
CSC 202 Mathematics for Computer Science

Lecture Notes

Marcus Schaefer

DePaul University1

1 c© Marcus Schaefer, 2006

58

Chapter 3

Databases and First Order

Logic

We have seen close connections between relational databases and two logical
theories: propositional logic and set theory, but both of them fall short of cap-
turing relational databases completely; for example, they cannot even define
the notion of a key formally. For that we need a more powerful tool: first-order
logic.

Propositional logic is the logic of propositions, statements that are either
true or false. Propositional logic does not care what the statements are about.
Indeed, when we applied propositional logic to explain the logic of SQL’s WHERE
clause we already added the caveat that a condition like Career = ’UGRD’ is
not a proposition. Only after replacing Career by a value in a particular field
does the condition become true or false. Set theory was different in that it dealt
with collections of entities, whose nature was of no interest to us other than
that they belonged to some sets and not to others. Behind set theory lurks
first-order logic which allows us to express relationships between the members
of our universe.

In this section we start with the mathematical point of view. Don’t think
about databases for a while.

3.1 Relations

When we say something like “Lisa is a sister of Bart” or “Homer is the father of
Maggie” we are expressing a relation between two different objects (Simpsons
in this case). In mathematics your objects might be natural numbers, graphs or
propositions, but the principle is still the same: when writing 3 < 4 we are ex-
pressing a relation between 3 and 4. We are just working in a different universe,
but there are more similarities than differences. For example, if somebody is a
brother to somebody else, and that somebody else is a brother to yet another
person, then the first person is a brother to the last person. Sound cumbersome?

59

60 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

That’s why we have mathematics.

When a twelfth-century youth fell in love he did not take three paces
backward, gaze into her eyes, and tell her she was too beautiful to
live. He said he would step outside and see about it. And if, when he
got out, he met a man and broke his head—the other man’s head,
I mean—then that proved that his—the first fellow’s—girl was a
pretty girl. But if the other fellow broke his head—not his own, you
know, but the other fellow’s—the other fellow to the second fellow,
that is, because of course the other fellow would only be the other
fellow to him, not the first fellow who—well, if he broke his head,
then his girl—not the other fellow’s, but the fellow who was the—
Look here, if A broke B’s head, then A’s girl was a pretty girl; but
if B broke A’s head, then A’s girl wasn’t a pretty girl, but B’s girl
was. That was their method of conducting art criticism.

Jerome K. Jerome. Idle Thoughts of an Idle Fellow.

We write xRy to express that x is in relation R to y. So if R is the relation
“is brother of”, then xRy expresses that x a brother of y; with this we can
express the idea that a brother of a brother is still a brother as: xRy and yRz
implies xRz, or even shorter:

xRy ∧ yRz → xRz.

Note that the same is true if R is the relation “is smaller than” and the
universe are the natural numbers (or the real numbers). The relation R is
transitive in both cases. It turns out to be useful to study properties of relations
such as transitivity in general without limiting ourselves to a particular universe.
(Though it is always a good idea to think of specific examples.)

The relation “is brother of” is binary: it relates two elements of the universe.
Relations can be more complex, for example “x places an order for y at time
t” is a ternary relation in that it relates three objects (this universe obviously
includes people, time and shopping goods). Charles Peirce was fond of the
example “x is a giver of y to z”, another ternary relation; similar to it is the
supplier relationship often found in databases: “company x supplies product
y to customer z”. Ternary relations cannot naturally be written like binary
relations with the relation symbol appearing between the objects it relates, like
3 < 4 or 3 + 4 = 7. So we move to another notation: we write R(x, y) or
R(x, y, z) denote that R is true for the pair (x, y) or the triple (x, y, z) (and
similarly for any other tuple). The number of objects in the relation is the arity

of the relation. There is one more important special case, unary relations that
have just one object, written R(x). Unary relations are also known as predicates

or attributes (note that we are sweeping tons of philosophical literature under
the carpet by claiming that). An earlier example we saw would be “is human”
which we would now write as “human(x)”; other examples include “is orange”
and “is even”.

3.1. RELATIONS 61

Relations, well, relate different objects in our world; they are not just what
makes relational databases, but they are central to mathematics and any sci-
ence. Not surprisingly, then, relations are well-investigated and we have come to
distinguish between many different types of relations. There are ordering rela-
tions (“being taller than”, “being less than”) and equivalence relations (“being
in the same class as”, “being of the same sex”). To capture the essential nature
of these types, we first need to abstract some properties of relations.

A binary relationR is reflexive ifR(x, x) for all x. For example, ≤ is reflexive,
but < is not.

A binary relation R is symmetric if R(x, y) → R(y, x) for all x and y. For
example, = is symmetric, but ≤ is not.

A binary relation R is transitive if R(x, y) ∧ R(y, z) → R(x, z) for all x, y
and z. For example ≤ is transitive, but “being a friend of” is not (although it
gets claimed repeatedly).

Example 3.1.1. Let us try some examples. Start with R(x, y) =“x likes y”
(our universe being humanity). There are certainly x for which R(x, x) is true,
that is, humans that like themselves, but we don’t have R(x, x) for all x (that
is, there are humans that do not like themselves), so R fails to be reflexive.
Similarly, it is not symmetric, since x liking y does not always imply that y likes
x, and it is not transitive, since x can dislike z, even if z is liked by y and y is
liked by x.

What about R(x, y) = “ |x − y| is even” (our universe being the natural
numbers). |x−x| = 0, which is even, soR is reflexive. Also, since |x−y| = |y−x|,
R(x, y) is symmetric. Finally, if there is an even difference between x and y and
an even difference between y and z, then there is an even difference between x
and z, so this relation is transitive as well.

Exercise 3.1.2. For a more mathematical example of non-transitivity, consider
being coprime. Two numbers are coprime if their greatest common divisor is 1.
Show that being coprime is not transitive.

Exercise 3.1.3. For each of the following relations determine whether it is
(a) reflexive, (b) symmetric, and (c) transitive. For each property argue why
the relation has the property, or give a counterexample if it fails to have the
property.

1. (S) “is sibling of”,

2. “has the same parents as”,

3. “is enrolled in one of the same courses as”,

4. “is enrolled in all the same courses as”,

5. “is coprime to”,

6. “is brother of”,

62 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

7. “is father of”,

8. “is cousin of”,

9. “is older than”,

10. “has won a game of tennis against”.

With these notions we can already define the most important class of rela-
tions: a binary relation is an equivalence relation if it is reflexive, symmetric
and transitive. An equivalence relation R naturally groups objects: any x is
related by R to itself, and if it is related by R to y, then y is also related by R
to x, and if x is related to y by R and y to z, then x is also related by R to z.
Exactly the behavior you would want if you needed to classify objects by being
in the relation R to each other (think, for example, about objects sharing the
same color). Let R be an equivalence relation, and for every element a define

[a]R := {b : R(a, b)},

the equivalence class or a under R, namely all those elements that are equivalent
to a under R (e.g. all objects having the same color as a). Since R is an
equivalence relation, then any two elements in [a]R are related by R: pick x ∈
[a]R and y ∈ [a]R. That is R(a, x) and R(a, y). But then R(x, a) (symmetry),
and, therefore, R(x, y) (transitivity). We call [a]R the equivalence class of a. It
contains everything equivalent to a and, as we just saw, everything a is equivalent
to, is equivalent to each other as well, so we are creating a category.

Example 3.1.4. Consider R =“has the same sex as”. Pick any person a, then
[a]R will contain all people of the same sex as a. In particular, any two people
within [a]R have the same sex. So, the notion of sex could be defined from a
(scientifically possibly more primitive) notion of “having the same sex”. On
the Simpsons, R leads to two equivalence classes: {Maggie,Marge,Lisa} and
{Homer,Bart}. So, for example, [Homer]R = {Homer,Bart} = [Bart]R.

On the other hand, if we let R(x, y) =“x has the same parents as y”, the
Simpsons split into three equivalence classes: [Homer]R = {Homer}, [Marge]R =
{Marge}, and [Lisa]R = [Bart]R = [Maggie]R = {Lisa,Bart,Maggie}. Note that
an equivalence class is never empty, it always contains at least one element.

The most prominent example of an equivalence relation is equality, of course,
and that is what the definition of an equivalence relation is modeled on. It is
more general, of course, for example, it can capture equality of objects in a
certain respect.

Example 3.1.5. For R =“has the same age as”, the equivalence classes [a]R
will consist of all the different age groups. We are grouping people with respect
to their age. (R would split the Simpsons into 5 different equivalence classes,
since everybody has a different age.)

3.1. RELATIONS 63

Example 3.1.6. We now see clearly the difference between “is a sibling of”
and “has the same parents as”. While “is a sibling of” is symmetric, it is not
transitive, and, while we can define the set [a]is a sibling of of all the siblings of

a, this set could contain two people who are not siblings of each other. On the
other hand “has the same parent as” is reflexive, symmetric and transitive, so
any two people in [a]has the same parents as will have the same parents, and

this is a possible way of classifying people.

Example 3.1.7. Let us return to an earlier example: R(x, y) = “ |x − y|
is even” over the universe of natural numbers. As we saw before, this R is
reflexive, symmetric and transitive, so it is an equivalence relation. What are
the equivalence classes it defines. [0]R contains all natural numbers that have
an even difference with 0, in other words, all even numbers. On the other hand,
[1]R contains all natural numbers that have an even difference from 1, which is
the set of all odd numbers.

[0]R = {0, 2, 4, 6, 8, . . .}
[1]R = {1, 3, 5, 7, 9, . . .}

And these are all the equivalence classes of R over the natural numbers there
can be, since {0, 2, 4, 6, 8, . . .} and {1, 3, 5, 7, 9, . . .} together contain all natural
numbers. If we looked at

[3]R

for example, we find that [3]R = {1, 3, 5, 7, 9, . . .} = [1]R, since 3 ∈ [1]R. To
represent the equivalence classes of the natural numbers with respect to R we
could choose [16]R and [43]R, or course, but [0]R and [1]R are more canonical
(they are smaller, for one). So 0 and 1 are the standard representatives of the
natural numbers after applying the equivalence relation R.

If we rephrase this in plain English, all we have just said is that natural
numbers come in two types: even and odd, and we can easily determine whether
two numbers are of the same type by calculating their difference and making
sure it is even. This particular way of looking at the natural numbers is quite
important; we will encounter it again, as parity when talking about games and
puzzles, and as part of modular arithmetic when talking about cryptography.

Exercise 3.1.8. Consider the relationship R(x, y) = “ |x − y| is a multiple of
3”.

• Show that R is an equivalence relation.

• Find the equivalence classes of R.

Excursion: Databases and Grouping

In a sense, SQL allows you to build a very limited type of equivalence classes
by allowing you to group records by values of fields. For example:

64 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

SELECT City, count(*)

FROM Student

GROUP BY City;

will group the records in the student table by the value of the field City.
Adding count(*) to the SELECT clause gives us a count of the number of ele-
ments in each group. We can also group by multiple attributes; for example, if
we wanted to know what degrees students are in, grouping just by Career or
Program will not give us the relevant information (try it). But we can group by
both simultaneously:

SELECT Career, Program, count(*)

FROM Student

GROUP BY Career, Program;

This works with multiple tables and conditions as well.

SELECT Program, min(started)

FROM Student

WHERE Career = ’UGRD’

GROUP BY Program;

tells us the first year a particular student started in a program (by program).

Remark 3.1.9. Two important remarks about how GROUP BY works: the WHERE
is checked first— that is, the table is reduced to the records fulfilling the WHERE

condition—and then the records are grouped by the attributes listed in the
GROUP BY clause. At that point, counting or any other type of accumulation is
done (you can sum numbers using sum, or compute their maximum or minimum
or average values, using max, min and avg).

Secondly, if you are selecting attributes in the SELECT clause of a grouped
SQL query, you can only select attributes that have explicitly been grouped by.
For example, if we want to count how many students have taken each course,
we might be inclined to write:

SELECT CID, Department, CourseName, count(*)

FROM Course, Enrolled

WHERE CourseID = CID

GROUP BY CID;

This makes sense, since for each CID there is a unique Department and CourseName.
But how would your database engine know that this is the case? This is why
the SQL standard would force you to write

SELECT CID, Department, CourseName, count(*)

FROM Course, Enrolled

WHERE CourseID = CID

GROUP BY CID, Department, CourseName;

3.1. RELATIONS 65

H2 and some other systems will allow the first form of the query; we will be
more conservative and stick to the SQL standard and explicitly group by any
attribute we need to select.

Exercise 3.1.10. 1. (S) Write a query that lists the first and last year for
each program that a student started in it.

