
CSC 202 Mathematics for Computer Science

Lecture Notes

Marcus Schaefer

DePaul University1

1 c© Marcus Schaefer, 2006

32

Chapter 2

Databases and Set Theory

Recall the example asking for students in information systems and computer
science. We saw that “and” here did not refer to a propositional and, but,
instead meant we had to combine the results of two queries. We did this using a
logical or in the condition. There is another way of thinking about it: we know
how to get all computer science students:

SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’COMP-SCI’;

We also know how to get all information systems students, namely the same
way:

SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’INFO-SYS’;

Could we just combine the results of the two queries instead of modifying
the WHERE clause? The answer is yes, we can do so in SQL as follows:

(SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’COMP-SCI’)

UNION

(SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’INFO-SYS’);

We take the union of the two queries. Before we continue with this on the
database side, let us first investigate the mathematical foundation of this notion:
set theory.

33

34 CHAPTER 2. DATABASES AND SET THEORY

2.1 Sets and Elements

Georg Cantor, the founder of set theory, defined what a set is as follows:

A set is a collection of definite distinct objects of our intuition or of
our thought into a whole. The objects are called the elements of the
set.1

Slightly simplified: a set is a collection of elements. Let us have a look at some
examples. Recall the Simpsons.2 We could form a set containing the Simpsons
as elements. We would write this set as follows:

S = {Homer,Marge,Lisa,Bart,Maggie}.

So S is a set containing five distinct elements. We use ∈ for “is an element of”.
E.g.

Homer ∈ {Homer,Marge,Lisa,Bart,Maggie},

or, to give another example,

7 ∈ {2, 3, 5, 7, 11, . . .}.

On the other hand, we can express that something is not an element of a set
using 6∈, as in

Selma 6∈ {Homer,Marge,Lisa,Bart,Maggie}.

We write |X | for the cardinality of the set X , that is, the number of elements
X contains. So with S as defined above, |S| = 5.

Example 2.1.1. Determining the cardinality of a set means counting the num-
ber of its elements. SQL allows you to do that too:

SELECT count(*)

FROM Student;

counts the number of students; count(*) means counting the number of records.
Similarly,

SELECT count(*)

FROM Student, Enrolled, Course

WHERE SID = StudentID AND CourseID = CID AND

Department = ’CSC’ AND year = 2005;

1Or in the original: “Unter einer Menge verstehen wir jede Zusammenfassung M von
bestimmten wohlunterscheidbaren Objekten M unserer Anschauung oder unseres Denkens
(welche die Elemente von M genannt werden) zu einem Ganzen.”

2For those of you that do not watch TV, a commendable trait, “The Simpsons” is an
American TV series centered around the Simpson family that, for our purpose, consists of
Homer and Marge, the parents, and Lisa, Bart and Maggie, the children.

2.1. SETS AND ELEMENTS 35

will give us the total enrollment in CSC courses in the year 2005. Note that
this is not the same as the number of students enrolled in CSC courses in 2005,
since a single student could have enrolled in multiple CSC courses and would
therefore count multiple times. So, if we were asking how many students were
enrolled in CSC courses in 2005, we would have to count SID, and, since SQL
does not remove duplicates by default, we have to say we want to count distinct

SID:

SELECT count(DISTINCT SID)

FROM Student, Enrolled, Course

WHERE SID = StudentID AND CourseID = CID AND

Department = ’CSC’ AND year = 2005;

Two sets are equal if they contain the same elements. In particular, the order
of the elements is arbitrary (it just so happens that we have to write them down
in a particular order when we do write them down). So, for example,

{Lisa,Bart,Maggie} = {Maggie,Lisa,Bart}.

By the same token, it does not matter whether we list an element several times,
the set does not change:

{Lisa,Lisa,Lisa}

is the same set as {Lisa}, that is, it only contains one element, namely Lisa:
|{Lisa,Lisa,Lisa}| = 1. If you are writing down a set (as an answer to a prob-
lem, say) you would never write something like {Lisa,Maggie,Lisa} but write
{Maggie,Lisa} instead.

Elements relate to sets by the ∈ or 6∈ relation, two sets can be related by
the subset relationship: A is a subset of B (written A ⊆ B) if every element of
A is also an element of B.3

So, for example,

{Maggie,Lisa} ⊆ {Maggie,Lisa,Bart},

and

{Lisa,Homer} ⊆ {Homer,Marge,Lisa,Bart,Maggie},

while

{Maggie,Lisa} 6⊆ {Maggie,Bart},

since Lisa is an element of {Maggie,Lisa}, but not of {Maggie,Bart}.

3You will sometimes read that A is contained in B, but that is misleading, since this phrase
is also used for elements, e.g. Homer is contained in {Homer,Marge}).

36 CHAPTER 2. DATABASES AND SET THEORY

Exercise 2.1.2. What about the following containments: true or not?

{Maggie,Lisa}
?

⊆ {Lisa,Maggie,Bart}

{Homer,Marge,Lisa,Bart,Maggie}
?

⊆ {Homer,Lisa,Bart,Maggie}

{Maggie,Lisa}
?

⊆ {Lisa,Maggie}

{Maggie,Maggie}
?

⊆ {Maggie}

{Maggie,Homer,Lisa,Marge,Bart}
?

⊆ {Homer,Marge,Lisa,Bart}

Lemma 2.1.3. If A ⊆ B and B ⊆ C, then A ⊆ C.

