
CSC 202 Mathematics for Computer Science

Lecture Notes

Marcus Schaefer

DePaul University1

1 c© Marcus Schaefer, 2006

88

Chapter 4

Sorting and Searching in

Databases

Imagine you are searching for a student with last name “Johnson”. You would
go to the student table of the database and go through the list of students
until you find such a student. How would a computer do this? First of all,
let us assume that we have downloaded the data in the database to be used
in a computer program (this is sometimes called row-processing, as opposed to
set-processing, which is what the database does). The records are stored in an
array of data, named R[1] through R[n] for n records. (For the student table,
n = 8.)

For example, let’s say we have downloaded the student table from our
database; then

R[1] = (Brennigan, Marcus, 90421, 987654321, UGRD, COMP-GPH, Evanston),

(assuming the records remain in the same order as they are in the database;
an assumption that is not valid in general, but won’t harm us). To access a
particular field, take LastName as an example, we write R[1].LastName. If we
wanted to test whether the ith record is a student with last name “Johnson”,
we write

if R[i].LastName = "Johnson"

return i

This is pseudocode for a test statement, known as if in most programming
languages. If the condition: R[i] = "Johnson" is true, then the indented state-
ment return i is performed, that is, the value of i is returned to whoever asked
for it and the program stops; an appropriate action, since we have found “John-
son” and want to return the information in which record. If we want to search
for “Johnson” through all records, we have to repeat the test for all possible
values of i from 1 to n; in our pseudocode language we use the for statement
for that task (most programming languages support for).

89

90 CHAPTER 4. SORTING AND SEARCHING IN DATABASES

for i = 1 to n

if R[i].LastName = "Johnson"

return i

return 0 // not found

This program looks for “Johnson” in all records from R[1] to R[n]. If for
some i we find that R[i].LastName = "Johnson" the program returns i and
stops. Otherwise it will run through all values of i and finish by returning 0,
encoding the information that nobody in the database has last name “Johnson”.

In general, we are not looking for one particular name only or a name at all,
but for some value x in an array A[1..n]. The general search problem asks for
an index i such that A[i] = x or the value 0 if no such index exists. Here is a
pseudocode solution to the search problem:

for i = 1 to n

if A[i] = x

return i

return 0 // not found

This algorithm is known as linear search, since it searches the array linearly,
element by element. If we want to stress the fact that this algorithm is a
procedure that can be used by other programs we can give it a name as follows:

procedure linear_search(A,x)

n := length(A) // n = number of elements in A

for i = 1 to n

if A[i] = x

return i

return 0 // not found

A call to linear search(A, x) searches for x in the array A and will return i is
x equals A[i] and 0 if there is no such i.

And this is the best you can do if you have no more knowledge of the array.
This is not good enough for most applications, not for reasonably large databases
and certainly not for web-applications that sit on top of large databases such as
Amazon or Google. Imagine each access to the array takes 1ms (one millisec-
ond). Then searching for a record in a million records might take as much as
1000s or, roughly, 16 minutes. Most people won’t wait that long.

Check out a comparable situation: you are looking for a name in the Chicago
residential phone book, which has about a million entries. You won’t take 16
minutes to find somebody with last name “Johnson”, even though you can’t
check 1000 records a second. The difference of course is that the entries in the
phone book are sorted by last name (try finding somebody in the phone book
by first name or telephone number) and you can use a technique much better
than linear search; before you read on, think a minute about the procedure you
use to find a name in a phone book.

So what do you do? You open the book somewhere, pick out a name and
compare it to the name your are looking for, say “Johnson”. If the name you

91

found when opening the book was “Molnar” you’d know that you have to keep
looking for “Johnson” in the pages preceding “Molnar” rather than the pages
following it. And that’s it: you repeat this procedure until you have homed in
on the record you are looking for.

Why is this quicker than looking for the entry linearly? Because in each look-
up you are discarding large parts of the phone book that you no longer need to
check. If you arrange things optimally you will always look in the middle of the
part you haven’t checked yet, since then you will be able to discard at least half
of the pages you still need to check in each step. In other words you are halving
the amount of work that needs to be done in each step. Let us reexpress this
mathematically: if there are n entries and you halve the number of entries you
need to consider in each step, you will be done in at most k steps, where k is
the smallest number such that

n(1/2)k ≤ 1,

because once you are down to a single entry you are done. Rewriting this gives
us

n ≤ 2k;

the smallest k solving this equation is k = ⌈log n⌉ (the ceiling operator ⌈·⌉
rounds the number up to the nearest integer, and log n is the logarithm to base
2 of n).