2. By career, find the average date that the students in that career started.

3. Find the total number of students that ever enrolled in a class (i.e. total
over all quarters and years).

4. Find the total number of students in every class taught (that is, by quarter
and year as well).

Example 3.1.11. Incidentally, you can use the result of an accumulation in
another query, e.g.

SELECT *

FROM student

WHERE started = (SELECT min(started)

FROM Student);

This gives you the first cohort of students at your university.

Exercise 3.1.12. 1. Find the president of the oldest student group.

2. For each student group, list its senior members (i.e. current members that
joined earlier than other current members).

How would we find student groups that have at least ten members? We
know how to get the counts for each student group:

SELECT Name, count(*)

FROM StudentGroup, MemberOf

WHERE GroupName = Name

GROUP BY Name;

We want to restrict this list to those entries where the count is at least ten.
We cannot do this in the WHERE clause, since that clause gets processed before

the accumulation, so no accumulated information is available at that point. We
have to add this condition after the grouping. For this, there is an extra clause,
called HAVING that will be run on the output of the grouping:

SELECT Name, count(*)

FROM StudentGroup, MemberOf

WHERE GroupName = Name

GROUP BY Name

HAVING count(*) >= 10;

Exercise 3.1.13. 1. (S) Find student groups that have no members.

66 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

2. Find student groups that have one or two members.

3. Find students that have joined more than one student group.

4. List years in which at least two students started at the university.

5. Find students that are enrolled full-time (four classes or more).

6. Find classes that have had an average enrollment of at least ten students.

To deepen our understanding of equivalence classes, let us develop an al-
ternative way of looking at them, already suggested by our earlier examples.
Suppose we have split our universe U into several sets (or categories, think of
age, sex, etc.) that are pairwise disjoint. More formally, we call a collection Ui,
where i ∈ I a partition of U if

U =
⋃

i∈I

Ui

and Ui ∩ Uj = ∅ for all i 6= j, i, j ∈ I. If we have a partition of U we can define
a relation R on U as follows: R(x, y) is true if and only if x and y belong to the
same Ui, i ∈ I.

Exercise 3.1.14. Show that the R defined in this way is an equivalence relation:
verify reflexivity, symmetry and transitivity.

On the other hand, suppose we are given an equivalence relation R over the
universe U . Look at the collection of all equivalence classes: Ua = [a]R, for all
a ∈ U . First of all note that

U =
⋃

a∈I

[a]R

since every a ∈ U is contain in some equivalence class, namely Ua (since R is
reflexive). However, the Ua are not a partition of the universe U , since two of
them could overlap. However, suppose Ua and Ub overlap: that is, there is a c
such that c ∈ Ua and c ∈ Ub, or, in other words, R(a, c) and R(b, c). Since R is
symmetric and transitive, we can conclude that R(a, b), so b ∈ Ua, and, therefore
Ub ⊆ Ua, and, using the same argument with a and b exchanged, Ua ⊆ Ub, and,
thus Ua = Ub. That is, if two equivalence classes overlap, they are identical. So
we can simply drop all indices in U that lead to duplication, to get a set I ⊆ U
such that a, b ∈ I implies that Ua 6= Ub, and, therefore, Ua ∩ Ub = ∅. In other
words, Ua with a ∈ I is a partition of U .

In summary: you should be thinking of equivalence relations as a partition
of the universe into categories.

We already mentioned another useful class of relations, ordering relations,
such as ≤. If we go back, it seems that ordering relations should be reflexive

3.1. RELATIONS 67

and transitive, but certainly not symmetric. If x ≤ y and y ≤ x, indeed, we
would like to conclude that x = y. This is the missing property we need to
define an ordering relation:

A binary relation R is anti-symmetric if R(x, y) ∧R(y, x) → x = y.
An ordering relation is a reflexive, anti-symmetric, transitive relation.

Example 3.1.15. We can order the Simpsons by age: Homer > Marge >
Bart > Lisa > Maggie (Homer’s age fluctuates a bit). If we order them by how
tall they are, we get Marge > Homer > Bart > Lisa > Maggie, so the same set
can support many different orderings.

Exercise 3.1.16. Show that x|y (“x divides y”) is an ordering relation on
the natural numbers. Is x|y an ordering relation on the integers? On the real
numbers?

Exercise 3.1.17. Show that ⊆ is an ordering relation on sets.

The previous examples shows that ordering relations can be quite different
from our original model, ≤. The main difference is that two elements might
not be comparable by the relation. For numbers x and y we always have x ≤ y
or y ≤ x, but it is not true that for an arbitrary ordering � we always have
either x � y or y � x. Indeed, {Marge} 6⊆ {Homer} and {Homer} 6⊆ {Marge}.
So while, as we saw, ⊆ is an ordering relation to our definition, the two sets
{Marge} and {Homer} are not even comparable.

An ordering relation � for which either x � y or y � x for all elements x
and y is called total. Otherwise it is called partial.

Example 3.1.18. Consider the set W of all possible words (arbitrary sequences
of letters, including “szyzgy” but also “sdhfsjdf”). This set can be totally
ordered as follows: given two words x 6= y ∈W , let w be their longest common
prefix.

If w = x or w = y, then let x ≤lex y if |x| ≤ |y|, where |x| and |y| are
the lengths of x and y. If neither w = x nor w = y, then both have a letter
following w, that is, x = wℓ1 . . . and y = wℓ2 . . ., where ℓ1 and ℓ2 are letters
of the alphabet. We let x ≤lex y if ℓ1 comes before ℓ2 in the alphabet. The
resulting ordering is called the lexicographic or dictionary ordering of words
(there are other ways to order words). It is a simplified variant of the ordering
used by dictionaries to arrange words.

For example, x =“hand” and y =“handle” have the longest common prefix
w =“hand”, which coincides with x, so we let “hand” < “handle”, since “hand”
is shorter. For x =“brutal” and y =“brunch”, we have a longest common prefix
of w =“bru”. In x, “bru” is followed by “t” whereas in y “bru” is followed by
“n”. Since “n” ¡ “t” in the English ordering of the alphabet, we let “brunch” <
“brutal”.

The lexicographic ordering does disagree with our standard ordering of the
numbers (if we extend the notion of words to be made from letters as well as
numbers). If we considered 112 and 12 as words “112” and “12”, then “112”
would be listed before “12”, while, as numbers, 12 < 112.

68 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

We did not specify which alphabet we are using, and the lexicographic or-
dering of words makes sense for any alphabet, be it the English alphabet, or
the binary alphabet {0, 1}, or even an infinite set. Even more, we can start
with any ordering of the alphabet we like. For a dictionary, we would order the
English alphabet as “a” < “b” and so on. For a spam filter, where we would
want to check for more frequent words first, we could order the letters in order
of frequency, so “e” ¡ “t” ¡ “a” and so on, since “e” is the most frequent letter
in English, “t” the second-most frequent, and so on.

Exercise 3.1.19. Show that the lexicographic ordering x ≤lex y is indeed a
total ordering relation.

Exercise 3.1.20. Show that the lexicographic ordering x ≤lex y is not well-

founded, in the sense that you can build an infinite sequence of words w1, w2, . . .
such that w1 ≥lex w2 ≥lex w3 ≥lex . . ., where x ≥lex y if y ≤lex x. Note: This
shows that the lexicographic ordering is not very useful for certain approaches
to algorithmic processing, where you would want each element to have only a
finite number of predecessors in the order, like the natural numbers.

For numbers we distinguish between < and ≤ and the same distinction can
be made for arbitrary orders. We call ≺ a strict ordering relation if it is anti-
reflexive, anti-symmetric and transitive, where a binary relation R is called
anti-reflexive if R(x, x) for all x. As we did for the non-strict orderings we
distinguish between partial and total strict orders. A strict ordering ≺ is total

if for any two distinct elements x and y we either have x ≺ y or y ≺ x. Note
that we cannot require this for all pairs of elements, since for x = y we do not
have either x ≺ y or y ≺ x.

Note that by definition strict ordering relations are not ordering relations
(since they are not reflexive, indeed the opposite).

Excursion: Databases and Ordering

SQL allows you to sort your output by any field; for example,
SELECT *

FROM Student

ORDER BY Started;

will list the students in the order that they started in. If we wanted to sort the
students within each year by last name and then by first name, we could do so
by using

SELECT *

FROM Student

ORDER BY Started, LastName, FirstName;

3.1. RELATIONS 69

In passing, we already hinted at some standard operations on relations. For
example, we saw that with the lexicographic ordering ≤lex automatically came
a second lexicographic ordering ≥lex: one ordering puts the smallest elements
first, the other puts the larger elements first. For example, if we order 1, 2, 3
by < we get 1 < 2 < 3. If we order it by > we get 3 > 2 > 1. Both are
perfectly fine orders. In general, starting with a binary relation R(x, y) we can
always consider the inverse relation R−1(x, y) := R(y, x). So <−1=>. This
construction also works for binary relations that are not orders.

Example 3.1.21. If R(x, y) =“x is parent of y”, then R−1(x, y) is “x is child
of y”.

Exercise 3.1.22. What are the inverses of the following relations:

1. “is ancestor of”,

2. “is brother of” (careful),

3. “is uncle of”,

4. “is coprime to”,

5. “has the same parents as”,

6. “is older than” (careful),

7. “has won a game of tennis against”.

Exercise 3.1.23. Show that R is symmetric if and only if R−1 = R.

Another natural operation on relations is to combine them. In the easiest
case, you just look at the relation “once removed”. A parent of a parent is a
grandparent. A child of a child is a grandchild. Or combine them in arbitrary
connections: a child of a sibling, a sibling of a parent, and so on.

More formally, let R(x, y) and S(u, v) be two relations. The join of R and
S, written R ◦ S is the relation that holds between x and v if there is a y such
that R(x, y) and S(y, v).1

Example 3.1.24. Let us go back to the parent example: if R(x, y) =“x is
parent of y” and S(u, v) is the same relation, that is, S(u, v) =“u is parent of
v”, then R ◦ S(x, v) is true if there is a y such that x is parent of y and y is
parent of v. In other words, it is true if x is a grandparent of v.

Let us try another example. Let R(x, y) =“x is sibling of y” and S(u, v) =“u
is parent of v”. Then R ◦ S(x, v) is true if there is a y such that x is a sibling
of y and y is a parent of v. In other words, R ◦ S(x, v) means that x is uncle or
aunt of v (excluding uncles or aunts by marriage).

1In database theory or relational algebra, the join is also known as the equijoin since you

join on a condition of equality; it is a special case of the Θ-join.

70 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

Example 3.1.25. Suppose R(x, y) =“x = 2y” and S(u, v) =“u = 3v”. Then
R ◦ S(x, v) is true if there is a y such that x = 2y and y = 3v. Or, in other
words, if x = 2(3v) = 6v.

Exercise 3.1.26. What is the join R ◦ S in the following examples:

1. R(x, y) =“x is married to y” and S(u, v) =“u is a child of v”,

2. R(x, y) =“x is a child of y” and S(u, v) =“u is married to v”,

The join of a relation with itself is closely related to its transitivity: “parent
of parent” is “grandparent” and not the same as “parent”; however, “taller
than somebody taller than” is the same as “taller than”. And being a parent is
not transitive, while being taller than somebody else is. We will formalize this
relation (and several others) in the next section.

Joins can be defined on arbitrary, not just binary, relations. In that case,
we need to specify which argument of R is matched up with which argument
of S. At this point, you probably realize that we have seen, and indeed, used
joins before: when connecting multiple tables in a database. We join them by
requiring that the foreign key be the same as the primary key. Consider the
following query listing the last names of presidents of student groups:

SELECT LastName, SID, Name

FROM Student, StudentGroup

WHERE PresidentID = SID;

This is a join of Student(ln, fn, sid, ssn, cr, pr, ct, st) and StudentGroup(pid, gn, fd),
joined by the condition that sid = pid; i.e. we are looking at the relation we
obtain from combining each record from Student with StudentGroup and re-
stricting to those records where sid = pid. This corresponds exactly to the
definition of a join (except that so far we’ve always implicitly joined the last
attribute of the first relation to the first attribute of the second relation; the
current join is a bit more general in that we can specify which attributes get
joined). And, indeed, many database systems support a JOIN operation directly,
that is, we could write the query for student group presidents as:

SELECT LastName, SID, Name

FROM Student JOIN StudentGroup ON PresidentID = SID;

This allows for a clean separation of the foreign key/primary key requirements
and more specialized query restrictions, e.g. when we write

SELECT LastName, SID, Name

FROM Student JOIN StudentGroup ON PresidentID = SID

WHERE founded > 2000;

for all presidents of student groups founded after 2000. However, some systems
do not support the JOIN keyword, which is why we will not use it explicitly.