Note: A lemma is the name mathematicians give to a small, useful result.
Since it is a result, it requires a proof. When all the ingredients involved in the
result are still very close to their definitions, one should go back to the definition
to see why the result is true.4

Proof. We have to show that every element of A is an element of C. However,
if x is an arbitrary element of A, then x ∈ B, because A ⊆ B. Then x ∈ C,
since B ⊆ C. Which is what we had to show.

The result of the lemma (in a different guise, namely as a syllogism) goes
back to Aristotelian logic, and, there, is known as Modus Barbara. You will
often see it phrased as: if every A is B and every B is C, then every A is C. It
can be nicely visualized (see Figure 2.1).

There is one special set that deserves mentioning, the empty set, the set not
containing any elements whatsoever. It is typically written as {} or, sometimes,
∅. The empty set is a subset of every set:

Lemma 2.1.4. ∅ ⊆ B for every set B.

Proof. By the definition of subset, A ⊆ B is true if every element of A is also
contained in B. If A is the empty set, i.e. if we are trying to verify that ∅ ⊆ B,
then we need to make sure that any element of ∅ is an element of B. Since ∅
does not have any elements, this is always true, whatever the set B may be.

So, in particular ∅ ⊆ {Homer,Marge} and ∅ ⊆ {1, 2, 3, . . .}, and even ∅ ⊆ ∅.
You might well ask what good a set is that does not contain any elements. We
will see several answers to this question later.

Exercise 2.1.5. Show that A = B if and only if A ⊆ B and B ⊆ A. Does this
remind you of anything?

4This is one possible reading of the first piece of advice given by Maass’ Grundriß der

Logik, 1836. See Appendix E for more information.

2.1. SETS AND ELEMENTS 37

A B C

Figure 2.1: Modus Barbara

Before we continue to discuss operations on sets, we should make one general
comment about where sets come from. The sample sets we have seen so far are
given explicitly by listing all the elements in a set, e.g.

S = {Homer,Marge,Lisa,Bart,Maggie},

or
A = {1, 2, 3}.

This stops being useful as the sets grow large or infinite. Imagine you want to
talk about the set of all humans (which is tricky in itself, since that set keeps
changing, and it can be hard to decide whether an element belongs to it or not,
but let us ignore those difficulties for the moment). One way to capture the set
is by listing all humans:

H = {Georg Cantor, . . .}.

This is the extensional approach: defining a set by listing its members. This is
the approach taken by databases (we will come back to this point later): we list
all points of data we have explicitly. On the other hand of the spectrum, we
could say that the set of humans is just that, the set of all humans:

H = {x : x is human}.

This is the intensional way of defining a set: as a collection of all elements with
a particular property (“being human” in this case). This, however, feels like
cheating: we have only moved the emphasis from one grammatical category (the

38 CHAPTER 2. DATABASES AND SET THEORY

noun “human”) to another (the attribute “human”). However, the intensional
approach is valid, for example, we could replace “being human” by definitions
of being human. Here is one that is popular in the philosophical literature:

H = {x : x is a featherless biped}.

Whether the extensional or the intensional point of view of a set is the right
one depends very much on what you are using set theory for. For databases,
the extensional point of view works best, for mathematics, the intensional point
of view is often more useful. And for some areas, such as artificial intelligence,
an intelligent combination of both is needed.

2.2 Nesting Queries using IN and EXISTS

Although we have not seen much set theory yet, we can already exploit some
of it to write better SQL queries. Suppose we were interested in students in
computer science, information systems, and computer gaming. We can easily
extend one of the queries we saw earlier to get this result using a sequence of
ORs. However, there is a more elegant way of doing it: SQL has an equivalent
for the set theoretic ∈ called IN, and we can write sets using parentheses instead
of curly braces. So we can write

SELECT LastName, FirstName, SID

FROM Student

WHERE Program IN (’COMP-SCI’, ’INFO-SYS’, ’COMP-GAM’);

which is much more readable than the equivalent

SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’COMP-SCI’ OR Program = ’INFO-SYS’ OR

Program = ’COMP-GAM’;

Suppose we are interested in all students that took “Theory of Computation”
after 1995. Here is how we would currently write this query:

SELECT LastName, FirstName, Student.SID

FROM Student, Enrolled, Course

WHERE SID = StudentID AND CourseID = CID AND

CourseName = ’Theory of Computation’ AND year > 1995;

There is something slightly unsatisfactory about this query (from a database
point of view) in that it mixes identifying the objects we are interested in with
presenting the objects: for the former we only need the ID, for the later we need
the names as well. If we were only interested in the IDs of students that took
“Theory of Computation”, we could have simplified the query to:

2.2. NESTING QUERIES USING IN AND EXISTS 39

SELECT StudentID

FROM Enrolled, Course

WHERE CourseID = CID AND

CourseName = ’Theory of Computation’;

This is really the logical/computational heart of the query, the rest is pre-
sentation. Using IN we can nicely separate the presentation layer from the
computational layer: we can write the full query as follows:

SELECT LastName, FirstName, SID

FROM Student

WHERE SID IN

(SELECT StudentID

FROM Enrolled, Course

WHERE CourseID = CID AND

CourseName = ’Theory of Computation’);

Here is an added benefit of this new feature. Imagine you wanted to list all
students that have not yet taken “Theory of Computation”. We got stuck at
that point earlier, since this cannot be solved by simply joining tables. Now it
becomes as easy as moving from ∈ to 6∈, or, in SQL, from IN to NOT IN, namely

SELECT LastName, FirstName, SID

FROM Student

WHERE SID NOT IN

(SELECT StudentID

FROM Enrolled, Course

WHERE CourseID = CID AND

CourseName = ’Theory of Computation’);

Exercise 2.2.1. Using IN and NOT IN (or both) solve the following problems.