Let us see the algorithm in detail; it is called binary search because it splits
the input in half. We write a binary search procedure binary search(A, x, i, j)
that searches for element x in array A between (and including) positions i and
j.

procedure binary_search(A,x,i,j)

if j < i // no more elements to check

return 0

mid := (i+j)/2 // round down

if x = A[mid]

return mid

if x < A[mid]

return binary_search(A,x,i,mid-1)

if x > A[mid]

return binary_search(A,x,mid+1,j)

To check whether x occurs in A we call binary search(A, x, 1, n) to get
the search started. The algorithm will then check whether we have run out
of elements to check (the right boundary, j, has moved to the left of the left
boundary, i); if so, we return 0, since x was not found. Otherwise it computes
the midpoint into a variable mid, then checks whether the midpoint is x. If not,
it continues its search on the correct side of mid.

Example 4.0.1. Suppose A is the array

A = [3, 7, 9, 11, 14, 15, 20, 31, 44, 47, 49, 51, 78, 90, 91, 94].

92 CHAPTER 4. SORTING AND SEARCHING IN DATABASES

We can present the array more visually as follows:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

| 3 | 7 | 9 | 11| 14| 15| 20| 31| 44| 47| 49| 51| 78| 90| 91| 94|

Here’s a transcript of the calls made to binary search when searching for x = 14
in A:

binary_search(A,14,1,16)

mid = 8, A[8] = 31 > 14

binary_search(A,14,1,7)

mid = 4, A[4] = 11 < 14

binary_search(A,14,5,7)

mid = 6, A[6] = 15 > 14

binary_search(A,14,5,5)

mid = 5, A[5] = 14 = 14 -> return 5

Here’s a transcript of the calls made to binary search when searching for x = 63,
which is not in the array:

binary_search(A,63,1,16)

mid = 8, A[8] = 31 < 63

binary_search(A,63,9,16)

mid = 12, A[12] = 51 < 63

binary_search(A,63,13,16)

mid = 14, A[14] = 90 > 63

binary_search(A,63,13,13)

mid = 13, A[13] = 78 > 63

binary_search(A,63,13,12)

j < i -> return 0

As we argued earlier, we will repeat the binary search call at most ⌈log n⌉
times if A contains n elements. This means that for large values of n (a million
entries, a billion entries), the time it will take to find an element x will be
proportional to ⌈log n⌉ which is the number of binary digits in n. So searching
a database with a million entries using binary search will take time proportional
to log 1000000 which is roughly 20. If the database has a billion entries, it will
take time proportional to 30. Not that much more. If each call takes about
10ms, say, then we can search a billion entries in 300ms, or 0.3s. Still not good
enough for Amazon or Google, but good enough for a desktop database.

For binary search to work on an array, the array needs to be sorted. A quick
look at our database shows that this is not the case by default (databases tend
to store records in the order that they are entered). How can we sort an array?
Actually, this is a task we do perform by hand occasionally, when rearranging
a pile of numbered pages we just dropped on the floor or when ordering a hand
of cards for a game. How do we order a hand of cards? Think about it for

93

a moment; typically we glance over the cards looking for the highest one and
moving it all the way to the left, we then look for the next highest one and so on.
Actually, when sorting a hand of cards we often mix two strategies: selection
and insertion. Selection looks for the next card in the rest of the hand, insertion
picks a card and looks for the right place to insert it. Both strategies lead to
sorting algorithms. We will only see selection sort here. The idea then is: find
the highest card in the remainder of the hand and move it to the next position.

Example 4.0.2. Before beginning the example, let us explain how to order a
deck of cards. Each card has a suit and a rank. There are four suits:

{♣,♠,♥,♦},

read Club, Spade, Heart, and Diamond, and thirteen ranks:

{2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace}.

We will abbreviate the card names, e.g. we write 10♠ for the ten of spades and
A♦ for the ace of diamonds. The cards are ordered by suit: ♣ > ♠ > ♥ > ♦
and then by rank: Ace > King > Queen > Jack > 10 > 9 > 8 > 7 > 6 > 5 >
4 > 3 > 2 (the actual order depends a bit on the game you are playing). So
9♠ > A♦ and A♣ > K♣.

Suppose our hand looks as follows: 9♠, J♥, Q♦, 3♠, 5♣, J♦. The highest
card we hold is the five of clubs, so we move it to the left: 5♣, 9♠, J♥, Q♦, 3♠, J♦.
In the remaining hand the next highest card is the nine of spades, which al-
ready is at the right location. Next is the three of spades, so we move it:
5♣, 9♠, 3♠, J♥, Q♦, J♦. At this point the remaining cards are in the right
order and we are done.

