null UGRD COMP-SCI Chicago 2001

Snowdon Jennifer 93321 321321321 GRD COMP-SCI Springfield 2004

Enrolled

StudentID CourseID Quarter Year

11035 1020 Fall 2005

11035 1092 Fall 2005

75234 3201 Winter 2006

08871 1092 Fall 2005

90421 8772 Spring 2006

90421 2987 Spring 2006

Course

CID CourseName Department CourseNr

1020 Theory of Computation CSC 489

1092 Cryptography CSC 440

3201 Data Analysis IT 223

9219 Desktop Databases IT 240

3111 Theory of Computation CSC 389

8772 Survey of Computer Graphics GPH 425

2987 Topics in Digital Cinema DC 270

MemberOf

StudentID GroupName Joined

75234 DeFrag 2005

11035 HerCTI 2004

93321 HerCTI 2005

75234 Computer Science Society 2002

StudentGroup

Name PresidentID Founded

Computer Science Society 75234 1999

Robotics Society null 1998

HerCTI 93321 2003

DeFrag 90421 2004

189

190 APPENDIX B. THE UNIVERSITY DATABASE

Student
LastName FirstName SID SSN Career Program City Started

Enrolled
StudentID CourseID Quarter Year

Course
CID CourseName Department CourseNr

MemberOf
StudentID GroupName Joined

StudentGroup
Name PresidentID Founded

Figure B.1: Relationships in the University database

Appendix C

Fundamentals of SQL

The simplest SQL queries consist of a SELECT and a FROM clause.

SELECT LastName, FirstName

FROM Student;

In the FROM clause you specify which table your rows come from, in the
SELECT clause you select the attributes of the rows that will get listed. Using
SELECT DISTINCT in place of SELECT removes duplicate rows in the output.

SELECT DISTINCT LastName

FROM Student;

There is a third clause, the WHERE clause which allows you to specify re-
quirements that a row needs to fulfill to get listed.

SELECT LastName, FirstName

FROM Student

WHERE Career = ’UGRD’;

The conditions in the WHERE can be atomic, including comparisons such as
Career = ’UGRD’, year <= 1969, LastName < ’P’, or they can be compound
that is, Boolean combinations of atomic queries, such as Career = ’UGRD’ AND

LastName < ’P’. There are several special conditions built into SQL, including
is null and EXISTS (which leads to a nested query).

SELECT LastName, FirstName

FROM Student

WHERE not SSN is null;

If you choose multiple tables in the FROM clause, SQL will generate all possible
combinations of rows from each table. For example, the query

SELECT LastName, FirstName, Name

FROM Student, StudentGroup;

191

192 APPENDIX C. FUNDAMENTALS OF SQL

generates 8∗4 rows of output, most of them not corresponding to meaningful
information. Use the WHERE clause, connecting foreign key and primary key of
the tables to restrict the output to meaningful rows only:

SELECT LastName, FirstName, Name

FROM Student, StudentGroup

WHERE PresidentID = SID;

Output of a SQL query can be grouped by any attribute; this means that
rows for which that attribute has the same value get collapsed into a single row.
For example,

SELECT City

FROM Student

GROUP BY City

lists all cities that students are from. In a grouped query you can only select
attributes by which you have grouped, or aggregate functions of other attributes.

SELECT City, min(Started)

FROM Student

GROUP BY City

lists all cities, and, for each city, the earliest year that a student from that city
begin their studies.

Conditions that need to be applied after grouping and aggregation need to
be included in the HAVING clause rather than the WHERE clause. For example,

SELECT City

FROM Student

GROUP BY City

HAVING count(*) >= 3

lists all cities from which there are at least three students.

Finally, the output of a query can be ordered by attributes using the ORDER

BY clause. By default the ordering is increasing in the appropriate ordering
(numerical or lexicographic).

Let us review these features in a single query containing all clauses:

SELECT City, count(*)

FROM Student

WHERE started < 2005

GROUP BY City

HAVING count(*) >= 2

ORDER BY City;

193

The database management system retrieves all rows in the table Student,
FROM, restricting the output to those rows for which started is less than 2005,
WHERE. It then aggregates those output rows into groups by the attribute City,
GROUP BY, and only retains those groups in which at least two rows have been
aggregated, HAVING. It outputs the groups as names of cities and counts of rows,
SELECT, ordered lexicographically by City, ORDER BY.