1. List students that have taken courses in IT, GPH and DC.

2. (S) List presidents of student groups founded before 2000.

3. List students that have not taken any DC courses. (Verify your output.
If it’s different from what you are expecting, make sure you do the next
exercise.)

Exercise 2.2.2. Compare the SQL query

SELECT LastName, FirstName, SID

FROM Student

WHERE SID NOT IN

(SELECT StudentID

FROM MemberOf, StudentGroup

WHERE Name = GroupName AND

Name IN (’HerCTI’));

40 CHAPTER 2. DATABASES AND SET THEORY

to the SQL query

SELECT LastName, FirstName, SID

FROM Student

WHERE SID IN

(SELECT StudentID

FROM MemberOf, StudentGroup

WHERE Name = GroupName AND

Name NOT IN (’HerCTI’));

They both seem to list students not in HerCTI. If you run them you will see
that the outcomes are quite different. Carefully explain what each query actually
means (in carefully phrased English). Then explain the difference.

Some queries can be more naturally phrased using SQL’s EXISTS statement,
which is equivalent to testing whether a set is not empty. For example, we could
say

SELECT LastName, FirstName, SID

FROM Student

WHERE EXISTS (SELECT StudentID

FROM Enrolled, Course

WHERE CourseID = CID AND

StudentID = SID AND

CourseName = ’Theory of Computation’);

That is, for each student, we check that there is a record of that student being
enrolled in Theory of Computation. That student we express using StudentID

= SID. We can use a fieldname from an outer query, SID, within an inner query.
Such queries are often called correlated queries.

Remark 2.2.3. To better understand why the last query worked, we need to
discuss how a database engine actually evaluates a query. It starts with the
outer query (FROM Student) going through each record, one by one, verifying
the WHERE condition. If there is a nested query, it then evaluates that nested
query. It can be useful at this point, to use attributes of the record from the
outer query, as we just saw.

Exercise 2.2.4. 1. (S) List all student groups that have a member (as per
the information in the MemberOf table).

2. List graduate students enrolled in undergraduate courses and undergrad-
uate students enrolled in graduate courses. (A course is an undergraduate
course if its CourseNr is less than 420, otherwise it is a graduate course.)

SQL also offers NOT EXISTS, equivalent to testing whether a set is empty.

Example 2.2.5. Let us list all student groups that have no members. The
members of a particular group, say HerCTI, we can list as

2.3. BASIC SET THEORY 41

SELECT StudentID

FROM Memberof

WHERE Groupname = "HerCTI";

We now need to go through the Studentgroup table to check for which group
this query comes back empty.

SELECT Name

FROM Studentgroup

WHERE NOT EXISTS (SELECT StudentID

FROM Memberof

WHERE Groupname = Name);

Exercise 2.2.6. 1. List all courses that nobody has ever enrolled in.

2. (S, Tricky) List student group presidents that are not members of the
group they preside over.

3. List students that have never enrolled in a CSC course.

2.3 Basic Set Theory

The Simpson family consists of the parents {Homer,Marge} and the children
{Lisa,Bart,Maggie}. The Simpson family is the combination of those two sets,
mathematically spoken, the union of those two sets, written as A ∪B:

{Homer,Marge,Lisa,Bart,Maggie} = {Homer,Marge} ∪ {Lisa,Bart,Maggie}.

More formally, the union A∪B of two sets A and B is the set that contains all
elements contained by either A or B (or, possibly, both).

Exercise 2.3.1. Write the Simpson set as the union of their male and their
female elements.

Using what we know about logic, we can give a more formal definition of the
union of two sets:

A ∪B = {e : e ∈ A ∨ e ∈ B}.

If the two sets in A ∪ B do not have any elements in common, we say the
sets are disjoint, we call A ∪B the disjoint union of A and B. Often a set gets
split into two parts by whether a particular element fulfills a given requirement
or not (“is male” versus “is female”; or “is parent” or “is child”). In those cases
the union is always disjoint, which explains why we encounter this case quite
often. For example, the natural numbers {1, 2, 3, . . .} are the disjoint union of
the numbers that are even {2, 4, 6, 8, . . .} and those that are not {1, 3, 5, 7, . . .}
(namely, the odd numbers).

{1, 2, 3, . . .} = {2, 4, 6, . . .} ∪ {1, 3, 5, . . .}.

42 CHAPTER 2. DATABASES AND SET THEORY

Not all unions are disjoint, of course. For example,

{Lisa,Bart} ∪ {Lisa,Maggie} = {Bart,Lisa,Maggie}.

If the union of two sets is not disjoint, those two sets must contain something
in common. The intersection, A ∩ B, of two sets is the set that contains all
elements that belong to both A and B; formally,

A ∩B = {x : x ∈ A ∧ x ∈ B}.

For example,
{Lisa,Bart} ∩ {Marge,Lisa} = {Lisa},

and

{Marge,Homer,Maggie} ∩ {Selma,Maggie,Marge} = {Marge,Maggie}.

Exercise 2.3.2. 1. (S) What is {Marge,Lisa} ∩ {Homer,Lisa}?

2. What is ({Marge,Homer} ∪ {Lisa,Homer}) ∩ {Maggie,Marge,Bart}?

3. What is ({Marge,Homer} ∩ {Lisa,Homer}) ∪ {Maggie,Marge,Bart}

If two sets do not have any elements in common, their intersection A ∩B is
the empty set ∅. Here is one of the first important uses of the empty set: it is
a way to state that two sets are disjoint: A ∩B = ∅.