3.2. THE EXTENSIONAL VIEW 71

3.2 The Extensional View

Our examples of relations in this chapter so far have included many natural
relations, like “sibling”, “parent”, < and so on. These relations seem to differ
inherently from the type of relations we encounter in a database though, say
a student enrolled in a course. A relationship like “sibling” or < is defined,
through words or mathematics, such relations are called intensional,2 since they
are determined by their intension, their meaning. In a database which students
take a class is explicitly listed, such relations are called extensional, since they
are determined by their extension. Here we have one of the basic tensions
in computer science, between the intensional and the extensional, in a nutshell.
Whenever you represent information in a computer, you have to make a decision
about whether the presentation will be intensional or extensional: do you work
with the meaning or with the explicit cases? Much of artificial intelligence
tends towards intensional representations, which means artificial intelligence
needs good implementations of logic to process semantical rules. At the other
end of the spectrum we have relational databases, where all relations are given
explicitly. If we want to store who is married to whom, we need to do so
explicitly, and tell the database that William Shakespeare was married to Anne
Hathaway. But there is no way to tell the database that marriage is a symmetric
relation and that this implies that Anne Hathaway was married to Shakespeare.
If we need to use that information as well, we need to store it, or work the
symmetry into our queries.3

Actually, we have discussed the extensional view before, when talking about
pairs and tuples: we can view a table in a database as a subset of a Cartesian
product over its domains; we call this the set-theoretic view of relations. The
example we saw was studentgroupwhich we explained as a subset of A×B×C,
where A is the set of all strings of length at most 40, B the set of integers with
at most 5 digits, and C the set of all years. If we take the extensional view,
we could also write (x, y, z) ∈ studentgroup to talk about a particular record
in the table studentgroup, rather than studentgroup(x, y, z), which suggests
a relation studentgroup that holds for (x, y, z) if x is the name of a student
group founded in the year z and whose president is the student with student ID
y.

Just as we allowed unions, intersections, and differences (complements) of
sets and tables, we can do the same for relations by simply viewing them as
sets.

Example 3.2.1. Let R(x, y) =“x < y”, and S(x, y) =“x = y′′. Then R ∪
S(x, y) =“x ≤ y”. In this case R∩S(x, y) = {}, since there are no x and y such
that x < y and x = y.

For another example, let R(x, y) =“x sister of y”, S(x, y) =“x is older than
y”. Then R ∪ S(x, y) =“x is older than y or a sister of y”. R ∩ S(x, y) =“x is

2Intensional. Not intentional.
3And we do not even want to touch on the philosophical issues involved in the distinction

between extension and intension.

72 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

older sister of y”. Finally, R−S(x, y) =“x is younger (or same-age) sister of y”.

Note that the set-theoretic operations immediately correspond to logical
operations on the relation: R∪S is the same as R∨S(x, y) := R(x, y)∨S(x, y),
R ∩ S the same as R ∧ S(x, y) := R(x, y) ∧ S(x, y), and R − S the same as
R ∧ S(x, y) := R(x, y) ∧ S(x, y).

Exercise 3.2.2. You are given relationsR(x, y) =“x is a child of y”, S(u, v) =“u
is a sibling of v”, T (w, z) =“w is married to z”. Set-theoretically express the
relations x is aunt or uncle of y, and x is nephew or niece of y.

For binary relations there is a good alternative to the set-theoretic view; for
example, picture the relation “is parent of” in the world of the Simpsons.

Homer Marge Lisa Bart Maggie
Homer ⊥ ⊥ ⊤ ⊤ ⊤
Marge ⊥ ⊥ ⊤ ⊤ ⊤
Lisa ⊥ ⊥ ⊥ ⊥ ⊥
Bart ⊥ ⊥ ⊥ ⊥ ⊥

Maggie ⊥ ⊥ ⊥ ⊥ ⊥
Here is an example of how to read the matrix: Marge is a parent of Maggie

as witnessed by the entry ⊤ in the row labeled Marge and the column labeled
Maggie. In one more step of abstraction, we remove the labels of rows and
columns (we have to agree on what they mean, but that is typically clear), and
replace ⊥ by 0 and ⊤ by 1, and we get a 0/1-matrix, that is, a matrix all of
whose entries are 0 or 1:













0 0 1 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0













This matrix, let’s call it M , still encodes all the information we need to know
about “is parent of” in the world of the Simpsons: M [i, j], the entry is row i
and column j is 1 if and only if the ith Simpson is a parent of the jth Simpson
(where we order the Simpsons as Homer < Marge < Lisa < Bart < Maggie).

We call this the matrix view of binary relations.

Exercise 3.2.3. Construct matrices for the following relations on the Simpsons,
ordered as Homer < Marge < Lisa < Bart < Maggie.

1. “is child of”; compare this to “is parent of”. Do you see a connection?

2. “is older than”,

3. “has same sex as”,

4. “is identical to”,

3.2. THE EXTENSIONAL VIEW 73

5. “is younger than”; compare this to “is older than”. Do you see a connec-
tion? What about the diagonal elements?

Let us go back to some of the properties we discussed earlier: being reflexive,
symmetric, anti-symmetric, transitive, and so on. How do these translate into
the extensional or the matrix view?

• A relation is reflexive, if the diagonal of the associated matrix contains
only ones.

• A relation is symmetric, if the associated matrix remains unchanged when
flipping it along the diagonal.

Flipping a matrix along the diagonal is called transposing: MT [i, j] :=
M [j, i]. We claim that a relation R is symmetric if for its associated matrix
M we have MT = M . This is really just the same as saying that R = R−1.

The matrix I consisting of ones in the diagonal, and zeroes everywhere else is
known as the identity matrix. Formally, I[i, j] = 1 if i = j and I[i, j] = 0 if i 6= j.
We define addition of two matrices by component: (A+B)[i, j] = A[i, j]+B[i, j].

Lemma 3.2.4. A relation is reflexive, if its associated matrix M can be written

as M = I +M ′.

Exercise 3.2.5. Give a characterization of anti-reflexive relations in terms of
their associated matrix.

Exercise 3.2.6. Give a characterization of anti-symmetric relations in terms
of their associated matrix. Hint: Subtraction of matrices is defined just like
addition: (A − B)[i, j] = A[i, j] − B[i, j]. And there is a special matrix J with
J [i, j] = 1 for all i, j which you might find helpful.

We have not characterized transitivity yet; it turns out that transitivity is
closely related to the join of a binary relation with itself: “parent of parent” is
“grandparent” and not the same as “parent”; however, “taller than somebody
taller than” is the same as “taller than”. And being a parent is not transitive,
while being taller than somebody else is. For the moment let us move back from
the matrix point of view to the set-theoretic point view of relations.

Lemma 3.2.7. R ◦R ⊆ R if and only if R is transitive.

Proof. Let us first show that R ◦R ⊆ R implies that R is transitive. Arbitrarily
pick (x, y) ∈ R and (y, z) ∈ R. If we can show that (x, z) ∈ R, then we have
shown that R is transitive, since (x, y) and (y, z) were chosen arbitrarily. Now,
since (x, y) ∈ R and (y, z) ∈ R, by definition of R ◦ R, (x, z) ∈ R ◦ R. But by
assumption R ◦R ⊆ R, so (x, z) ∈ R, which is what we had to show.

For the other direction, let us assume that R is transitive. We need to prove
that R ◦R ⊆ R. Pick an arbitrary (x, z) ∈ R ◦ R. By definition of R ◦ R there
has to be a y such that (x, y) ∈ R and (y, z) ∈ R. But then, by transitivity of
R, we can conclude that (x, z) ∈ R. Hence, we have shown that R ◦R ⊆ R.

74 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

Transitivity can also be expressed in the matrix view using matrix multipli-
cation; this is a topic we will not follow up on here, but it is of practical interest,
since it leads to the fastest algorithms known to compute the transitive closure
of a relation.

The transitive closure? What is that? It is the answer to a very natural
question: if a relation R is not transitive, can it be made so by adding connec-
tions to it? Take, for example, the relation “is parent of”. It is not transitive,
since your grandmother is not your parent. But we could make it more transi-
tive by also including grandparents. That still would not include the parents of
grandparents. Well, include them as well. And so on. What we are doing is in
each step replacing R with R∪R◦R, that is we add all (x, z) to the relation for
which there is a one-step connection: (x, y) ∈ R and (y, z) ∈ R. (Think about
that step for R = “is parent of”.) If we keep repeating this over and over, we
will eventually cover the complete history of mankind, and R will correspond
to the ancestor relationship. This process is called transitive closure, and the
example here argues that the transitive closure of “is parent of” is the relation
“is ancestor of”.

Exercise 3.2.8. 1. (S) What is the transitive closure of “is child of”?

2. For natural numbers, we define S(n) = n+ 1, the successor of n. What is
the transitive closure of “is the successor of”?

Computing transitive closures is important and time-consuming; to do so,
we need the matrix point of view, a topic we will not go into more detail on
here.

3.3 Quantification

We defined a relation R to be reflexive, if R(x, x) for all x. Logically, there
is something new here: we require the truth of a proposition for all objects x
in the universe. This is beyond propositional logic, we have entered the realm
of first-order logic. We used English to express for all x, but that can lead to
confusion as our use of quantification gets more sophisticated, so we use a more
mathematical notation:

(∀x)[R(x, x)].

The parentheses are used mainly for readability, although they also tell us what
part of the formula (enclosed by [and]), the quantifier applies to. In this ex-
ample, there is no danger of being ambiguous, so we could also write ∀xR(x, x).

The main new ingredient here is the quantifier ∀. More generally, if we have
a relation R depending on x, we write

(∀x)[R(x)]

to express that R holds whatever the value of x; ∀ is known as the universal

quantifier. E.g. if P (x) =“is American citizen” and Q(x) =“has a social security

3.3. QUANTIFICATION 75

number”, then
(∀x)[P (x) → Q(x)]

expresses (whether true or not) that every American citizen has a social security
number.

Exercise 3.3.1. What do the following formulas express, if, as above, P (x) =“x
is American citizen” and Q(x) =“x has a social security number”.

1. (S) (∀x)[Q(x) → P (x)],

2. (∀x)[P (x)] → (∀x)[Q(x)],

3. (∀x)[P (x)],

4. (∀x)[Q(x)],

5. (∀x)[P (x)] ∧ (∀x)[Q(x)],

6. (∀x)[P (x)] → (∀x)[Q(x)] (again, yes),

7. (∀x)[Q(x) ↔ P (x)],

8. (∀x)[Q(x)].

One conclusion we can draw is that the universal quantifier distributes over
conjunction:

(∀x)[P (x) ∧Q(x)] ↔ (∀x)[P (x)] ∧ (∀x)[Q(x)].

The same is not true for disjunction, as the following example shows.

Exercise 3.3.2. Let P (x) =“x is male” and Q(x) =“x is female”. What do
the following statements express?

1. (∀x)[P (x) ∨Q(x)],

2. (∀x)[P (x)] ∨ (∀x)[Q(x)].

Example 3.3.3. A prime number is a natural number larger than 1 whose only
divisors are 1 and the number itself. This is a type of condition that is very
naturally expressed using the universal quantifier: to express that n is prime,
we need to say that any number dividing n is either 1 or n; as earlier, we use
a|b to denote the relation “a divides b”. We can express that a divisor k of n
has to be 1 or n using propositional logic:

k|n→ (k = 1 ∨ k = n).

For n to be prime, every divisor of n has to be either 1 or n, so we need to
require that any number that divides n has to be 1 or n:

(∀k)[k|n → (k = 1 ∨ k = n)].

At this point we only need to add the requirement that n be larger than 1:

n is prime if and only if n > 1 ∧ (∀k)[k|n→ (k = 1 ∨ k = n)].

76 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

Exercise 3.3.4. Using the predicate a|b define “n is a power of 2” without
using exponentiation (2b) (how do divisors of powers of 2 differ from divisors of
other numbers). Can you define “n is a power of 3”? How about “n is a power
of 4” ?

A formula can have multiple quantifiers, indeed, we have seen several exam-
ples of that already, albeit implicitly. What does

(∀x)(∀y)[R(x, y) → R(y, x)]

express? How about

(∀x)(∀y)(∀z)[R(x, y) ∧R(y, z) → R(x, z)]?

Exercise 3.3.5. 1. (S) Express the condition that the binary relation R is
anti-reflexive.

2. Express the condition that the binary relation R is symmetric.

3. Express the condition that the binary relation R is anti-symmetric.

4. (S) Express the condition that the binary relation R is not reflexive.

5. Express that R is an ordering relation.

6. Express that R is an equivalence relation.

Exercise 3.3.6. Let P (x, y) =“x is taller than y”. Express that if x is taller
than y, then y cannot be taller than x.