194 APPENDIX C. FUNDAMENTALS OF SQL

Appendix D

Propositional Logic

We use Roman letters p, q, r, s, etc. to denote variables representing propositions
and Greek letters ϕ, ψ, etc. to denote formulas. A formula is either a proposition
or one of the following: ϕ (not ϕ, the negation of ϕ), ϕ ∨ ψ (ϕ or ψ, the
disjunction of ϕ and ψ), ϕ ∧ ψ (ϕ and ψ, the conjunction of ϕ and ψ), ϕ → ψ
(ϕ implies ψ), or ϕ ↔ ψ (ϕ is equivalent to ψ), where ϕ and ψ are formulas,
and we use parentheses as needed. The meaning of the logical operations is
explained through truth-tables.

ϕ ϕ
⊥ ⊤
⊤ ⊥

ϕ ψ ϕ ∧ ψ
⊥ ⊥ ⊥
⊥ ⊤ ⊥
⊤ ⊥ ⊥
⊤ ⊤ ⊤

ϕ ψ ϕ ∨ ψ
⊥ ⊥ ⊥
⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊤

ϕ ψ ϕ→ ψ
⊥ ⊥ ⊤
⊥ ⊤ ⊤
⊤ ⊥ ⊥
⊤ ⊤ ⊤

ϕ ψ ϕ↔ ψ
⊥ ⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊥
⊤ ⊤ ⊤

The following table lists the rules of precedence for the most common logical
operators we have seen.

strongest ·
∧
∨
→

weakest ↔

We list some fundamental rules of logic, some of them are well-known enough
to have names.

195

196 APPENDIX D. PROPOSITIONAL LOGIC

ϕ↔ ϕ (Double-Negation)

ϕ ∧ ϕ↔ ⊥ (Law of Contradiction)
ϕ ∨ ϕ↔ ⊤ (Law of Exluded Middle)

ϕ ∨ ⊥ ↔ ϕ
ϕ ∨ ⊤ ↔ ⊤
ϕ ∧ ⊥ ↔ ⊥
ϕ ∧ ⊤ ↔ ϕ

ϕ ∧ ϕ↔ ϕ (Idempotence of ∧)
ϕ ∨ ϕ↔ ϕ (Idempotence of ∨)

ϕ ∧ (ψ ∧ θ) ↔ (ϕ ∧ ψ) ∧ θ (Associativity of ∧)
ϕ ∨ (ψ ∨ θ) ↔ (ϕ ∨ ψ) ∨ θ (Associativity of ∨)

ϕ ∧ ψ ↔ ψ ∧ ϕ (Commutativity of ∧)
ϕ ∨ ψ ↔ ψ ∨ ϕ (Commutativity of ∨)

ϕ ∧ ψ ↔ ϕ ∨ ψ (DeMorgan)

ϕ ∨ ψ ↔ ϕ ∧ ψ (DeMorgan)

ϕ ∧ (ψ ∨ θ) ↔ (ϕ ∧ ψ) ∨ (ϕ ∧ θ) (Distributivity of ∧ over ∨)
ϕ ∨ (ψ ∧ θ) ↔ (ϕ ∨ ψ) ∧ (ϕ ∨ θ) (Distributivity of ∨ over ∧)

Here are some of the laws governing implication:

ϕ→ ϕ
⊥ → ϕ (ex falso qoudlibet1)
(⊤ → ϕ) → ϕ
(ϕ→ ⊥) → ϕ (Proof by contradiction)
(ϕ ∧ ϕ→ ψ) → ψ (Modus Ponens)
(ϕ→ ψ ∧ ψ → θ) → (ϕ→ θ) (Modus Barbara)
(ϕ ∧ ψ) → ϕ (∧-weakening)
ϕ→ (ϕ ∨ ψ) (∨ strengthening)

(ϕ→ ψ) → (ψ → ϕ) (contrapositive)
((ϕ→ ψ) → ϕ) → ϕ (Peirce’s law)

Appendix E

Problem Solving

In his Grundriß der Logik, Maass gives some sound advice on problem solving
in a section on practical logic. It is well worth pondering.

Figure E.1: Extract from Maass’ Grundriß der Logik

197

198 APPENDIX E. PROBLEM SOLVING

The German text translates as

When given a question, one should first of all 1) determine its mean-
ing as clearly and accurately as possible; then one may 2) replace
terms with other terms of the same meaning if this simplifies finding
the solution: 3) often, the question can be split into several ques-
tions, which can, similarly, simplify finding the answer: 4) it is often
helpful to consider a special, more particular, version of the ques-
tion: 5) sometimes the question can be reduced to another question
which is easier to answer: 6) occasionally one obtains a solution by
turning the question into a statement, and assuming its negation.
On studying the negation one will often discover it is false, which
obtains the answer to the original question.