Let us prove some simple facts about the notions we have seen so far:

Lemma 2.3.3. The following statements are true for all sets A and B:

(i) A ∩B = B ∩A and A ∪B = B ∪A,

(ii) A ∩B ⊆ A,

(iii) A ⊆ A ∪B,

(iv) if A ⊆ B, then A ∩B = A and A ∪B = B

(v) if A ∪B ⊆ A, then B ⊆ A; furthermore, if A ⊆ A ∩B, then A ⊆ B.

Before we see the proof, consider the first statement: A ∩B = B ∩A. Take
A = {Marge,Homer,Lisa} and B = {Lisa,Homer,Bart}, then

A ∩B = {Lisa,Homer} = B ∩A,

so the statement in the lemma is true. Does that prove the statement of the
lemma? No, it does not. It proves the statement is true for one particular
choice of A and B, but the lemma claims the statement is true for all choices
of A and B. How do we prove a general statement like this true? We cannot
replace A and B with all possible sets A and B. The answer is: we have to
argue with what we know about sets, intersection, and equality of sets. That
is, we take the intensional approach, based on an understanding of the concepts

2.3. BASIC SET THEORY 43

involved, rather than the extensional approach. That should not distract from
the importance of the extensional approach in math. Suppose somebody claimed

A ∪B = A ∩B for all sets A and B.

If you tried to prove this, you would quickly run into problems, indeed, you
would probably find out that the statement is not true: take A = {Lisa,Homer}
and B = {Lisa,Marge}. Then

A ∪B = {Lisa,Homer,Marge} 6= {Lisa} = A ∩B.

The intended lesson is that before proving something in generality, first test it
with some small examples, to make sure it really has a chance of being true.5

Proof. We will only prove two of the statements, the rest are left as exercises.
First, let us show that the first part of (i) is true, namely A∩B = B ∩A for all
sets A and B. If x is an arbitrary element in A ∩B, it is an element of both A
and B. In other words, it is an element of both B and A, and hence, an element
of B∩A. By the very same argument, an element of B∩A has to be an element
of A∩B, so A∩B and B ∩A have the same element, and are, therefore, equal.

Second, let us prove the first part of (v). We assume that A ∪ B ⊆ A, so
any element contained in either A or B has to belong to A. In particular, any
element in B has to belong to A, so B ⊆ A.

Exercise 2.3.4. Prove parts (ii), (iii), and (iv) of Lemma 2.3.3.

Remark 2.3.5. We offer an alternative proof of the first part of (i) in the
lemma:

A ∩B = {x : x ∈ A ∧ x ∈ B} by definition of ∩

= {x : x ∈ B ∧ x ∈ A} since p ∧ q is equivalent to q ∧ p

= B ∩A by definition of ∩

The proof illustrates the close relationship between set theory and propo-
sitional logic: ∧ corresponds to intersection, ∨ to union, and · corresponds to
complement (which we will see later). This allows you to translate any propo-
sitional equivalence into a set equality.

Exercise 2.3.6. What are the equivalents in set theory of the following propo-
sitional tautologies?

1. (S) ϕ ∧ ϕ↔ ϕ,

2. ϕ ∨ ϕ↔ ϕ,

3. ϕ ∧ (ψ ∧ θ) ↔ (ϕ ∧ ψ) ∧ θ

5Recall Maass’ 4th piece of advice to look at special cases.

44 CHAPTER 2. DATABASES AND SET THEORY

4. ϕ ∧ ψ ↔ ψ ∧ ϕ

5. ϕ ∨ ψ ↔ ψ ∨ ϕ

6. (S) ϕ ∧ (ψ ∨ θ) ↔ (ϕ ∧ ψ) ∨ (ϕ ∧ θ)

7. ϕ ∨ (ψ ∧ θ) ↔ (ϕ ∨ ψ) ∧ (ϕ ∨ θ)

When you see proofs that A ∩B = B ∩A one reaction should be: but that
is obvious. If it is not, then a good visualization of the sets and how they
relate might help (you need to build a good mental model of the concepts you
use; that will help you predict how they behave quickly rather than having to go
through endless formalism; one could call this intuition). One such visualization
is due to John Venn.6 In Venn diagrams sets correspond to circles and what
they enclose; for example, Figure 2.2 shows a Venn diagram for two sets. The
diagram visually illustrates A ∩B = B ∩A.

A B

Figure 2.2: Venn diagram for A and B.

Venn allowed different regions of the diagram to be shaded signifying that
they were empty. For example, shading the part of B outside of A in Figure 2.2
would correspond to requiring that B ⊆ A.

Venn diagrams are a powerful way to visualize the relationship between
different sets (or concepts or notions). You can build a whole logic on this
(class logic), but we will not follow that trail here.

6English logician ... Much as we would like to discuss the history of logical diagrams, this
is not the place. Let us just say that Venn diagrams are not as badly misnamed as some other
notions in mathematics.

2.4. BASIC SET OPERATIONS IN DATABASES 45

2.4 Basic Set Operations in Databases

Union is implemented by most database engines as UNION, as we saw in the
opening example. To take the union of two SELECT statements they have to
return the same type of table. For example, while we can write

(SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’COMP-SCI’)

UNION

(SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’INFO-SYS’);

it would not be legal to write

(SELECT LastName

FROM Student

WHERE Program = ’COMP-SCI’)

UNION

(SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’INFO-SYS’);

Intersection is implemented in a much smaller number of engines (Microsoft
Access, for example, does not support it, H2, however, does). If it is supported
it is typically called INTERSECT.