Let R(x, y) =“x has social security number y”. Using this relation let us
try to express that everybody has at most one social security number. In other
words, nobody can have two social security numbers. Suppose somebody did,
that is, R(x, y) and R(x, z), then we would have to require that the two social
security numbers are actually the same, viz. y = z. That was the missing piece,
we can now write

(∀x)(∀y)(∀z)[R(x, y) ∧R(x, z) → y = z].

Read this through again carefully, and interpret its meaning.
How would we express that somebody does have a social security number?

Let R(x, y) =“x has social security number y”, and suppose, for the moment,
that x is one particular American. We want to say that there is a y such that
R(x, y). For that we use the existential quantifier:

(∃y)[R(x, y)].

This, in itself, is a formula in the variable x, which we can quantify again, for
example, to say that every American has a social security number:

(∀x)(∃y)[R(x, y)].

3.3. QUANTIFICATION 77

Again, reread this carefully, and then compare it to

(∃y)(∀x)[R(x, y)],

what is the difference in meaning? What about

(∃x)(∀y)[R(x, y)]?

We see that the order of quantifiers matters, we need to read them from the
outside in (just as we do in SQL). Though often, to understand what the formula
is saying, it helps to understand smaller piece of the formula first: recall how we
built (∀x)(∃y)[R(x, y)] in the first place: we built (∃y)[R(x, y)] first, and then
added the universal quantifier. When reading the full formula, (∀x)(∃y)[R(x, y)],
we read it from left to right, but to understand it, it can help to start with an
inner quantifier (again, similar to SQL, where we build the query from the inside
out).

Exercise 3.3.7. Define a|b using an existential quantifier. (You can use arith-
metic relations: +, −, ∗, /.)

Exercise 3.3.8. You are allowed to use the predicates prime(x) and a|b to
express the following properties. (You can use arithmetic relations.)

1. (S) “x is even”,

2. “x is odd”,

3. “x is the sum of two odd numbers”,

4. “Every even number greater than 4 is the sum of two odd primes”. (This
is known as Goldbach’s conjectures; its truth has not been established
yet.)

Exercise 3.3.9. For each of the following four formulas find a binary relation
R that makes the formula true and a relation R that makes it false.

1. (∃x)(∀y)[R(x, y)],

2. (∀x)(∃y)[R(x, y)],

3. (∃y)(∀x)[R(x, y)],

4. (∀y)(∃x)[R(x, y)].

Exercise 3.3.10. State in plain English what the following formulas express:

1. (S) (∃x)(∀y)[x ≤ y],

2. (∀x)(∃y)[x ≤ y],

3. (∃y)(∀x)[x ≤ y],

78 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

4. (∃x)(∀y)[x ≤ y].

Also, for each of the formulas from the previous exercise decide whether it is
true or not if interpreted in the universe of (a) the natural numbers, N, (b) the
integers, Z, (c) the real numbers R.

Example 3.3.11. We saw how to define primality using a universal quantifier.
A number n is prime if and only if

n > 1 ∧ (∀k)[k|n→ (k = 1 ∨ k = n)].

You will also often find a prime number defined as a number larger than 1 that
has no divisors other than 1 and itself. Using an existential quantifier, this could
directly be expressed as

n > 1 ∧ (∃k)[k|n ∧ k 6= 1 ∧ k 6= n)].

The two definitions are identical; think about it: saying that every divisor of
n is either 1 or n is the same as saying that there is no divisor of n which is
different from 1 and n.

The previous example was a special case of the following powerful observa-
tion:

(∀x)[P (x)] ↔ (∃x)[P (x)],

which says that a property P is always true if and only if there is no coun-
terexample, that is no x that makes it false. As usual, there is a dual way of
expressing the relationship between universal and existential quantification:

(∃x)[P (x)] ↔ (∀x)[P (x)],

which says that there is an x that makes P true if and only if P is not false for
all x.

These should look familiar: they are DeMorgan’s laws in yet another device;
if you think of ∀ as a huge ∧ over all elements of the universe, and ∃ as a ∨
over all elements of the universe, the analogy should become clear.4 It means
that we do not need both ∀ and ∃ in logical formulas, we can always eliminate
one. For practical reasons, we use both; but recall SQL, for example; there is an
EXISTS quantifier (which does not quite correspond to ∃ but comes close), but
there is no FORALL or ALL. Which is, why expressing conditions that involved
universal quantifiers are so painful to write in SQL. Recall the query:

SELECT Department, CourseNr, CourseName

FROM Course

WHERE NOT EXISTS (

SELECT StudentID

4Indeed, the notation
∧

x
for ∀x and

∨

x
for ∃x are common in more algebraically oriented

logic texts.

3.3. QUANTIFICATION 79

FROM Enrolled

WHERE CourseID = CID

EXCEPT

SELECT SID

FROM Student

WHERE Program = ’COMP-SCI’);

It listed all courses that are only taken by computer science students; that
is, all students enrolled in the course are computer scientists. Easy to say in
English; in SQL we had to say: there are no students which are in the course,
and which are not computer scientists.

Example 3.3.12. Let us work an extended example from a slightly different
domain; we want to reconstruct the famous epsilon/delta definition of continuity
in calculus. What does it mean for a function to be continuous? It means it
does not make any jumps anywhere in its graph; compare, for example, the
Heaviside function H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0 to the parabola
f(x) = x2.

H is not continuous because it jumps at 0. This is our first break into the
problem: we will call a function continuous, if it is continuous at all its points.
So from now on, let us concentrate on a particular x value, call it x0. For a
function f to be continuous at x0 it cannot jump at x0. How can we capture
what it means for f to jump at x0? It means that f , on at least one side of x0

does not come close to f(x0), that is, there is a ε > 0 such that f(x) and f(x0)
differ by at least ε on that side, even, if x gets arbitrarily close to x0. In other
words, there is no small neighborhood of x0 such that the values of f(x) in that
small neighborhood of x0 are within a distance of at most ǫ from f(x0). Let us
make “neighborhood” precise: we mean points within a distance of at most δ
from x0. So being discontinuous at x0 means that for some ε > 0 there is no
δ > 0 such that

|x− x0| < δ → |f(x) − f(x0)| < ε.

Or, using quantifiers:

(∃ε > 0)(∃δ > 0)[|x− x0| < δ → |f(x) − f(x0)| < ε].

In other words, being continuous at x0 can be defined as

(∀ε > 0)(∃δ > 0)[|x− x0| < δ → |f(x) − f(x0)| < ε].

To express that a function is continuous at all points, we would have to write

(∀x0)(∀ε > 0)(∃δ > 0)[|x− x0| < δ → |f(x) − f(x0)| < ε].

We have seen how to express existence and universal truth. These are pow-
erful tools to express many other properties. For example, we already saw how
to express uniqueness; we can write there is at most one x such that P (x) as

(∀x)(∀y)[P (x) ∧ P (y) → x = y,

80 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

as we saw in the social security example. Now that we understand the relation
between existential and universal quantification, we see that this is the same as
saying

(∃x)(∃y)[P (x) ∧ P (y) ∧ x 6= y].

You will sometimes find (∃≤1)[P (x)] for this quantifier. In this notation, ∃≥1

is just the same as ∃. More common is the version ∃! which means “there is
exactly one”, which could also be written ∃=1.

Exercise 3.3.13. Express that every American citizen has a unique social se-
curity number (so you have to express that they do have such a number and
that the number is unique) using the relation R(x, y) =“x has social security
number y” and Q(x) =“x is American”.

Example 3.3.14. Uniqueness sometimes occurs in database queries; for exam-
ple, we might be asked to list all students that are members in at most one
student group. Remember Maass’ advice: consider the negated version, which
would be students that are members in at least two groups:

SELECT *

FROM Student

WHERE EXISTS (

SELECT *

FROM MemberOf AS M1, MemberOf AS M2

WHERE M1.StudentID = SID AND M2.StudentID = SID AND

NOT (M1.GroupName = M2.GroupName);

which lists all students for whom there are two different records of membership
in student groups. What we really want is the opposite: students for which this
is not the case:

SELECT *

FROM Student

WHERE NOT EXISTS (

SELECT *

FROM MemberOf AS M1, MemberOf AS M2

WHERE M1.StudentID = SID AND M2.StudentID = SID AND

NOT (M1.GroupName = M2.GroupName);

As we saw in the case of quantifiers, unique existence is expressed by saying
there are not two different examples (which includes the case that there are
none).

Of course, using counting, there is an easier way to achieve the same result:

SELECT SID, LastName, FirstName

FROM Student, MemberOf

WHERE SID = StudentID

GROUP BY SID, LastName, FirstName

HAVING count(*) <= 1;

3.4. MORE ON RELATIONS 81

This version is more convenient, of course, since it easily generalizes to “at most
2”, “at most k”, “exactly k”, and so on. Nevertheless, you will encounter the
first version.

Exercise 3.3.15. Reexpress (∃=2)[P (x)], meaning, there are exactly two x
which make P true using only regular ∃ and ∀ quantifiers.

One final example: how would we formally state Euclid’s theorem, which
says that there are infinitely many primes?

(∃∞)[prime(x)].

Using ∃∞ amounts to cheating, of course; how can we express this using the
tools we have? We could try to say: there is a set, it only contains prime, and
the set is infinite. This would lead us to second-order logic and we would still
have to express infinity. Alternately, we might be tempted to write something
like:

(∃x1)(∃x2) . . . [x1 6= x2 ∧ . . . ∧ prime(x1) ∧ prime(x2) . . . ,

that is we would use an infinite number of quantifiers and a formula of infinite
lengths. Indeed, logic allowing such formulas exist. For the prime numbers,
however, there is an easier solution, just using a small number of our regular
quantifiers.

Exercise 3.3.16. Express that there are an infinite number of primes using
only ∃ and ∀ and prime(x).

3.4 More on Relations

We have seen ordering and equivalence relations, but there is a third class of
relations that is fundamental to mathematics that we have not mentioned yet:
functions. The concept of function underwent some significant changes, mostly
through development in the theory of the integral calculus; at this point a
function, for a mathematician, is pretty much anything that associates a single
output value with each input value. In particular, we observe that a function is
a relation, indeed a binary one. There are two properties a binary relation has
to fulfill to be a function: it must have at least one output value for each input
value, and it must have at most one output value for each input value.

Formally, a binary relation R is called single-valued if

(∀x)(∀y)(∀z)[R(x, y) ∧R(x, z) → y = z].

(This should look familiar.) It is called total if

(∀x)(∃y)[R(x, y)].

A single-valued and total binary relation R is called a function; since by defini-
tion for every x there is a unique y such that R(x, y) we can write f(x) = y in
the function notation.

82 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

Example 3.4.1. The relation R(x, y) =“x+ y = 2” is single-valued and total,
so it defines a function, namely f(x) = y = 2 − x. On the other hand, the
relation R(x, y) =“x = y2” is neither total nor single-valued over the reals, so
it does not define a function there. Over the complex numbers, the relation
becomes total, but it is still not single-valued (32 = (−3)2 = 9).

If f ⊆ X×Y is a function, we write it as f : X → Y , and call X the domain

of f and Y the range.
We also write f(X) = {f(x) : x ∈ X}, the image of f . If f(X) = Y , we

call f onto or surjective, that is every element of the domain is taken on as a
function value. For example, the function f : N → N that takes a number and
removes its first digit is onto; e.g. f(1923) = 923. (What about the function
that removes the last digit?).

For example, the function f : N → N that maps a number to its lengths in
digits is nearly surjective: there is no number with no digits, so 0 is not in f(N).
So the function f : N → N − {0} that maps a number to its lengths in digits is
surjective.

If f(x) = f(y) implies that x = y for all x, y ∈ X , then f is one-to-one

or injective. Consider, for example, the function taking Americans with a so-
cial security number to their social security number. One-to-oneness expresses
uniqueness.

Exercise 3.4.2. Which of the following functions are one-to-one and/or onto?

1. f : R → R, x 7→ x

2. f : R → R, x 7→ x2

3. f : R → R≥0, x 7→ x2, where R≥0 are the positive real numbers.

4. f : R → R, x 7→ x3

Since any function f is a relation, we can write f−1 for the inverse relation
to f that is, in the set-theoretic view:

{(y, x) : y = f(x), x ∈ X}.

If f is onto, then for every y there is an x such that (y, x) ∈ f−1. If, moreover, f
is one-to-one, then there is exactly one y such that (y, x) ∈ f−1. In other words,
f−1 is total and single-valued, so it is a function itself. This observation deserves
a definition: a function f which is one-to-one and onto is called bijective. Our
observation showed that a bijective function can always be inverted:

Lemma 3.4.3. If f : X → Y is bijective, then f−1 is a function from Y to X.

f−1 is also bijective.

Exercise 3.4.4. Prove the lemma. In particular show that f−1 is total, single-
valued, one-to-one and onto. How do these properties related to the same prop-
erties for f?