Let us take each piece of advice one by one.

E.1 Determine the meaning of a question

This seems blatantly obvious, but often is anything but. Questions can be am-
biguous, ill-phrased, even inconsistent. This might be due to the person asking
the question, in which case you need to clarify the question. However, there
are more fundamental problems that cloud the meaning of sentences. Natural
languages are inherently ambiguous. Take, for example, the last sentence: did it
say that all natural languages are inherently ambiguous, or just some of them;
or most of them? In conversation the sentence could be made to have any of
these meanings given the right context. Mathematics tries to avoid the pitfalls
of natural languages by replacing it with formal languages, such as set theory
and logic. However, this introduces new problems, as we will see: some techni-
cal terms, such as “and”, “or” and “if” sound like English words we know, but
their assigned meaning is slightly different from the wide variety of meanings
these words can take on in an English sentence. The other problem is that we
cannot write everything using formal language only. While this would increase
precision, it would decrease readability.

So, we take Maass’ first piece of advice to mean that a question should be
read carefully, that all parts of it should be clearly understood, and that its
meaning should be clear. The danger is not so much that you might not come
up with an answer to the question, the danger is that your answer might be
wrong, and you won’t be able to tell, or that your answer is right, but you don’t
understand why. While luck is an ingredient of the problem solving process,
you need to be able to evaluate and test your solutions.

E.2 Replace terms with equivalent terms

In a first step, replace a term by its definition. If you are asked to show that
11 is prime, you need to replace the word “prime” with its definition; then you

E.3. DIVIDE ET IMPERA 199

check that 11 fulfills that definition, that is, it has no divisors other than 1 and
11 and it is larger than 1.

Maass’ advice is quite explicitly about terms and their definitions, but there
is a broader way of viewing it: As you begin to understand a concept better and
better you will accumulate operational knowledge about the concept; that is, you
will know how to use the concept. For example, initially, when checking the pri-
mality of 11, you might have tried all possible divisors 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
to find that only 1 and 11 are divisors. After doing some examples, you quickly
find out that you only have to check divisors up to 11/2, that is 1, 2, 3, 4, 5.
Indeed, it is enough to check up to

√
11, that is 1, 2, 3. If any number x at least

4 >
√

11 was a divisor of 11, then 11/x <
√

11 would also be a divisor in the
range 1, . . . ,

√
x that we check. As you see, we have already found two new ways

to define primality, and there are many more. The application of the concept
will determine which definition is the most useful; e.g. take the example of prime
numbers again; if we were to write a program that checks whether a number
is prime, we’d prefer the last definition, since it only requires us to check up
to

√
x. However, in a mathematical proof, the original definition is much more

useful.

E.3 Divide et impera

One of the core techniques in problem solving is to break the problem into
smaller pieces (“divide”: divide), solve those pieces separately (sometimes by
breaking them into even smaller pieces), and then combine the solutions into a
solution of the original problem (“impera”: rule). The quote is often used in
describing Caesar’s strategy for conquering Gaul: piece by piece until he had
conquered all of Gaul.1

This maxim has application at many levels: imagine, for example, that you
have to show the equivalence of two statements p and q. We know that p↔ q is
the same as p→ q and q → p so we can show each of the implications (the smaller
problems) and conclude that p and q are equivalent. Or, to take another example
from database queries: we separate the presentation aspects from the logical
aspects. And at the logical level we distinguish between conditions that are
immediate (through foreign key constraints) and those conditions that capture
the logical core of the problem. Or do you remember Rubik’s Cube? Solutions
to Rubik’s Cube typically work by solving the first, second and third layer of
the cube separately.

E.4 Reduction

Reducing one problem to another means rephrasing the problem so it looks like
a problem you can solve. This applies to the whole process of modeling: taking
a real-life problem, and abstracting it so it can be phrased in the language of

1Except for one small village, of course.

200 APPENDIX E. PROBLEM SOLVING

mathematics (as a linear or a quadratic equation, for example; or looking at the
14/15 puzzle as a problem on permutations), as well as to within mathematics
and computer science itself (reducing the permutation problem in the 14/15
puzzle to a question of parity). The more you know about mathematics and
computer science, and the better the tools you know, the more there is you can
reduce to.