For example,

(SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’COMP-SCI’)

INTERSECT

(SELECT LastName, FirstName, SID

FROM Student

WHERE Career = ’GRD’);

lists all graduate students in computer science. The correct way of writing the
query, however, would be a different one: you want to avoid doing operations
on anything but primary keys, so really we should have written:

SELECT LastName, FirstName, SID

FROM Student

WHERE SID IN

(SELECT SID

FROM Student

WHERE Program = ’COMP-SCI’

INTERSECT

46 CHAPTER 2. DATABASES AND SET THEORY

SELECT SID

FROM Student

WHERE Career = ’GRD’);

This is quite certainly overkill in this particular example, but the point here
is to illustrate the structure of the query.

In databases that do not support intersection, we can eliminate its use
through propositional logic. A query equivalent to our last example would be:

SELECT LastName, FirstName, SID

FROM Student

WHERE SID IN

(SELECT SID

FROM Student

WHERE Program = ’COMP-SCI’) AND

SID IN

(SELECT SID

FROM Student

WHERE Career = ’GRD’);

Exercise 2.4.1. 1. List students that are presidents of some student group
and are enrolled in a CSC class.

2. List student groups which have both Chicago and non-Chicago students
in them.

3. List courses that have been taken by both graduate students and under-
graduate students (not necessarily in the same quarter).

2.5 Difference and Complement

We have seen unions and intersections of sets and how they relate to logical or
and logical and. We have not found an equivalent for the logical not yet. The
definition is straightforward. The complement of a set is the set of all elements
not belonging to the set, i.e.

A = {x : x 6∈ A}.

Or, is it? At a first glance this corresponds exactly to what we did when we
transferred the notions of or and and to the realm of sets, but let us try to do
an example: what is

{Maggie} ?

By definition, {Maggie} contains all elements not in {Maggie}. And that does
not just include Marge, Homer and the rest of the Simpsons, but all of the
natural numbers and most of the universe. It seems that complementation is
not a very useful notion. And, indeed, when mathematicians use the notion

2.5. DIFFERENCE AND COMPLEMENT 47

of a complement of a set they always, implicitly, assume the complementation
occurs within some limited world, often called the universe of discourse. For
example, a number theorist interested in properties of the natural numbers,
might reasonably write that the complement of the odd numbers are the even
numbers:

{1, 3, 5, 7, . . .} = {2, 4, 6, 8, . . .},

limiting the universe of discourse to the natural numbers, entirely excluding the
Simpsons and other irrelevant stuff. Or we, in the Simpson family universe,
might reasonably write

{Maggie,Bart} = {Lisa,Homer,Marge},

excluding the natural numbers but also the rest of the Simpson world. What
makes sense depends on your context and why you use the notion of complement.

Lemma 2.5.1. A ∩A = ∅.

Using the Venn diagram for two sets A and B we can directly verify the
truth of

A ∩B = A ∪B,

see Figure 2.3.

A B

A ∩ BA ∩ B A ∩ B

A ∩ B = A ∪ B

Figure 2.3: Venn diagram for A and B with complements.

The equality A∩B = A ∪B should look slightly familiar: it closely resembles
DeMorgan’s law for propositions: (p ∧ q) ↔ p ∨ q. Indeed, we can use that law
to prove the equality:

48 CHAPTER 2. DATABASES AND SET THEORY

A ∩B = {x : x 6∈ A ∧ x 6∈ B}

= {x : (x ∈ A) ∧ (x ∈ B)}

= {x : (x ∈ A ∨ x ∈ B)} using DeMorgan’s law

= {x : x ∈ A ∨ x ∈ B)}

= A ∪B

Exercise 2.5.2. Give a proof of the dual form, i.e.

A ∪B = A ∩B.

As we observed earlier, every propositional equivalence corresponds to a set
theoretic equality. Now that we have seen complementation, which corresponds
to negation, we can translate some of the remaining equivalences we had.

Exercise 2.5.3. What are the equivalents in set theory of the following propo-
sitional tautologies?

1. ϕ↔ ϕ,

2. (S) ϕ ∧ ϕ↔ ⊥,

3. ϕ ∧ ψ ↔ ϕ ∨ ψ,

4. ϕ ∨ ψ ↔ ϕ ∧ ψ.

Databases do not implement the notion of complement, the potential uni-
verses of discourse being too large for this to make sense. Instead there is a
limited form of complement resembling subtraction:

A−B := {x : x ∈ A ∧ x 6∈ B},

that is, we remove from A all elements that are in B. Note that A − B is the
same as A ∩B, collecting all elements in A that are not in B.

We next prove a little lemma that will come in very handy later.

Lemma 2.5.4. A ⊆ B if and only if A−B = ∅.

Before reading the more formal proof, look at the Venn diagram for A and
B and convince yourself that the statement is true.

Proof. If A ⊆ B, then all elements of A lie in B, so there are no elements of A
that are not in B, so the intersection of A and B, which is A−B, is empty.

On the other hand, if A−B = ∅, there are no elements belonging to both A
and B. Hence, any element belonging to A cannot belong to B, and, therefore,
must belong to B, which means that A ⊆ B.