3.4. MORE ON RELATIONS 83

A bijection f : X → Y shows that X and Y are really the same set—up to
renaming the elements of the set.

Example 3.4.5. Here is a simple bijection from {Homer,Marge,Lisa,Bart,Maggie}
to {1, 2, 3, 4, 5}; let f(Bart) = 1, f(Lisa) = 2, f(Marge) = 3, f(Homer) = 4 ,
f(Maggie) = 5.

The example shows one of the shortcomings of bijections: they do show
that two sets are really the same up to renaming of elements, but they do not
maintain any other sort of structure inherent in the set. For example, the set
{Homer,Marge,Lisa,Bart,Maggie} did not have any natural order. However,
the set {1, 2, 3, 4, 5} does. So we can use a bijection with a subset of the natural
numbers to order an unordered set. Looked at in the opposite direction, the set
{1, 2, 3, 4, 5} lost its order when renamed {Homer,Marge,Lisa,Bart,Maggie}.
In mathematics and computer science you therefore often need a stronger type
of bijections, called isomorphisms that maintain the structure between the sets.

Exercise 3.4.6. 1. How many different bijections from {Homer,Marge,Lisa,Bart,Maggie}
to {1, 2, 3, 4, 5} are there?

2. If there is a bijection between {Homer,Marge,Lisa,Bart,Maggie} and a
set X , what can we say about the set X?

The functions we have discussed so far are unary (as functions, not as rela-
tions, as relations they are binary), in that a single input determines a single
output. What about functions like addition: 5 + 7 = 12. We can think of
this as +(5, 7) = 12 (and there are programming languages that do), that is
a binary function + which takes two summands and compute their sum as
the output. As a relation, this binary function + is a subset of R3, namely
f = {(x, y, z) : x+ y = z}. That is + has R2 as its domain, and R as its range.
In this way we can easily understand functions with multiple arguments.

Excursion: Databases and Functions

Databases naturally support functions, falling into two categories: aggregate
functions which accumulate information over multiple records, such as count

and functions used on field-values such as addition and multiplication.
For example,

SELECT avg(started)

FROM Student;

gives us the average year that students started. Or consider

SELECT min(year), max(year)

FROM Course, Enrolled

WHERE CID = CourseID AND

CourseName = ’Theory of Computation’;

84 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

which lists the first and last year that a course named ’Theory of Computation’
has been offered. You can also sum values using the sum function.

There are built-in functions for arithmetic, +, ∗,−, /, together with other
mathematical functions, e.g. abs, sin, mod, ceiling, floor that might come
in handy. There are also special functions for strings (words). E.g. concat
allows you to concatenate strings. So if you want to output the names of your
students looking like “Brennigan, Marcus” you could do so by saying:

SELECT concat(lastname, ’, ’, firstname)

FROM student;

(Other systems will allow + or & for concatenation.)

Example 3.4.7. Let us say we want a formatted list of students and what year
they are in. We know when each student started, so all we have to do is to
subtract that year from the current year and add 1. E.g. if the student started
in 2005 and it is now 2007, then this is their 2007− 2005+ 1 = 3rd year. In H2
the current date is in a variable named current date. We do not actually want
the full current date, but just the year; so we use the built-in function year to
extract the year information from current date: year(current date). Then all
we have to do is add the arithmetic:

SELECT concat(lastname, ’, ’, firstname),

concat(’Year: ’, year(current_date) - started + 1)

FROM student;

The different database systems vary wildly on the names of built-in functions
and the details of how they are used, so if you are using this query in a system
other than H2 it will need some rewriting; the basic structure will be the same
though.

Exercise 3.4.8. 1. List the students that have been at the university longest.

2. List the junior student group president(s), that is the presidents that got
appointed most recently.

3. For each student list how many years it has been since they have taken
their last course.

4. For each student list how many quarters they have been at the university
(each year has three quarters, Fall quarter lasts from September to Novem-
ber, Winter from January to March, and Spring from April to June). For
example, a student that started in 2006 (we assume all students start in
fall) has been at the university for four quarters in September 2007.

The following result regularly makes it into the top ten lists of the most
beautiful results in mathematics.

3.4. MORE ON RELATIONS 85

Theorem 3.4.9 (Cantor). There is no onto function from a set to its powerset.

Proof. Let the set in question be X and suppose there is an onto function
f : X → P(X). Define a set A as follows:

A = {x ∈ X : x 6∈ f(x)}.

Then A is a subset of X , i.e. A ⊆ X . Furthermore, the way we defined it,
A 6= f(x) for all x. Why? Well, suppose A = f(x) for some x. But if x ∈ f(x)
if and only if x 6∈ A, so the two sets differ on x. In other words, f is not onto.

The proof is known as Cantor’s diagonal argument: you can visualize the
proof as an infinite matrix. The rows of the matrix are labeled with elements
of X , the columns with elements of P(X) listed as f(x) for x ∈ X . The proof
constructs a new set A by letting x be in A if and only if x 6∈ f(x), so the set
is constructed using the diagonal of the matrix.

There are strong similarities to Russell’s paradox.

Corollary 3.4.10. There is no one-to-one function from P(X) to X.

Proof. Suppose there was a one-to-one function g from P(X) to X , that is if
g(A) = g(B), then A = B for all A,B ⊆ X . Define a new function f : X →
P(X) as follows: on input x, if there is a set A such that g(A) = x, then let
f(x) = A. Otherwise, let f(x) = ∅. Note that f is indeed a function from
X to P(X). We claim that this function is onto. The reason is that for any
set A ⊆ X , there is an x such that f(x) = A, namely g(A): f(g(A)) = x by
definition.

A very simple and short proof. What earned it its reputation? Maybe two
things: the diagonalisation method (while having been around before Cantor)
found its purest form and a powerful application. To understand the application
we first need to step back a little.

Suppose there is a bijection f between two sets A and B. In a sense, A
and B are the same set then, just giving different names to objects: x ∈ A is
called f(x) ∈ B. The existence of a bijection between two sets establishes an
equivalence relation between sets.

Exercise 3.4.11. Verify that the relation R(A,B) which is true of there is a
bijection from A to B is an equivalence relation.

What are the equivalence classes of this relation? Think small: what kind
of set can you put into a bijection with one of your fingers? With five of your
fingers? It looks as if the equivalence classes of the relation R are cardinalities

of sets, that is, the sizes of a set. Indeed, this is how Cantor defined the notion
of cardinality. We use |A| for the cardinality of a set. Then we define

|A| = |B|

86 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

if and only if there is a bijection from A to B. How do we define |A| ≤ |B|? As
you would expect: |A| ≤ |B| if and only if there is a one-to-one function from
A to B. That means A can be embedded in B without losing any information
about A because any two elements of A map to different elements of B. In a
sense A, as f(A) has become part of B. That means that B is at least as large
as A.

Theorem 3.4.12 (Cantor, Schroeder, Bernstein). If |A| ≤ |B| and |B| ≤ |A|
then |A| = |B|.

As you can see from the list of names this is not a trivial theorem (do not
confuse = and ≤ with the symbols we use to compare natural numbers or real
numbers, we defined the meaning of these symbols anew, so we have to prove
something that would be obvious in a different context).

Now what Cantor’s theorem shows is that |A| < |P(A)| because it states
that |P(A)| 6≤ |A| because there is no one-to-one function from P(A) to A.

This leads to another paradox set theory is responsible for: is there a largest
set? It seems the answer would have to be yes, namely the set containing
everything. This set is sometimes known as V . What about P(V). If V really
contains everything, it must contain all the elements of P(V), that is P(V) ⊆ V .
But then |P(V)| ≤ |V |, contradicting Cantor’s theorem.

We conclude this section with a thought experiment known as Hilbert’s
Hotel. Hilbert’s hotel has rooms numbered 1, 2, 3, and so on without end. (You
might ask where there might be room for such a hotel; making appropriate
assumptions about space, you can fit it pretty much anywhere you want.) A
new guest has arrived, but all the rooms are taken. Where can we put the new
guest? The solution is easy: every guest moves down one room (from n to n+1),
freeing up the first room.

Exercise 3.4.13. What would you do with a group of k guests?

Even if there was an infinite number of guests, g1, g2, g3, and so on, we could
make room for them: move the current guest in room n to room 2n, and move
g1, g2, g3 . . . into rooms 1, 3, 5,

If we rephrase these observations in terms of cardinality, we see that

• |N| = |N − {1}|,

• |N| = |N − {1, 2, . . . , k}|,

• |N| = |2N| = |2N+1|, where 2N := {2n : n ∈ N} is the set of even numbers
and 2N + 1 := {2n+ 1 : n ∈ N} is the set of odd numbers.

These results might be counterintuitive, in particular the last one. Cardi-
nalities of infinite sets behave differently from finite sets, in particular the old
dictum that the part is smaller than the whole is no longer true. But maybe
that should not surprise us.

3.5. EXERCISES 87

3.5 Exercises

1. Explain what went wrong in the following conversation in a bookstore:

“Do you have any books by Bulgakov?”
“Yes, we do, check in fiction under B”
“I can’t seem to find his Moliére novel.”
“Oh, we don’t carry that one.”
“But didn’t you say you had any book by Bulgakov?”

2. In §281 of his Parerga and Paralipomena, Schopenhauer writes

Schon Rousseau hat in der Vorrede zur “Neuen Heloise” gesagt:
“Jeder ehrliche Mann setzt seinen Namen unter das, was er
schreibt”, und allgemein bejahende Stze lassen sich per con-
trapositionem umkehren.

In, free, translation:

Rousseau already noted in the preface to his The New Heloise:
“Ever honest person puts his name under what he writes.”, and
universal sentences can be reversed by contraposition.

(i) Express Rousseau’s statement formally, using H(x) =“x is honest”
S(x) =“x puts his name under what he writes”.

(ii) Explain what Schopenhauer was implying by his jibe about reversing
universal sentences by contraposition.

(iii) Capture Rousseau’s statement even more precisely, usingR(x, y) =“x
writes y”. H(x) =“x is honest” and S(x, y) =“x puts his name under
y.

3. Talking about Nietzsche, in 1913, Mencken writes:

No reader of current literature [...] can have failed to notice the
increasing pressure of his ideas.

(i) Express Mencken’s statement formally, using R(x) =“x is a reader of
current literature” and F (x) =“x has noticed the increasing pressure
of his ideas”.

(ii) If you transcribed Mencken’s sentence accurately in (i), you used a
double negation. Can you express what he was saying positively,
without using any negation?

4. In calculus we write limx→∞ f(x) = c to say that f(x) tends towards c as
x goes to infinity, or, in other words, |f(x)−c| becomes arbitrarily small as
x grows larger. More precisely, we require that we can find an x′ for every
ε > 0 such that |f(x)−c| < ε for all x ≥ x′. Which of the following formal
versions expresses this correctly? Argue that your answer is correct.

88 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

(a) (∃x′)(∀ε > 0)(∀x ≥ x′)[|f(x) − c| < ε],

(b) (∀ε > 0)(∃x′)(∀x ≥ x′)[|f(x) − c| < ε],

(c) (∀ε > 0)(∀x′)(∀x ≥ x′)[|f(x) − c| < ε],

(d) (∃ε > 0)(∃x′)(∀x ≥ x′)[|f(x) − c| < ε],

(e) (∃x′)(∃ε > 0)(∀x ≥ x′)[|f(x) − c| < ε],

Note how this allows us to eliminate infinity from calculus.

5. Fermat’s last theorem says that xn + yn = zn has no solutions x, y, z ∈ N

for any n > 2 other than the trivial ones (in which one of x, y or z is zero).
State this result formally using quantifiers.

6. We saw how to express a condition of the type A ⊆ B in a database by
using NOT EXISTS B EXCEPT A. In this exercise we will see another way
of achieving the same result that does not use double negation.

(i) Argue that |A ∩B| = |A| if and only if A ⊆ B.

Use the observation from (i) to write queries for the following problems.

(ii) List courses which only computer science students ever enrolled in.

(iii) List courses that only graduate students have enrolled in.

(iv) List all courses that have been taught every year (that courses have
been taught).

176 CHAPTER 3. DATABASES AND FIRST ORDER LOGIC

Chapter 14

Hints

14.1 Chapter 1

Exercise 1.1.3 All tables have 8 rows, the second table has two columns, the
other two tables have one column.

Exercise 1.1.4 Here are the outputs you should see:

SSN

null

123123123

111111111

321321321

FirstName

Deepa
Prakash

LASTNAME FIRSTNAME SID

Patel Deepa 14662
Johnson Peter 32105
Patel Prakash 75234
Snowdon Jennifer 93321

LASTNAME FIRSTNAME SID

Brennigan Marcus 90421
Patel Deepa 14662
Starck Jason 19992
Winter Abigail 11035
Patel Prakash 75234

177

178 CHAPTER 14. HINTS

Exercise 1.2.1 The number of records returned by the queries are: 1. 2
records, 2. 2 records, 3. 2 records, 4. 2 records, 5. 1 record, 6. 3
records.