E.5 Negation

This is a particularly useful piece of advice when trying to show that something
of the type “for all x: P (x)” is true. Proving a statement P (x) for arbitrary
x can be difficult. If, on the other hand, we assume the statement false, that
is, we assume that there is an x such that P (x) is false, then we have an x we
can work with, and try to show that such an x does not exist. In SQL, this
piece of advice often comes in handy when using NOT EXISTS to find solutions
to queries that requires a property to be true for a whole set of objects (e.g.
“find classes that only COMP-SCI students have enrolled in”, in other words:
every student in such a class has to be a COMP-SCI student; there is no ALL

operator in SQL2, so we have to use a double negation to capture ALL).

E.6 Special cases, particular versions

There are two ways to read this piece of advice profitably: if your problem is
parameterized, that is, has a lot of free variables, fix them. Preferably to some
small or typical values. Working on these specialized versions will give you a
feel for the more general problem.

Example E.6.1. Let us write a|b is the integer a divides the integer b. For
example 3|6 and 7|21, but 8|12 is false. Suppose we were asked to determine
whether it is always true that if a|bc, then either a|b or a|c. After trying some
small examples, a manifests itself as the interesting parameter, so let us try
some small values, such as a = 1, 2, 3. Since a = 1 divides every number, this
case won’t lead to a counterexample. Also, if 2|bc, this means that bc is even,
but then either b or c has to be even, that is 2|b or 2|c. In other words, the
statement is true for a = 2, and, as it turns out, for a = 3 as well.

At this point we need to look a bit more closely: our question really amounts
to asking whether a number, a, can be split up across two factors. This, of
course, can’t happen with a = 2, 3 since both of these numbers are prime.
But what happens if we choose a to be composite, e.g. a = 4? Immediately a
counterexample presents itself: a = 4 and b = c = 2 shows that the statement
is wrong.

The other way of reading this advice is to simplify the problem by changing
one of the fixed parameters. A typical example would be the modified chess-

2Well, there is, in the standard, but nobody implements it.

E.6. SPECIAL CASES, PARTICULAR VERSIONS 201

board problem at the beginning of the puzzle section. Instead of looking at the
8× 8 board, why not consider a 4× 4 or even a 3 × 3 or a 2× 2 board instead?
Studying these do not give you the answer you are looking for, but they might
very well give you the clue you need to break the problem. (Have you tried a
2 × 2 × 2 Rubik’s Cube? Or a 4 × 4 × 4 one?)

202 APPENDIX E. PROBLEM SOLVING

Appendix F

Set Theory

A set is the collection of its elements. We write x ∈ A or x 6∈ A to denote
that x belongs or does not belong to A. The basic operations on sets are union,
intersection, complement and difference defined as follows:

A ∪B = {e : e ∈ A ∨ e ∈ B}.

A ∩B = {e : e ∈ A ∧ e ∈ B}.

A−B = {e : e ∈ A ∧ e 6∈ B}.

A = {e : e 6∈ A}.

Sometimes, the symmetric difference is useful: A△B = (A −B) ∪ (B −A).
All of these operations can be easily visualized in a Venn diagram.

The cardinality or size of a set A is denoted by |A|. For finite sets this is
the number of elements in the set. The empty set is the set not containing any
elements and is denoted by ∅ or {}. The powerset of a set is the set of all subsets
of that set, defined as follows:

P(A) = {X : X ⊆ A}.

For finite sets |P(A)| = 2|A|.

Many of the logical equivalences we saw in propositional logic translate nat-
urally into set equalities. Including, for example the following:

203

204 APPENDIX F. SET THEORY

A BA ∩ B

A ∪ B = A ∩ B

Figure F.1: Venn diagram for A and B with complements.

A = A (Double complementation)

A ∩A = ∅
A ∩ ∅ = ∅
A ∪ ∅ = A

A ∩A = A
A ∪A = A

(A ∪B) ∪ C = A ∪ (B ∪C) (Associativity of ∪)
(A ∩B) ∩ C = A ∩ (B ∩C) (Associativity of ∩)

A ∪B = B ∩A (Commutativity of ∪)
A ∩B = B ∩A (Commutativity of ∩)

A ∩B = A ∪B (DeMorgan)

A ∪B = A ∩B (DeMorgan)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩C) (Distributivity of ∩ over ∪)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪C) (Distributivity of ∪ over ∩)

There are many sets that have common names, in particular in mathematics,
and in particular sets of numbers:

• N = {0, 1, 2, 3, . . .}, the set of natural numbers. (Sometimes, 0 is not
included in this set.)

• Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of integers.

• Q = {x/y : x ∈ N ∧ y ∈ N − {0}}, the set of rational numbers.

205

• R, the set of real numbers.

• C = {a+ bi : a ∈ RN, b ∈ RN}, the set of complex numbers.

206 APPENDIX F. SET THEORY

Appendix G

First-Order Logic

First order logic is based on relations, typically written R, S, T , and so on. De-
pending on the number of arguments we distinguish unary R(x), binary R(x, y),
ternary R(x, y, z) and higher-arity relations R(x, y, z, . . .).

A binary relation R is

• reflexive if R(x, x) for all x.

• anti-reflexive if R(x, x) for all x

• symmetric if R(x, y) → R(y, x) for all x and y.

• anti-symmetric if R(x, y) ∧R(y, x) → x = y.

• transitive if R(x, y) ∧R(y, z) → R(x, z) for all x, y and z.

A binary relation ≡ is an equivalence relation if it is reflexive, symmetric and
transitive. An equivalence class is a set of elements equivalent to some element,
it can be written as [a]≡, where a is any element of the equivalence class.

A binary relation � is an ordering relation if it is reflexive, anti-symmetric
and transitive. Two elements x, y in an ordering are comparable if either x � y
or y � x. If any two elements in an ordering are comparable, the ordering is total
otherwise it is partial. If instead of requiring reflexivity we ask for anti-reflexivity
we obtain a strict ordering. Totality and partiality is defined as above.

First-order logic has two types of quantifiers: ∀, the universal quantifier, and
∃, the existential quantifier. We write

(∃x)[P (x)]

to express that P (x) is true for some value of x. Similarly,

(∀x)[P (x)]

states that P (x) is true for all values of x.

207

208 APPENDIX G. FIRST-ORDER LOGIC

Here are some basic facts about quantifiers:

(∀x)[P (x) ∧Q(x)] ↔ (∀x)[P (x)] ∧ (∀x)[Q(x)],

that is ∀ distributes over ∧. The same is true for the existential quantifier and
∨:

(∃x)[P (x) ∨Q(x)] ↔ (∃x)[P (x)] ∨ (∃x)[Q(x)].

The two quantifiers are closely linked:

(∀x)[P (x)] ↔ (∃x)[P (x)],

which says that a property P is always true if and only if there is no counterex-
ample, that is no x that makes it false. The dual of this is:

(∃x)[P (x)] ↔ (∀x)[P (x)],

which says that there is an x that makes P true if and only if P is not false for
all x. These are equivalents of DeMorgan’s laws for quantifiers.

A binary relation R is called single-valued if

(∀x)(∀y)(∀z)[R(x, y) ∧R(x, z) → y = z].

It is called total if
(∀x)(∃y)[R(x, y)].

A function f : X → Y is a binary relation on f ⊆ X × Y which is total and
single-valued. We call X the domain of f and Y the range.

We also write f(X) = {f(x) : x ∈ X}, the image of f . If f(X) = Y , we call
f onto or surjective. If f(x) = f(y) implies that x = y for all x, y ∈ X , then f is
one-to-one or injective. A function which is both onto and one-to-one is called
bijective or a bijection.

Appendix H

Algorithmic Notation

We use variables and arithmetic as we would in regular mathematics, the only
difference being that we write out multiplication, i.e. we would write x *y and
not xy. Assignment is written as :=. E.g.

input x

y := x*x

return y

asks the user for an input which is stored in variable x, then computes the
square of x, stores it in y and then returns the value of y. We use x % y for the
remainder after dividing x by y.

We add comments by using :

input x // get user input

y := x*x // compute square

return y // return square

We test conditions using the if statement.

input year

if (4 | year) // simplified

return "leap year" // leap year rule

Note that we indent the code that is to be performed in case the condition
succeeds. We can also specify an action in case of the failure of a condition:

input year

if (4 | year) // simplified

return "leap year" // leap year rule

else

return "not leap year"

209

210 APPENDIX H. ALGORITHMIC NOTATION

Again, the indentation of the code determines what code is performed depending
on whether the condition succeeds or fails.