2.6. DIFFERENCES IN SQL 49

2.6 Differences in SQL

A common type of query in a student database is prerequisite checking: when
you enroll for a course, have you taken all the prerequisites required by that
course. Let us consider one particular example: the Cryptography course re-
quires that the student has previously taken the course “Java II”. We want to
list all students that are currently enrolled for the cryptography course without
having taken Java II. Let us concentrate on getting the IDs of those students,
we can then use the same set-up as earlier to get the full student information.
So we want IDs of students enrolled in Cryptography, but not enrolled in Java
II. Again, Maass is relevant. His third advice is that “often, the question can
be split into several questions, which can [. . .] simplify finding the answer”. The
natural parts of our problem are: students currently enrolled in Cryptography,
and students not enrolled in Java II. The first can be solved as follows (assuming
that the current quarter is Fall 2007):

SELECT StudentID

FROM Enrolled, Course

WHERE CourseID = CID AND

quarter = ’Fall’ AND year = 2007 AND

CourseName = ’Cryptography’;

For the second query, we can again follow Maass, who in his sixth piece of
advice suggests looking at the negation of a problem. So instead of looking for
students not enrolled in Java II, let us look for students not not enrolled, that
is, enrolled in Java II (recall that ⊢ p↔ p). However, students enrolled in Java
II are easy to find:

SELECT StudentID

FROM Enrolled, Course

WHERE CourseID = CID AND

CourseName = ’Java II’;

What we need are the students from the first query without the students
from the second query: if from all those students enrolled in Cryptography we
remove those students that have taken Java II we are left with the students
enrolled in Cryptography that have not taken Java II. This is exactly what set
difference does for us. In SQL set difference is known as EXCEPT (though Oracle
uses MINUS). So we could write

SELECT LastName, FirstName, SID

FROM Student

WHERE SID IN

(SELECT StudentID

FROM Enrolled, Course

WHERE CourseID = CID AND

quarter = ’Fall’ AND year = 2007 AND

50 CHAPTER 2. DATABASES AND SET THEORY

CourseName = ’Cryptography’

EXCEPT

SELECT StudentID

FROM Enrolled, Course

WHERE CourseID = CID AND

CourseName = ’Java II’);

Microsoft Access does not support EXCEPT (or MINUS), so we need to use a
work-around if we actually want to run the query, by going back to propositional
logic:

SELECT LastName, FirstName, SID

FROM Student

WHERE SID IN

(SELECT Enrolled.SID

FROM Enrolled, Course

WHERE CourseID = CID AND AND

quarter = ’Fall’ AND year = 2007 AND

CourseName = ’Cryptography’)

AND SID NOT IN

(SELECT StudentID

FROM Enrolled, Course

WHERE CourseID = CID AND

CourseName = ’Java II’);

This will work in Access.

Exercise 2.6.1. 1. (S) List student groups that do not have any members.

2. List students that are not presidents of any student society.

3. List courses that nobody ever enrolled in.

4. List students which are enrolled only in CSC 489.

5. (Tricky) List students which took CSC 440, cryptography, without having
taken “Java II” first. Hint: The difference to the example above is that
this needs to work for any quarter in which CSC 440 is taught, not just
the current one.

Let us tackle a slightly more difficult problem: List courses which only com-
puter science students ever enrolled in.

Maass’ 4th piece of advice comes in handy here: “it is often helpful to
consider a special, more particular, version of the question”. So, let us look at a
particular course, let us say CSC 440 Cryptography. By hand, we can check that
there was a non-computer science student in the course, so the course should
not be listed.

How did we make this decision? What did we compare? (Think about this,
maybe redoing the example, before reading on.) Let A be the set of students

2.6. DIFFERENCES IN SQL 51

enrolled in CSC 440 and let B be the set of all computer science students. We
need to verify that A ⊆ B. As we saw earlier, this condition is equivalent to
A−B = ∅ (Lemma 2.5.4). And we know how to test for the empty set in SQL
by using NOT EXISTS. So our strategy is clear now: we need to build queries
for A and B, and use NOT EXISTS to test whether A−B is empty. Here is the
query for A:

SELECT StudentID

FROM Enrolled

WHERE CourseID = ’1092’;

B is also easy:

SELECT SID

FROM Student

WHERE Program = ’COMP-SCI’;

So we can test whether there were any computer science students in CSC 440
in fall of 2005 as follows:

NOT EXISTS (

SELECT StudentID

FROM Enrolled

WHERE CourseID = ’1092’

EXCEPT

SELECT SID

FROM Student

WHERE Program = ’COMP-SCI’);

If this condition is true, then all students in CSC 440 in fall of 2005 are
computer science students. Now, instead of this particular course, we want to
check all courses. So we need an outer query running through all courses.

SELECT Department, CourseNr, CourseName

FROM Course

WHERE NOT EXISTS (

SELECT StudentID

FROM Enrolled

WHERE CourseID = CID

EXCEPT

SELECT SID

FROM Student

WHERE Program = ’COMP-SCI’);

Remark 2.6.2. Here is an alternative way of solving the problem. Why does
it lead to the same result?

52 CHAPTER 2. DATABASES AND SET THEORY

SELECT Department, CourseNr, CourseName

FROM Course

WHERE 0 = (SELECT count(*)

FROM Student

WHERE SID IN (

SELECT StudentID

FROM Enrolled

WHERE CourseID = CID

EXCEPT

SELECT SID

FROM Student

WHERE Program = ’COMP-SCI’));

Exercise 2.6.3. 1. (S) List students which have enrolled in CSC courses
only (you can include students that have not enrolled in any courses).