Exercise 1.2.3 The number of records returned by the queries are: 1. 6
records, 2. 2 records, 3. 1 record, 4. 4 records, 5. 6 records, 6. 1
record, 7. 1 record, 8. 0 records.

Exercise 1.3.2 1. They differ. 2. They differ.

Exercise 1.4.5 Use SELECT DISTINCT for all of these queries, since you want
a list of students, duplicates would be meaningless. With duplicates re-
moved, the number of records in the output to the queries is as follows:
1. 3 records, 2. 2 records., 3. 2 records, 4. not possible yet, 5. 1 record.

Exercise 1.5.1 1. Even number means 0 or 2 in this case, that is, either all
three propositional variables have to be false, or exactly one of them is
false.

Exercise 1.5.4 If you follow the procedure, your solution will be a conjunction
of three clauses (which are disjunctions of literals). If you use transforma-
tions or simplify your solution, you can obtain a formula in DNF which is
the conjunction of two clauses, each of which contains two variables.

Exercise 1.5.9 1. Consider p ↑ p.
Exercise 1.5.11 Convert the formulas to DNF, and then use the results from

the previous exercise.

Exercise 2.2.4 The main table for the second query is StudentGroup, not
Student. Concentrate on getting the list of IDs. (This will be a nested
query.) With the outer query for presentation, the solution will be a
doubly nested SQL query.

Exercise 2.6.1 For the first question find the student groups that do have
members first. For the fifth question (tricky), do not use EXCEPT, but
rephrase the query using propositional logic instead of set operations.

Exercise 2.6.3 For the first question, concentrate on a particular student:
what courses is the student enrolled in (set A), and what are the CSC
courses (set B)? The requirement translates to A ⊆ B.

Exercise 3.1.3 Here is the definition of sibling from Merriam-Webster: “one
of two or more individuals having one common parent”.

Exercise 3.1.14 These properties are directly due to the corresponding prop-
erties of set membership.

Exercise 3.1.22 If x is brother to y, what is y to x? Moreover, don’t forget
that we know something about x.

Exercise 3.3.7 Division does not help at all. Multiplication does.

14.2. CHAPTER 10 179

14.2 Chapter 10

Exercise 10.0.13 Computing the last digit is the same as calculating the num-
ber modulo 10.

180 CHAPTER 14. HINTS

Chapter 15

Solutions To Selected

Exercises

15.1 Chapter 1

Exercise 1.1.4 The query for the first question is

SELECT SSN

FROM Student

WHERE Career = ’GRD’;

The query for the third question is

SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’COMP-SCI’;

Exercise 1.2.1 The query for the first question is

SELECT LastName, FirstName, SID

FROM Student

WHERE Career = ’GRD’ AND Program = ’COMP-SCI’;

The query for the fourth question is

SELECT LastName, FirstName, SID

FROM Student

WHERE Program = ’COMP-SCI’ AND NOT City = ’Chicago’;

Exercise 1.2.3 The query for the second question is

181

182 CHAPTER 15. SOLUTIONS TO SELECTED EXERCISES

SELECT LastName, FirstName, SID

FROM Student

WHERE Started = 2001 OR Started = 2002;

The query for the sixth question is

SELECT LastName, FirstName, SID

FROM Student

WHERE Career = ’GRD’ AND SSN is null;

Exercise 1.3.2 1. They differ on p = ⊤ and q = ⊤.

Exercise 1.3.4 The equivalence of double-negation with assertion is proved by
the following truth-table:

ϕ ϕ ϕ ϕ↔ ϕ
⊥ ⊤ ⊥ ⊤
⊤ ⊥ ⊤ ⊤

The idempotence of ∧ is shown by the following truth-table:

ϕ ϕ ∧ ϕ ϕ↔ ϕ ∧ ϕ
⊥ ⊥ ⊤
⊤ ⊤ ⊤

Exercise 1.4.1 You’d need to add the following row to the Enrolled table.

StudentID CourseID Quarter Year

32105 9219 Spring 2003

Exercise 1.4.5 Solution to first query.

SELECT DISTINCT LastName, FirstName, SID

FROM Student, Studentgroup

WHERE SID = PresidentID;

Exercise 1.4.6 First check constraint: the following line has to be added to
the Course table.

CHECK (NOT CourseNr = ’000’)

Exercise 1.5.1 1. (p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ q ∧ r).

Exercise 1.5.4 The simplified solution is (p ∧ q) ∨ (p ∧ r).

15.2. CHAPTER 2 183

15.2 Chapter 2

Exercise 2.2.1 The following query lists presidents of student groups founded
before 2000.

SELECT LastName, FirstName, SID

FROM Student

WHERE SID IN

(SELECT PresidentID

FROM StudentGroup

WHERE Founded < 2000);

Exercise 2.2.2 The first query lists all students who are not members of HerCTI,
the second all students who are members of some group other than HerCTI.
There are two differences: the first query will list students who are not
members of any student group (which are not listed by the second query),
and the second query will list students that are members of HerCTI, as
long as they are also member of some other group.

Exercise 2.2.4 Solution to the first query:

SELECT Name

FROM StudentGroup

WHERE EXISTS

(SELECT StudentID

FROM MemberOf

WHERE Name = GroupName);

Exercise 2.2.6 Solution to the second query:

SELECT LastName, FirstName, SID

FROM Student

WHERE SID IN

(SELECT PresidentID

FROM studentgroup

WHERE presidentID NOT IN

(SELECT StudentID

FROM MEMBEROF

WHERE groupname = name));

Exercise 2.3.2 The solution to the first question is {Lisa}.

Exercise 2.3.6 (1): A ∩A = A. (6): A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

Exercise 2.5.3 (2): A ∩A = ∅.

Exercise 2.6.1 The solution to the first query can be written as

184 CHAPTER 15. SOLUTIONS TO SELECTED EXERCISES

(SELECT Name

FROM StudentGroup)

EXCEPT

(SELECT GroupName

FROM MemberOf);

Exercise 2.6.3 The solution to the first query is as follows:

SELECT LastName, FirstName, SID

FROM Student

WHERE NOT EXISTS (

SELECT CID

FROM Enrolled

WHERE StudentID = SID

EXCEPT

SELECT CID

FROM Course

WHERE Department = ’CSC’);

Exercise 2.8.3 (1): 25 = 32.

15.3 Chapter 3

Exercise 3.1.3 (1) (see definition in Hints): nobody is their own sibling, so
reflexivity fails very strongly (the relation is anti-reflexive: R(x, x) fails
for all x); the relation is symmetric, since if x and y have at least one
common parent, so do y and x. On the other hand, R is not transitive,
since x and y could have a common parent, and y and z could have a
common parent, without x and z having a common parent.

Exercise 3.1.10 The following query lists the first and last year for each pro-
gram that a student started in it.

SELECT Program, min(started), max(started)

FROM Student

GROUP BY Program;

Exercise 3.1.13 Student groups that have no members:

SELECT Name, count(*)

FROM StudentGroup, MemberOf

WHERE GroupName = Name

GROUP BY Name

HAVING count(*) = 0;

Exercise 3.2.8 The transitive closure of “is child of” is “is predecessor of”.

15.4. CHAPTER 8 185

Exercise 3.3.1 (1) expresses that for every x, if x has a social security number,
then x is American. In plain English: everybody who has a social security
number is American, that is, only Americans have social security numbers.

Exercise 3.3.5 (1) R is anti-reflexive:

(∀x)[R(x, x)].

(4) R is not reflexive:
(∀x)[R(x, x)].

Exercise 3.3.8 Two possible ways to define even: x is even if and only if
(∃y)[y = x+ x], or simply 2|x.

Exercise 3.3.10 (1) says that there is an x that is less than or equal to all y
(the same x for all y!). In other words: there is a smallest element. This
is true for the natural numbers, x = 1, but it is not true for either integers
or real numbers.

15.4 Chapter 8

Exercise 8.1.9 Here’s the queue reached during the run of breadth-first search
together with the distance calculated for the elements popped.

{s} pop s, add a distance[s] = 0
{a} pop a, add b and h not s distance[a] = 1
{b, h} pop b, add c and d not a distance[b] = 2
{h, c, d} pop h, add g and i not a distance[h] = 2
{c, d, g, i} pop c, do not add b distance[c] = 3
{d, g, i} pop d, add e and f not b distance[d] = 3
{g, i, e, f} pop g,do not add h distance[g] = 3
{i, e, f} pop i, add j and k not h distance[i] = 3
{e, f, j, k} pop e, do not add d distance[e] = 4
{f, j, k} pop f , do not add d distance[f] = 4
{j, k} pop j, do not add i distance[j] = 4
{k} pop k, add l and n not i distance[k] = 4
{l, n} pop l, do not add k distance[l] = 5
{n} pop n, add m and t not k distance[n] = 5
{m, t} pop m, do not add n distance[m] = 6
{t} pop t, found exit, return true distance[t] = 6

15.5 Chapter 10

Exercise 10.0.8 For the first problem, m = 3 or m = 6 would work.

Exercise 10.0.9 4 6≡ 5 mod 2, since 2 does not divide 4−5 = −1, and similarly,
4 6≡ 5 mod 3, since 3 also does not divide 4− 5 = −1. Also, 4 6≡ 9088 mod
5, since 4 − 9088 = −9084 is not a multiple of 5.

186 CHAPTER 15. SOLUTIONS TO SELECTED EXERCISES

Exercise 10.0.12 31 ∗ 68 ∗ 902 − 777 ∗ 973 ≡ 1 ∗ 2 ∗ 2 − 0 ∗ 1 ≡ 4 ≡ 1 mod 3

Exercise 10.0.14 A number x is divisible by 10 if and only if there is an integer
c such that x = 10c. But if x = 10c, then x mod 10 = 0 and the last digit
of x is 0. On the other hand if the last digit of x is 0, then x mod 10 = 0,
that is 10|x and there is a c such that x = 10c.

Appendix A

Some Words on H2

If you want to run the queries using set intersection and difference, you will
need a relational database system supporting INTERSECT and EXCEPT. A nice,
easy-to-install package is the H2 database engine which you can download at
http://www.h2database.com.

After installation run the H2 console (not in command line mode); this
should bring up a browser window with the following login screen.

Figure A.1: H2 login.

187

188 APPENDIX A. SOME WORDS ON H2

Click on the “connect” button, and you should see a window as in Figure A.2:

Figure A.2: H2 console.

You can use the window on the right to input SQL (below you will see the
results. To create the university database, copy/paste the file “university.sql”
into the window, and hit the “run” button. As a result you should see something
like the screen in Figure A.3. You can now try running a simple query as in the

Figure A.3: H2 console with database.

screen shot in Figure A.4. To log out, hit the red symbol on the top left.

189

Figure A.4: H2 console with results of query.

190 APPENDIX A. SOME WORDS ON H2

Appendix B

The University Database

Student

LastName FirstName SID SSN Career Program City Started

Brennigan Marcus 90421 987654321 UGRD COMP-GPH Evanston 2001

Patel Deepa 14662 null GRD COMP-SCI Evanston 2003

Snowdon Jonathan 08871 123123123 GRD INFO-SYS Springfield 2005

Starck Jason 19992 789789789 UGRD INFO-SYS Springfield 2003

Johnson Peter 32105 123456789 UGRD COMP-SCI Chicago 2004

Winters Abigail 11035 111111111 GRD PHD Chicago 2003

Patel Prakash 75234 null UGRD COMP-SCI Chicago 2001

Snowdon Jennifer 93321 321321321 GRD COMP-SCI Springfield 2004

Enrolled

StudentID CourseID Quarter Year

11035 1020 Fall 2005

11035 1092 Fall 2005

75234 3201 Winter 2006

08871 1092 Fall 2005

90421 8772 Spring 2006

90421 2987 Spring 2006

Course

CID CourseName Department CourseNr

1020 Theory of Computation CSC 489

1092 Cryptography CSC 440

3201 Data Analysis IT 223

9219 Desktop Databases IT 240

3111 Theory of Computation CSC 389

8772 Survey of Computer Graphics GPH 425

2987 Topics in Digital Cinema DC 270

MemberOf

StudentID GroupName Joined

75234 DeFrag 2005

11035 HerCTI 2004

93321 HerCTI 2005

75234 Computer Science Society 2002

StudentGroup

Name PresidentID Founded

Computer Science Society 75234 1999

Robotics Society null 1998

HerCTI 93321 2003

DeFrag 90421 2004

191

192 APPENDIX B. THE UNIVERSITY DATABASE

Student
LastName FirstName SID SSN Career Program City Started

Enrolled
StudentID CourseID Quarter Year

Course
CID CourseName Department CourseNr

MemberOf
StudentID GroupName Joined

StudentGroup
Name PresidentID Founded

Figure B.1: Relationships in the University database

Appendix C

Fundamentals of SQL

The simplest SQL queries consist of a SELECT and a FROM clause.