Complex conditions are written using Boolean operations ”and”, ”or” and
”not”.

We can repeatedly perform a piece of code by making it part of a loop.

for i = 1 to n

if R[i].LastName = "Johnson"

return i

return 0 // not found

Here is another example:

input n

sum := 0

for i = 1 to n

sum := sum + i

return sum

What does this program compute?

Sometimes there is a condition controlling whether we want to repeat some
code or not. For that we use the while loop, which performs a piece of code,
as long as a condition is true. For example, we can rewrite linear search

i := 1

while i <= n

if R[i].LastName = "Johnson"

return i

i := i + 1 // go to next record

return 0 // not found

As long as the value of i is within bounds (at most n), the algorithm will test
the last name of the current record; if it doesn’t find the name we are looking
for, we increase i by one and keep looking.

Appendix I

Graph Theory

A graph is a collection of vertices (or node) some of which are connected by edges.
More formally, a graph G is a pair G = (V,E) of vertices V and edges E, where
each edge in E is a set of two vertices. For vertices we typically use letters such
as u, v, s, t, w and for edges e, f, g. If e is the edge from u to v then, formally,
e = {u, v} but we will typically write e = uv for simplicity. The vertices u and
v are the ends of the edge uv, and we say that u and v are incident to the edge
uv. The neighborhood of a vertex u of the graph is

N(u) := {v : uv ∈ E}.

A vertex with an empty neighborhood is called isolated.
A walk is a sequence u1, e1, u2, e2, . . . , en−1, un of vertices and edges that

traverses the graph; i.e. if you start at u1, e1 takes you to u2, etc. In other
words, e1 = u1u2, e2 = u2u3, and so on up to en−1 = un−1un. The first and
last vertices in a walk are called its endpoints.

There are two special types of walks: A path is a trail in which every vertex
occurs at most once, and a cycle is a trail with n ≥ 3 whose first and last vertex
are the same, u1 = un, but there are no other vertex repetitions. (We exclude
the case n = 2 as a cycle, since it simply means we walk back and forth along
the same edge.)

A graph is connected if there is a path between any two vertices of the graph,
that is for any two vertices u and v of the graph there is a path that has u and
v as endpoints. A graph that is not connected is known as disconnected.

H = (U,F) is a subgraph of G = (V,E) if U ⊆ V and F ⊆ E. Two graphs
are isomorphic if they are the same graph up to renaming the vertices. We also
say H = (U,F) is a subgraph of G = (V,E) if H is isomorphic to a subgraph of
G.

A directed graph (or digraph) G = (V,E) consists of a set of vertices V and
a set of edges between vertices, where an edge is a pair of vertices: E ⊆ V × V .
The edge (u, v) differs from the edge (v, u) (unless u = v, but we do not allow

211

212 APPENDIX I. GRAPH THEORY

an edge from a vertex to the same vertex). We will write uv for (u, v) for the
directed edge from u to v. We draw a directed edge uv with an arrow pointing
from u to v; u is sometimes called the child vertex and v the parent vertex, in
particular if we are traversing the edge in the direction of the arrow: we go from
a child to a parent.

A subgraph of a directed graph is defined as in the undirected case except
that we now remember orientation of edges.

A directed path is a path in a directed graph all of whose edges are oriented
the same way along the path. A directed cycle is cycle in a directed graph all
of whose edges are oriented the same way along the cycle. A directed graph
is strongly connected if for every pair (u, v) of vertices there is a directed path
leading from u to v. A directed graph is a dag or acyclic if it does not contain
a directed cycle as a subgraph.

A graph G = (V,E) is bipartite if there are disjoint sets V1 and V2 such that
V = V1 ∪ V2 and all edges in E are between vertices from V1 and V2. (That is,
E ⊆ {uv : u ∈ V1, v ∈ V2}.

A graph is connected if for every pair of vertices there is a path connecting
the two vertices (that is, having the two vertices as endpoints).

A graph is a tree if it is connected and does not contain any cycles.

There are many graphs important enough to deserve names; Pn is the path
on n vertices, that is n− 1 edges, and therefore of length n− 1. Cn is the cycle
on n vertices (and n edges). Kn is the complete graph on n vertices that is, a
graph with n vertices and an edge between all pairs of vertices. Its complement
Kn is the empty graph consisting of n isolated vertices. Km,n is the complete
bipartite graph on sets of m and n vertices with all edges between the two sets
and no edges within the sets.