2. List courses that were not taught before 2006.

3. List courses that only graduate students have enrolled in.

4. List student groups all of whose members are graduate students.

5. List all courses that have been taught every year (that courses have been
taught).

6. List all courses that have been taught every quarter (that courses have
been taught).

Remark 2.6.4. The request “List courses which only computer science students
ever enrolled in” was not very realistic; we would have preferred to ask for
courses that only computer science students enrolled in, where we distinguish
an “abstract” course, like CSC 440 from an actual offering of the course, like the
one in fall of 2005. Our database is not very well set up for this (typically you
have different tables for courses and sections of courses, which we do not), but it
can be done; at the expense of introducing a new feature: naming. Occasionally,
you have to use the same table twice, which leads to confusion when you refer
to a field by name, since it is not clear which of the two tables you want the field
to come from. Hence, you give the tables names as you introduce them. For
example, suppose we were looking for different students with the same name,
we could write

SELECT A.LastName, A.SID, A.FirstName, B.SID, B.FirstName

FROM Student AS A, Student AS B

WHERE A.LastName = B.Lastname AND

A.FirstName = B.FirstName AND

NOT (A.SID = B.SID);

using AS to obtain two named versions of the student table. We can use the
same tool to distinguish two different occurrences of the Enrolled table, which
we need to distinguish different offerings of the same class.

2.7. PAIRS AND TUPLES AND RELATIONS 53

SELECT DISTINCT Department, CourseNr, CourseName, E1.Quarter, E1.Year

FROM Enrolled AS E1, Course

WHERE E1.CourseID = CID AND

NOT EXISTS (

(SELECT E2.StudentID

FROM Enrolled AS E2

WHERE E2.CourseID = CID AND

E2.Quarter = E1.Quarter AND

E2.Year = E1.Year)

EXCEPT

(SELECT SID

FROM Student

WHERE Program = ’COMP-SCI’));

2.7 Pairs and Tuples and Relations

A pair of two objects x and y is written as (x, y). Its main characteristic is that
it is ordered: a pair has a first component and a second component. So for two
pairs (x, y) and (u, v) to be equal we need to have x = u and y = v, that is, the
pairs are equal component by component.

Exercise 2.7.1. Explain why (x, y) is not the same as {x, y}.

Given two sets X and Y we can form the Cartesian product of the two sets
by collecting all pairs:

X × Y := {(x, y) : x ∈ X ∧ y ∈ Y }.

Example 2.7.2. Let X = {Homer,Marge,Lisa,Bart,Maggie}. Then X × X

consists of |X ×X | = 25 elements, including (Homer,Homer), (Homer,Marge),
. . ., (Maggie,Maggie).

We can take the product of more than two sets by building tuples, instead
of pairs. For example,

X × Y × Z = {(x, y, z) : x ∈ X, y ∈ Y, z ∈ Z,

is the set of all triples with first component in X , second component in Y , and
third component in Z. If we have n sets X1, . . . , Xn, their Cartesian product is

X1 ×X2 × . . .×Xn = {(x1, x2, . . . , xn) : x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn}.

Tuples in general have the same defining characteristic as pairs:

(x1, x2, . . . , xn) = (y1, y2, . . . , yn)

if and only if xi = yi for all 1 ≤ i ≤ n.
The Cartesian product is named after René Descartes, whose name should

be familiar from Cartesian coordinates: every point in the Euclidean plane can

54 CHAPTER 2. DATABASES AND SET THEORY

we written as (x, y), where x is the x-coordinate of the point and y is the y-
coordinate. In other words, if R is the real line, then Descartes claimed that
the Euclidean plane is simply R×R. Euclidean space is R×R×R, i.e. a triple
consisting of the x, y, and z-coordinate of each point.

You should already have gotten an inkling why cartesian products are rel-
evant to databases: a record in a database corresponds to a tuple, with its
coordinates belonging to the domain of its field (an integer, a string, etc.). For
example, the table StudentGroup is created as:

create table studentgroup (

Name varchar(40),

PresidentID int(5),

Founded year,

primary key (Name)

);

That is, Name is a string of length at most 40, PresidentID is an integer with
at most 5 digits, and Founded is a year (which is a special type). So if we let
A be the set of all strings of length at most 40, B be the set of integers with
at most 5 digits, and C be the set of all years, then a record in this table is an
element of A×B × C.

Indeed, taking this one step further, any particular state of the Studentgroup
table is simply a subset of A×B ×C. Of course, the same is true for all tables
and relations in the relational database world: they are subsets of the Cartesian
products of the domains of their fields.

Excursion: Databases and Tuples

As we just saw, a SELECT query returns a list of tuples. We can use this in
conjunction with IN to simplify some queries. For example, suppose we want to
list the information about CSC 440, IT 240 and IT 223 (you will often encounter
strange lists like that). We already know how to do this, but here is a more
elegant way.
SELECT CID, Department, CourseNr

FROM Course

WHERE (Department, CourseNr) IN ((’CSC’, ’440’), (’IT’, ’240’), (’IT’, ’223’));

Here is another example: suppose we want to list all students that joined
’DeFrag’ in 2004 or ’HerCTI’ in 2005. We can now write this as:

SELECT *

FROM Student, Memberof

WHERE StudentID = SID AND

(GroupName, Joined) IN ((’DeFrag’, 2004), (’HerCTI’, 2005));

2.8. MORE SETS 55

(This query does not work in H2, there seems to be a type problem.)
The list of pairs (or other tuples) can also be the result of a SELECT query.

For example, let us list students that took a course during the year that they
started:

SELECT *

FROM Student

WHERE (SID, Started) IN

(SELECT StudentId, year

FROM Enrolled);

(Again, this query doesn’t work in H2.)

2.8 More Sets

If a point in the plane is an element of R × R, then a geometric figure, a set of
such points, is a subset of R × R, and the set of all geometric figures is the set
of all subsets of R × R.

If a table in a database is a subset of the Cartesian product of its domains,
then the set of all possible tables is the set of all subsets of that Cartesian
products. You can keep multiplying examples all making the point that it is
useful to be able to talk about all subsets of a set. This is known as the powerset:

P(A) = {X : X ⊆ A}.