SELECT LastName, FirstName

FROM Student;

In the FROM clause you specify which table your rows come from, in the
SELECT clause you select the attributes of the rows that will get listed. Using
SELECT DISTINCT in place of SELECT removes duplicate rows in the output.

SELECT DISTINCT LastName

FROM Student;

There is a third clause, the WHERE clause which allows you to specify re-
quirements that a row needs to fulfill to get listed.

SELECT LastName, FirstName

FROM Student

WHERE Career = ’UGRD’;

The conditions in the WHERE can be atomic, including comparisons such as
Career = ’UGRD’, year <= 1969, LastName < ’P’, or they can be compound

that is, Boolean combinations of atomic queries, such as Career = ’UGRD’ AND

LastName < ’P’. There are several special conditions built into SQL, including
is null and EXISTS (which leads to a nested query).

SELECT LastName, FirstName

FROM Student

WHERE not SSN is null;

If you choose multiple tables in the FROM clause, SQL will generate all possible
combinations of rows from each table. For example, the query

SELECT LastName, FirstName, Name

FROM Student, StudentGroup;

193

194 APPENDIX C. FUNDAMENTALS OF SQL

generates 8∗4 rows of output, most of them not corresponding to meaningful
information. Use the WHERE clause, connecting foreign key and primary key of
the tables to restrict the output to meaningful rows only:

SELECT LastName, FirstName, Name

FROM Student, StudentGroup

WHERE PresidentID = SID;

Output of a SQL query can be grouped by any attribute; this means that
rows for which that attribute has the same value get collapsed into a single row.
For example,

SELECT City

FROM Student

GROUP BY City

lists all cities that students are from. In a grouped query you can only select
attributes by which you have grouped, or aggregate functions of other attributes.

SELECT City, min(Started)

FROM Student

GROUP BY City

lists all cities, and, for each city, the earliest year that a student from that city
begin their studies.

Conditions that need to be applied after grouping and aggregation need to
be included in the HAVING clause rather than the WHERE clause. For example,

SELECT City

FROM Student

GROUP BY City

HAVING count(*) >= 3

lists all cities from which there are at least three students.

Finally, the output of a query can be ordered by attributes using the ORDER

BY clause. By default the ordering is increasing in the appropriate ordering
(numerical or lexicographic).

Let us review these features in a single query containing all clauses:

SELECT City, count(*)

FROM Student

WHERE started < 2005

GROUP BY City

HAVING count(*) >= 2

ORDER BY City;

195

The database management system retrieves all rows in the table Student,
FROM, restricting the output to those rows for which started is less than 2005,
WHERE. It then aggregates those output rows into groups by the attribute City,
GROUP BY, and only retains those groups in which at least two rows have been
aggregated, HAVING. It outputs the groups as names of cities and counts of rows,
SELECT, ordered lexicographically by City, ORDER BY.

196 APPENDIX C. FUNDAMENTALS OF SQL

Appendix D

Propositional Logic

We use Roman letters p, q, r, s, etc. to denote variables representing propositions
and Greek letters ϕ, ψ, etc. to denote formulas. A formula is either a proposition
or one of the following: ϕ (not ϕ, the negation of ϕ), ϕ ∨ ψ (ϕ or ψ, the
disjunction of ϕ and ψ), ϕ ∧ ψ (ϕ and ψ, the conjunction of ϕ and ψ), ϕ → ψ
(ϕ implies ψ), or ϕ ↔ ψ (ϕ is equivalent to ψ), where ϕ and ψ are formulas,
and we use parentheses as needed. The meaning of the logical operations is
explained through truth-tables.

ϕ ϕ
⊥ ⊤
⊤ ⊥

ϕ ψ ϕ ∧ ψ
⊥ ⊥ ⊥
⊥ ⊤ ⊥
⊤ ⊥ ⊥
⊤ ⊤ ⊤

ϕ ψ ϕ ∨ ψ
⊥ ⊥ ⊥
⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊤

ϕ ψ ϕ→ ψ
⊥ ⊥ ⊤
⊥ ⊤ ⊤
⊤ ⊥ ⊥
⊤ ⊤ ⊤

ϕ ψ ϕ↔ ψ
⊥ ⊥ ⊤
⊥ ⊤ ⊥
⊤ ⊥ ⊥
⊤ ⊤ ⊤

The following table lists the rules of precedence for the most common logical
operators we have seen.

strongest ·
∧
∨
→

weakest ↔

We list some fundamental rules of logic, some of them are well-known enough
to have names.

197

198 APPENDIX D. PROPOSITIONAL LOGIC

ϕ↔ ϕ (Double-Negation)

ϕ ∧ ϕ↔ ⊥ (Law of Contradiction)
ϕ ∨ ϕ↔ ⊤ (Law of Exluded Middle)

ϕ ∨ ⊥ ↔ ϕ
ϕ ∨ ⊤ ↔ ⊤
ϕ ∧ ⊥ ↔ ⊥
ϕ ∧ ⊤ ↔ ϕ

ϕ ∧ ϕ↔ ϕ (Idempotence of ∧)
ϕ ∨ ϕ↔ ϕ (Idempotence of ∨)

ϕ ∧ (ψ ∧ θ) ↔ (ϕ ∧ ψ) ∧ θ (Associativity of ∧)
ϕ ∨ (ψ ∨ θ) ↔ (ϕ ∨ ψ) ∨ θ (Associativity of ∨)

ϕ ∧ ψ ↔ ψ ∧ ϕ (Commutativity of ∧)
ϕ ∨ ψ ↔ ψ ∨ ϕ (Commutativity of ∨)

ϕ ∧ ψ ↔ ϕ ∨ ψ (DeMorgan)

ϕ ∨ ψ ↔ ϕ ∧ ψ (DeMorgan)

ϕ ∧ (ψ ∨ θ) ↔ (ϕ ∧ ψ) ∨ (ϕ ∧ θ) (Distributivity of ∧ over ∨)
ϕ ∨ (ψ ∧ θ) ↔ (ϕ ∨ ψ) ∧ (ϕ ∨ θ) (Distributivity of ∨ over ∧)

Here are some of the laws governing implication:

ϕ→ ϕ
⊥ → ϕ (ex falso quodlibet1)
(⊤ → ϕ) → ϕ
(ϕ→ ⊥) → ϕ (Proof by contradiction)
(ϕ ∧ (ϕ→ ψ)) → ψ (Modus Ponens)
((ϕ→ ψ) ∧ (ψ → θ)) → (ϕ→ θ) (Modus Barbara)
(ϕ ∧ ψ) → ϕ (∧-weakening)
ϕ→ (ϕ ∨ ψ) (∨ strengthening)

(ϕ→ ψ) → (ψ → ϕ) (contrapositive)
((ϕ→ ψ) → ϕ) → ϕ (Peirce’s law)

Appendix E

Problem Solving

In his Grundriß der Logik, Maass gives some sound advice on problem solving
in a section on practical logic. It is well worth pondering.

Figure E.1: Extract from Maass’ Grundriß der Logik

199

200 APPENDIX E. PROBLEM SOLVING

The German text translates as

When given a question, one should first of all 1) determine its mean-
ing as clearly and accurately as possible; then one may 2) replace
terms with other terms of the same meaning if this simplifies finding
the solution: 3) often, the question can be split into several ques-
tions, which can, similarly, simplify finding the answer: 4) it is often
helpful to consider a special, more particular, version of the ques-
tion: 5) sometimes the question can be reduced to another question
which is easier to answer: 6) occasionally one obtains a solution by
turning the question into a statement, and assuming its negation.
On studying the negation one will often discover it is false, which
obtains the answer to the original question.

Let us take each piece of advice one by one.

E.1 Determine the meaning of a question

This seems blatantly obvious, but often is anything but. Questions can be am-
biguous, ill-phrased, even inconsistent. This might be due to the person asking
the question, in which case you need to clarify the question. However, there
are more fundamental problems that cloud the meaning of sentences. Natural
languages are inherently ambiguous. Take, for example, the last sentence: did it
say that all natural languages are inherently ambiguous, or just some of them;
or most of them? In conversation the sentence could be made to have any of
these meanings given the right context. Mathematics tries to avoid the pitfalls
of natural languages by replacing it with formal languages, such as set theory
and logic. However, this introduces new problems, as we will see: some techni-
cal terms, such as “and”, “or” and “if” sound like English words we know, but
their assigned meaning is slightly different from the wide variety of meanings
these words can take on in an English sentence. The other problem is that we
cannot write everything using formal language only. While this would increase
precision, it would decrease readability.

So, we take Maass’ first piece of advice to mean that a question should be
read carefully, that all parts of it should be clearly understood, and that its
meaning should be clear. The danger is not so much that you might not come
up with an answer to the question, the danger is that your answer might be
wrong, and you won’t be able to tell, or that your answer is right, but you don’t
understand why. While luck is an ingredient of the problem solving process,
you need to be able to evaluate and test your solutions.

E.2 Replace terms with equivalent terms

In a first step, replace a term by its definition. If you are asked to show that
11 is prime, you need to replace the word “prime” with its definition; then you

E.3. DIVIDE ET IMPERA 201

check that 11 fulfills that definition, that is, it has no divisors other than 1 and
11 and it is larger than 1.

Maass’ advice is quite explicitly about terms and their definitions, but there
is a broader way of viewing it: As you begin to understand a concept better and
better you will accumulate operational knowledge about the concept; that is, you
will know how to use the concept. For example, initially, when checking the pri-
mality of 11, you might have tried all possible divisors 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
to find that only 1 and 11 are divisors. After doing some examples, you quickly
find out that you only have to check divisors up to 11/2, that is 1, 2, 3, 4, 5.
Indeed, it is enough to check up to

√
11, that is 1, 2, 3. If any number x at least

4 >
√

11 was a divisor of 11, then 11/x <
√

11 would also be a divisor in the
range 1, . . . ,

√
x that we check. As you see, we have already found two new ways

to define primality, and there are many more. The application of the concept
will determine which definition is the most useful; e.g. take the example of prime
numbers again; if we were to write a program that checks whether a number
is prime, we’d prefer the last definition, since it only requires us to check up
to

√
x. However, in a mathematical proof, the original definition is much more

useful.

E.3 Divide et impera

One of the core techniques in problem solving is to break the problem into
smaller pieces (“divide”: divide), solve those pieces separately (sometimes by
breaking them into even smaller pieces), and then combine the solutions into a
solution of the original problem (“impera”: rule). The quote is often used in
describing Caesar’s strategy for conquering Gaul: piece by piece until he had
conquered all of Gaul.1

This maxim has application at many levels: imagine, for example, that you
have to show the equivalence of two statements p and q. We know that p↔ q is
the same as p→ q and q → p so we can show each of the implications (the smaller
problems) and conclude that p and q are equivalent. Or, to take another example
from database queries: we separate the presentation aspects from the logical
aspects. And at the logical level we distinguish between conditions that are
immediate (through foreign key constraints) and those conditions that capture
the logical core of the problem. Or do you remember Rubik’s Cube? Solutions
to Rubik’s Cube typically work by solving the first, second and third layer of
the cube separately.

E.4 Reduction

Reducing one problem to another means rephrasing the problem so it looks like
a problem you can solve. This applies to the whole process of modeling: taking
a real-life problem, and abstracting it so it can be phrased in the language of

1Except for one small village, of course.

202 APPENDIX E. PROBLEM SOLVING

mathematics (as a linear or a quadratic equation, for example; or looking at the
14/15 puzzle as a problem on permutations), as well as to within mathematics
and computer science itself (reducing the permutation problem in the 14/15
puzzle to a question of parity). The more you know about mathematics and
computer science, and the better the tools you know, the more there is you can
reduce to.

E.5 Negation

This is a particularly useful piece of advice when trying to show that something
of the type “for all x: P (x)” is true. Proving a statement P (x) for arbitrary
x can be difficult. If, on the other hand, we assume the statement false, that
is, we assume that there is an x such that P (x) is false, then we have an x we
can work with, and try to show that such an x does not exist. In SQL, this
piece of advice often comes in handy when using NOT EXISTS to find solutions
to queries that requires a property to be true for a whole set of objects (e.g.
“find classes that only COMP-SCI students have enrolled in”, in other words:
every student in such a class has to be a COMP-SCI student; there is no ALL

operator in SQL2, so we have to use a double negation to capture ALL).