Note that we sorted the cards in descending order. For the remaining exam-
ples we will sort in ascending order.

To implement the selection sort algorithm we need to be able to find the
smallest value in the array. We can do this using the following code:

min_val = A[1]

for j = 2 to n

if A[j] < min_val

min_val = A[j]

Actually, we don’t just need the minimum value but also at which position it
occurred, so we can move it towards the front later. We solve this problem by
adding another variable, min pos, that tracks the position of the minimum.

min_val = A[1]

min_pos = 1

for j = 2 to n

if A[j] < min_val

min_val = A[j]

min_pos = j

94 CHAPTER 4. SORTING AND SEARCHING IN DATABASES

At the end of the loop, min val contains the value of the smallest element
in A and min pos the position of the smallest value. (We should be precise: if
there are duplicate elements, then min val will contain the smallest value and
min pos the first position in the array that that value occurs at). All we need
to do now is swap A[1] with A[min pos] and repeat the whole procedure for
the remainder of the array, that is, A[2 .. n] and so on:

for i = 1 to n-1

min_val = A[i]

min_pos = 1

for j = i + 1 to n

if A[j] < min_val

min_val = A[j]

min_pos = j

x := A[i] // code swapping

A[i] := A[min_pos] // values in A[i]

A[min_pos] := x // and A[min_pos]

The code contains two nested loops, that is, it, roughly, has the following
structure:

for i = 1 to n-1

for j = i + 1 to n

body

The body of the innermost loop is performed most often (when optimizing code,
the innermost loop is the most important one to look at). It is performed, n−1
times for i = 1 plus n−2 times for i = 2 and so on, down to 1 time for i = n−1.
So, overall, it is performed (n − 1) + (n − 2) + . . . + 1 = n(n − 1)/2 times (we
will derive this formula later). As n gets larger, the most influential term here
is n2. We say, selection sort runs in time Θ(n2), which means that ignoring
constant factors and smaller terms, the running time of selection sort shows the
same order of growth as does n2.

For a database with a million elements selection sort would take about 30
years to sort it at a rate of one swap in a millisecond. Even if the machine took
1µs (one microsecond) per swap, it would still take about 11 hours to sort the
database using selection sort. In practice much faster sorts are needed; selection
sort is very good for small arrays though (one reason we use it in real life for
sorting hands of cards).

Exercise 4.0.3. 1. Construct a hand of 6 cards that will require the largest
number of swaps. How many swaps does it require?

2. Construct a hand of 6 cards that will require the smallest number of swaps.
How many swaps does it require?

3. The way we wrote the code for selection sort, we always swap, even if the
minimum element is already in its right position. In practice, one would
modify the code to only perform the swap when necessary:

4.1. EXERCISES 95

for i = 1 to n-1

min_val = A[i]

min_pos = 1

for j = i + 1 to n

if A[j] < min_val

min_val = A[j]

min_pos = j

if i <> min_pos

x := A[i] // code swapping

A[i] := A[min_pos] // values in A[i]

A[min_pos] := x // and A[min_pos]

Using this variant of selection sort, answer the following questions:

• What is the smallest number of swaps you could have in an array
of n elements; illustrate what the initial array looks like assuming it
contains numbers 1, 2, . . . , n.

• What is the largest number of swaps you could have in an array of
n elements; illustrate what the initial array looks like assuming it
contains numbers 1, 2, . . . , n.

4.1 Exercises

1. There are algorithms (mergesort, quicksort, heapsort) that can sort an
array in time proportional to n log n. Assuming that it takes 1ms to
perform a swap and the algorithm makes exactly n log n swaps (logarithm
base 2), how long does it take to sort a database with 1, 000 elements? How
about 1, 000, 000 elements? How about a database with 1, 000, 000, 000
elements? Redo these computations under the assumption that a swap
only takes 1µs.

2. You are given a sorted array that may contain duplicate elements, e.g.
1, 2, 2, 5, 6, 6, 6, 8. Write pseudocode for an algorithm that performs at
most n swaps (where n is the length of the array) and moves all dupli-
cates to the end of the array (in any order). In the example above, your
algorithm could return 1, 2, 5, 6, 8, 6, 2 (1, 2, 5, 6, 8 is in order, followed by
the duplicates in arbitrary order). This algorithm is useful, since one can
now easily resize the array, cutting off the duplicates, yielding 1, 2, 5, 6, 8.
This is exactly what a database needs to do when you request a SELECT

DISTINCT rather than a SELECT ALL.