Example 2.8.1. With S = {Marge,Homer}, we have

P(S) = {∅, {Marge}, {Homer}, {Marge,Homer}}.

Note that the empty set and the whole set itself always occur in the powerset,
since they are the trivial subsets of the set.

Exercise 2.8.2. Compute P({Marge,Homer,Bart}). Then compute P(∅). At
that point try to make a guess at |P(S)| for finite sets S.

Doing some examples should have convinced you that

|P(S)| = 2|S|

for finite sets: subsets differ by which elements they contain and each element
can either be contained or not, giving us two choices per element, yielding

|S|
︷ ︸︸ ︷

2 ∗ 2 ∗ · · · ∗ 2 = 2|S|

different subsets.
Since 2n > n for all n, the powerset of a set is always larger than the set

itself; amazingly, this is still true for infinite sets as we will see later.

56 CHAPTER 2. DATABASES AND SET THEORY

Exercise 2.8.3. 1. How many elements does P({Marge,Homer,Lisa,Bart,Maggie})
have?

2. Compute P({1, 2, 3}) and draw the result as a diagram which naturally
shows how the subsets are included in each other; start with ∅ at the
bottom and {1, 2, 3} at the top, and include the remaining subsets of
{1, 2, 3} between them; draw an arrow from one subset A to another subset
B if A ⊆ B. Try to arrange the sets so that the subset relationship is
reflected visually.

3. Compute P({1, 2, 3, 4}) and draw the result as a diagram which naturally
shows how the subsets are included in each other; start with ∅ at the
bottom and {1, 2, 3, 4} at the top, and include the remaining subsets of
{1, 2, 3} between them; draw an arrow from one subset A to another subset
B if A ⊆ B. Try to arrange the sets so that the subset relationship is
reflected visually.

4. In the diagrams you did for the previous two exercises what does taking
the union or intersection of two sets correspond to?

The definition of powerset also works for infinite sets, for example, N ∈ P(R),
or {2, 3, 5, 7, . . .} ∈ P({1, 2, 3, . . .}).

Every A ∈ P({1, 2, 3, . . .}) contains a smallest element.

Looks like a very simple statement, but, in truth, is the most powerful tool
we have for dealing with natural numbers. It is known as the principle of
mathematical induction. You can tell that it is special, since it already fails to
be true for R: not every element in P(R) has a smallest element (example?).

2.9 *Paradoxes of Set Theory

What we have seen of set theory so far all belongs to a theory more accurately
called näıve set theory. It is a very useful tool (as we have seen, and as we will
see), but from a strictly mathematical point of view it has a major problem: it
contains a self-contradiction, and the one thing mathematics should not be is
contradictory.

The contradiction takes the form of a paradox: in näıve set theory there is
a statement whose truth implies its falsehood and whose falsehood implies its
truth, so apparently it cannot be either true or false.

Maybe the most elegant form of the paradox, and also the first published
one, is due to Bertrand Russell7 who considered the set of all sets that do not
contain themselves. More formally (and paradoxes are always a good indication
that one should get a bit more formal), let

R = {x : x 6∈ x}.

7Of course, there are claims to priority by other logicians.

2.10. EXERCISES 57

This set looks a bit strange: it consists of other sets, namely of those that do
not contain themselves. Are there sets that contain themselves? Well, yes; if
you admit, for example, the set of all sets, called V , then V ∈ V , since, as a set,
it must contain itself. Most sets, however, do not contain themselves. What
about R though? If R ∈ R, then R 6∈ R is false, so, by the way R was defined,
R 6∈ R. So assuming that R ∈ R is true, leads to the conclusion that it is false.
Similarly, if we assume that R 6∈ R, then again just following the way R was
defined, R should contain itself: R ∈ R, again in contraction to the assumption
we started with.

So assuming either that R belongs to R or the opposite leads to a contra-
diction. So, which one is it?8

2.10 Exercises

1. Show that |A ∪B| = |A| + |B| − |A ∩B|.

2. Show that |A△B| = |A|+ |B|−2|A∩B|, where A△B = (A−B)∪(B−A)
is the symmetric difference of A and B.

3. What does it mean if the symmetric difference of two sets is empty? (See
previous exercise for the definition of symmetric difference.)

4. Is it true that (A − (B − C)) = ((A −B) − C)? That is, is set difference
associative? If it is, prove it, if not, find a counterexample.

5. Use shading in a Venn diagram for two sets to express that A ∩B = ∅.

6. Use shading in a Venn diagram for two sets to express that A ∩ B = ∅.
What does that mean?

7. Use shading in a Venn diagram for two sets to express that A ∩ B = ∅.
What does that mean?

8. Draw a Venn diagram for three sets A, B and C and label all the (eight)
regions with the sets they correspond to (e.g. A ∩B ∩C or A ∩B ∩ C).

9. Using shading, draw Modus Barbara (Figure 2.1) as a special case of the
Venn diagram for three regions.

10. Use shading in a Venn diagram for three sets to express that A ∩ C = ∅,
B ∩ C = ∅, A ∩B ∩ C = ∅. What does that mean?

11. We introduced the pair (a, b) of two elements a and b as a primitive notion.
Show that it can be defined using sets. Hint: The first attempt would be to
define (a, b) as {a, b}. That, however, does not work, since {a, b} = {b, a}
but we not want (a, b) = (b, a) in general.

8Philosophers have taken all possible positions on this: the statement is true, the statement
is false, its both, or its neither. You have your pick.