E.6 Special cases, particular versions

There are two ways to read this piece of advice profitably: if your problem is
parameterized, that is, has a lot of free variables, fix them. Preferably to some
small or typical values. Working on these specialized versions will give you a
feel for the more general problem.

Example E.6.1. Let us write a|b is the integer a divides the integer b. For
example 3|6 and 7|21, but 8|12 is false. Suppose we were asked to determine
whether it is always true that if a|bc, then either a|b or a|c. After trying some
small examples, a manifests itself as the interesting parameter, so let us try
some small values, such as a = 1, 2, 3. Since a = 1 divides every number, this
case won’t lead to a counterexample. Also, if 2|bc, this means that bc is even,
but then either b or c has to be even, that is 2|b or 2|c. In other words, the
statement is true for a = 2, and, as it turns out, for a = 3 as well.

At this point we need to look a bit more closely: our question really amounts
to asking whether a number, a, can be split up across two factors. This, of
course, can’t happen with a = 2, 3 since both of these numbers are prime.
But what happens if we choose a to be composite, e.g. a = 4? Immediately a
counterexample presents itself: a = 4 and b = c = 2 shows that the statement
is wrong.

The other way of reading this advice is to simplify the problem by changing
one of the fixed parameters. A typical example would be the modified chess-

2Well, there is, in the standard, but nobody implements it.

E.6. SPECIAL CASES, PARTICULAR VERSIONS 203

board problem at the beginning of the puzzle section. Instead of looking at the
8× 8 board, why not consider a 4× 4 or even a 3 × 3 or a 2× 2 board instead?
Studying these do not give you the answer you are looking for, but they might
very well give you the clue you need to break the problem. (Have you tried a
2 × 2 × 2 Rubik’s Cube? Or a 4 × 4 × 4 one?)

204 APPENDIX E. PROBLEM SOLVING

Appendix F

Set Theory

A set is the collection of its elements. We write x ∈ A or x 6∈ A to denote
that x belongs or does not belong to A. The basic operations on sets are union,
intersection, complement and difference defined as follows:

A ∪B = {e : e ∈ A ∨ e ∈ B}.

A ∩B = {e : e ∈ A ∧ e ∈ B}.
A−B = {e : e ∈ A ∧ e 6∈ B}.

A = {e : e 6∈ A}.
Sometimes, the symmetric difference is useful: A△B = (A −B) ∪ (B −A).

All of these operations can be easily visualized in a Venn diagram.
The notions of union and intersection can also be extended to more than

two sets: we write

⋃

i∈I

Ui = {x : there is an i ∈ I such that x ∈ Ui},

for the union of a collection Ui, i ∈ I of sets, and, similarly,

⋂

i∈I

Ui = {x : x ∈ Ui for all i ∈ I},

for the intersection of a collection Ui, i ∈ I of sets.
A partition of a set U is a collection of sets Ui, i ∈ I which are pairwise

disjoint, that is, Ui ∩Uj = ∅ for all i 6= j, i, j ∈ I and whose union is U , that is,

U =
⋃

i∈I

Ui.

The cardinality or size of a set A is denoted by |A|. For finite sets this is
the number of elements in the set. The empty set is the set not containing any

205

206 APPENDIX F. SET THEORY

A BA ∩ B

A ∪ B = A ∩ B

Figure F.1: Venn diagram for A and B with complements.

elements and is denoted by ∅ or {}. The powerset of a set is the set of all subsets
of that set, defined as follows:

P(A) = {X : X ⊆ A}.

For finite sets |P(A)| = 2|A|.
Many of the logical equivalences we saw in propositional logic translate nat-

urally into set equalities. Including, for example the following:

A = A (Double complementation)

A ∩A = ∅
A ∩ ∅ = ∅
A ∪ ∅ = A

A ∩A = A
A ∪A = A

(A ∪B) ∪ C = A ∪ (B ∪C) (Associativity of ∪)
(A ∩B) ∩ C = A ∩ (B ∩C) (Associativity of ∩)

A ∪B = B ∩A (Commutativity of ∪)
A ∩B = B ∩A (Commutativity of ∩)

A ∩B = A ∪B (DeMorgan)
A ∪B = A ∩B (DeMorgan)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩C) (Distributivity of ∩ over ∪)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪C) (Distributivity of ∪ over ∩)

There are many sets that have common names, in particular in mathematics,

207

and in particular sets of numbers:

• N = {0, 1, 2, 3, . . .}, the set of natural numbers. (Sometimes, 0 is not
included in this set.)

• Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of integers.

• Q = {x/y : x ∈ N ∧ y ∈ N − {0}}, the set of rational numbers.

• R, the set of real numbers.

• C = {a+ bi : a ∈ RN, b ∈ RN}, the set of complex numbers.

208 APPENDIX F. SET THEORY

Appendix G

First-Order Logic

First order logic is based on relations, typically written R, S, T , and so on. De-
pending on the number of arguments we distinguish unary R(x), binary R(x, y),
ternary R(x, y, z) and higher-arity relations R(x, y, z, . . .).

A binary relation R is

• reflexive if R(x, x) for all x.

• anti-reflexive if R(x, x) for all x

• symmetric if R(x, y) → R(y, x) for all x and y.

• anti-symmetric if R(x, y) ∧R(y, x) → x = y.

• transitive if R(x, y) ∧R(y, z) → R(x, z) for all x, y and z.

A binary relation ≡ is an equivalence relation if it is reflexive, symmetric and
transitive. An equivalence class is a set of elements equivalent to some element,
it can be written as [a]≡, where a is any element of the equivalence class.

A binary relation � is an ordering relation if it is reflexive, anti-symmetric
and transitive. Two elements x, y in an ordering are comparable if either x � y
or y � x. If any two elements in an ordering are comparable, the ordering is total

otherwise it is partial. If instead of requiring reflexivity we ask for anti-reflexivity
we obtain a strict ordering. Totality and partiality is defined as above.

First-order logic has two types of quantifiers: ∀, the universal quantifier, and
∃, the existential quantifier. We write

(∃x)[P (x)]

to express that P (x) is true for some value of x. Similarly,

(∀x)[P (x)]

states that P (x) is true for all values of x.

209

210 APPENDIX G. FIRST-ORDER LOGIC

Here are some basic facts about quantifiers:

(∀x)[P (x) ∧Q(x)] ↔ (∀x)[P (x)] ∧ (∀x)[Q(x)],

that is ∀ distributes over ∧. The same is true for the existential quantifier and
∨:

(∃x)[P (x) ∨Q(x)] ↔ (∃x)[P (x)] ∨ (∃x)[Q(x)].

The two quantifiers are closely linked:

(∀x)[P (x)] ↔ (∃x)[P (x)],

which says that a property P is always true if and only if there is no counterex-
ample, that is no x that makes it false. The dual of this is:

(∃x)[P (x)] ↔ (∀x)[P (x)],

which says that there is an x that makes P true if and only if P is not false for
all x. These are equivalents of DeMorgan’s laws for quantifiers.

A binary relation R is called single-valued if

(∀x)(∀y)(∀z)[R(x, y) ∧R(x, z) → y = z].

It is called total if
(∀x)(∃y)[R(x, y)].

A function f : X → Y is a binary relation on f ⊆ X × Y which is total and
single-valued. We call X the domain of f and Y the range.

We also write f(X) = {f(x) : x ∈ X}, the image of f . If f(X) = Y , we call
f onto or surjective. If f(x) = f(y) implies that x = y for all x, y ∈ X , then f is
one-to-one or injective. A function which is both onto and one-to-one is called
bijective or a bijection.

Appendix H

Algorithmic Notation

We use variables and arithmetic as we would in regular mathematics, the only
difference being that we write out multiplication, i.e. we would write x *y and
not xy. Assignment is written as :=. E.g.

input x

y := x*x

return y

asks the user for an input which is stored in variable x, then computes the
square of x, stores it in y and then returns the value of y. We use x % y for the
remainder after dividing x by y.

We add comments by using :

input x // get user input

y := x*x // compute square

return y // return square

We test conditions using the if statement.

input year

if (4 | year) // simplified

return "leap year" // leap year rule

Note that we indent the code that is to be performed in case the condition
succeeds. We can also specify an action in case of the failure of a condition:

input year

if (4 | year) // simplified

return "leap year" // leap year rule

else

return "not leap year"

211

212 APPENDIX H. ALGORITHMIC NOTATION

Again, the indentation of the code determines what code is performed depending
on whether the condition succeeds or fails.

Complex conditions are written using Boolean operations ”and”, ”or” and
”not”.

We can repeatedly perform a piece of code by making it part of a loop.

for i = 1 to n

if R[i].LastName = "Johnson"

return i

return 0 // not found

Here is another example:

input n

sum := 0

for i = 1 to n

sum := sum + i

return sum

What does this program compute?

Sometimes there is a condition controlling whether we want to repeat some
code or not. For that we use the while loop, which performs a piece of code,
as long as a condition is true. For example, we can rewrite linear search

i := 1

while i <= n

if R[i].LastName = "Johnson"

return i

i := i + 1 // go to next record

return 0 // not found

As long as the value of i is within bounds (at most n), the algorithm will test
the last name of the current record; if it doesn’t find the name we are looking
for, we increase i by one and keep looking.

Appendix I

Graph Theory

A graph is a collection of vertices (or node) some of which are connected by edges.
More formally, a graph G is a pair G = (V,E) of vertices V and edges E, where
each edge in E is a set of two vertices. For vertices we typically use letters such
as u, v, s, t, w and for edges e, f, g. If e is the edge from u to v then, formally,
e = {u, v} but we will typically write e = uv for simplicity. The vertices u and
v are the ends of the edge uv, and we say that u and v are incident to the edge
uv. The neighborhood of a vertex u of the graph is

N(u) := {v : uv ∈ E}.

A vertex with an empty neighborhood is called isolated.
A walk is a sequence u1, e1, u2, e2, . . . , en−1, un of vertices and edges that

traverses the graph; i.e. if you start at u1, e1 takes you to u2, etc. In other
words, e1 = u1u2, e2 = u2u3, and so on up to en−1 = un−1un. The first and
last vertices in a walk are called its endpoints.

There are two special types of walks: A path is a trail in which every vertex
occurs at most once, and a cycle is a trail with n ≥ 3 whose first and last vertex
are the same, u1 = un, but there are no other vertex repetitions. (We exclude
the case n = 2 as a cycle, since it simply means we walk back and forth along
the same edge.)

A graph is connected if there is a path between any two vertices of the graph,
that is for any two vertices u and v of the graph there is a path that has u and
v as endpoints. A graph that is not connected is known as disconnected.

H = (U,F) is a subgraph of G = (V,E) if U ⊆ V and F ⊆ E. Two graphs
are isomorphic if they are the same graph up to renaming the vertices. We also
say H = (U,F) is a subgraph of G = (V,E) if H is isomorphic to a subgraph of
G.

A directed graph (or digraph) G = (V,E) consists of a set of vertices V and
a set of edges between vertices, where an edge is a pair of vertices: E ⊆ V × V .
The edge (u, v) differs from the edge (v, u) (unless u = v, but we do not allow

213

214 APPENDIX I. GRAPH THEORY

an edge from a vertex to the same vertex). We will write uv for (u, v) for the
directed edge from u to v. We draw a directed edge uv with an arrow pointing
from u to v; u is sometimes called the child vertex and v the parent vertex, in
particular if we are traversing the edge in the direction of the arrow: we go from
a child to a parent.

A subgraph of a directed graph is defined as in the undirected case except
that we now remember orientation of edges.

A directed path is a path in a directed graph all of whose edges are oriented
the same way along the path. A directed cycle is cycle in a directed graph all
of whose edges are oriented the same way along the cycle. A directed graph
is strongly connected if for every pair (u, v) of vertices there is a directed path
leading from u to v. A directed graph is a dag or acyclic if it does not contain
a directed cycle as a subgraph.

A graph G = (V,E) is bipartite if there are disjoint sets V1 and V2 such that
V = V1 ∪ V2 and all edges in E are between vertices from V1 and V2. (That is,
E ⊆ {uv : u ∈ V1, v ∈ V2}.

A graph is connected if for every pair of vertices there is a path connecting
the two vertices (that is, having the two vertices as endpoints).

A graph is a tree if it is connected and does not contain any cycles.

There are many graphs important enough to deserve names; Pn is the path
on n vertices, that is n− 1 edges, and therefore of length n− 1. Cn is the cycle
on n vertices (and n edges). Kn is the complete graph on n vertices that is, a
graph with n vertices and an edge between all pairs of vertices. Its complement
Kn is the empty graph consisting of n isolated vertices. Km,n is the complete
bipartite graph on sets of m and n vertices with all edges between the two sets
and no edges within the sets.

