
CSC 202 Mathematics for Computer Science

Lecture Notes

Marcus Schaefer

DePaul University1

1 c© Marcus Schaefer, 2006

100

Part II

Games and Puzzles

101

103

Wage du, zu irren und zu träumen! Hoher Sinn liegt oft in kind´schem
Spiel.

Friedrich von Schiller

104

Chapter 7

Abstraction and Structure

We saw in the first part of this course how closely logic and relational databases
interleave. At the same time we also saw that logic can be used for other
purposes as well: that’s the reason we teach logic, rather than just teaching
relational databases. Logic as an abstraction can be applied in many domains.
Logic, however, is only one of the many structures that mathematics has to
offer. In this section we will encounter two other mathematical abstractions
that are central to computer science: graphs and numbers. We will study these
tools in the context of puzzles and games, where they occur naturally.

Here is a simple puzzle: suppose you placed your finger at the X in Fig-
ure 7.1. Can you draw the string away, or will it get caught around your finger?

Figure 7.1: Pull or no pull?

The answer is quite intuitive: draw a line from the X to the region outside
of the curve. If that line intersects the curve an even number of times, the

105

106 CHAPTER 7. ABSTRACTION AND STRUCTURE

X is outside. Otherwise X is inside. (We assume that the line never touches
the curve, but always crosses it.) This result is known as the Jordan Curve
theorem and is quite difficult to prove, although it really states a very intuitive
fact about curves: they separate the plane into an inside and an outside region.
Moreover, it gives us a very easy criterion for checking whether a point is inside
or outside the curve (think computational geometry): it just depends on the
parity, that is, the even- or oddness, of the number of intersections. Parity is
one of the simplest, but at the same time one of the most powerful abstractions:
everything falls into two categories: even or odd.

Let us start with a well-worn puzzle, which, nevertheless beautifully illus-
trates the power of a simple idea. Consider the chess board shown in Figure 7.2
with two opposite corner squares removed.

Figure 7.2: Tiling a chessboard

Can one tile this chessboard with dominoes? A domino tile consists of two
adjacent squares; tiling the board means every square of the board has to be
covered, and the tiles may not stick out or overlap. Is this possible? Following
Maass’ 4th bit of advice, you might want to consider simpler versions of the
problem first: how about a modified n × n board where n = 2, 3, 4, 5. What do
you learn from that?

Do this before you go on reading.

If you tried a couple of small board, you probably realized that none of them
can be tiled with dominoes. Looking more closely at a particular case, say n = 4,
you might have discovered the reason for this: for even n the modification we
make to the chessboard removes two squares of the same color (white squares in
the illustration above). However, a domino tile covers two squares of opposite

107

color. So if some board has a tiling by dominos it must have the same number
of black and white squares.

We can express this by saying that having the same number of black and
white squares is a necessary condition for a board being tileable by dominoes.
It is not enough, however.

Exercise 7.0.1. Construct a board (part of a chessboard) that has the same
number of black and white squares, but cannot be tiled by dominoes.

The necessary condition for tileability by dominoes is not met by any of the
modified chessboard for n even, since they have n2/2 − 1 white and n2/2 + 1
black squares (if the white corner squares were removed).

Exercise 7.0.2. As it turned out, the small examples for n = 3 and n = 5
were not relevant for settling the original question on the 8×8 board. But they
should come in handy now: show that the modified n×n board cannot be tiled
by dominoes for any odd n.

What settled the chessboard problem was thinking in terms of two: two
colors, black and white, structuring the chessboard. Often the structure is not
quite as obvious.

The next puzzle is a famous puzzle which created a furor in the 1880s com-
parable maybe to the Rubik’s cube in the 1980s: The 14-15 puzzle. You have
15 square tiles labeled 1 through 15 within a wooden frame, arranged in a 4× 4
layout in order, with the exception of the 14 and the 15 which are swapped.

| 1 | 2 | 3 | 4 |

| 5 | 6 | 7 | 8 |

| 9 | 10| 11| 12|

| 13| 15| 14| |

You can move the squares around within the frame making use of the six-
teenth square which is empty. For example, there are two possible moves in the
starting configuration: moving the 12 or the 14. If we move the 12 we would
get:

| 1 | 2 | 3 | 4 |

| 5 | 6 | 7 | 8 |

| 9 | 10| 11| |

108 CHAPTER 7. ABSTRACTION AND STRUCTURE

| 13| 15| 14| 12|

Since there is only one empty square, a sequence of moves can be written down
as the sequence of tiles which are moved.

The goal now is to move the tiles around so that the 14 and 15 tiles are in
the correct order.

The 14/15 puzzle was all the rage in the 1880s. Years later, Sam Loyd1

promised a reward to anybody who could solve the puzzle, being well aware that
solutions were impossible. There were numerous accounts of people claiming
they had solved the puzzle but couldn’t remember how. As it turns out the
puzzle is unsolvable, as can be argued by a sophisticated parity argument. We
will see the argument in its proper place: when we talk about permutations.

7.1 Exercises

1. Picture a chessboard; you want to traverse the chessboard starting at the
upper left corner and going to the lower right corner, entering and leaving
each square (except the first and last) exactly once. From a square you
are only allowed to move to an adjacent square to the left, right, top or
bottom (no diagonal moves).

(i) Can you traverse an 8 × 8 chessboard this way?

(ii) Can you traverse a 9 × 9 chessboard this way?

(iii) After solving the previous two exercises formulate and prove a general
result about traversing an n×n chessboard starting in the upper left
corner and ending in the lower right corner entering and leaving every
square (except the first and last) exactly once.

2. Here is a memorization card trick: a magician gives 64 cards to an audience
and asks them to arrange them in a 8 × 8 square, randomly putting the
cards face-up or face-down. The magician then adds another 17 = 8+8+1
cards extending the 8 × 8 square to a 9 × 9 square. While he has turned
around the audience can flip over a single card. When he turns back, the
magician can quickly find the card that has been flipped. How does he do
it? Hint: The solution is purely mathematical, no memorization skills are
needed.

3. Try the following game: there are 10 matches on the table; two players
alternate removing either one or two matches in each move. The player
who removes the last match wins the game.

1Loyd claimed invention of the puzzle, a claim, which is as incorrect as his claim that he

invented Pachesi an Indian game nearly 2000 years old. See The 15 puzzle by Slocum and

Sonneveld on the history of the puzzle and many pictures of different version.

7.2. NOTES AND ADDITIONAL READING 109

(i) Show that the player who goes first in this game can always win the
game, by describing a winning strategy. Hint: A winning strategy is
a set of rules that the player can follow in each move that guarantees
a win in the end.

(ii) If we start with 11 matches on the table, who can force a win, the
first or the second player? Give a winning strategy for the player.

(iii) Phrase a general result on which player can force a win in this game
if we start with n matches on the table, n > 0.

7.2 Notes and Additional Reading

See The 15 puzzle by Slocum and Sonneveld for an amazingly detailed history
of the 14/15 puzzle with numerous pictures of early versions of the puzzle.

110 CHAPTER 7. ABSTRACTION AND STRUCTURE

Chapter 8

Games and Graphs

8.1 On Mazes

Let us start with a simple maze.

When you search for a path through a maze, how do you proceed?1 We can
distinguish two variants of the problem: local or global. Local means you are
in the maze, and you can only see the part of the maze surrounding you. For
that type of maze techniques include (i) the right-hand rule (place your hand on
the right wall and keep it there while walking), (ii) the left-hand rule (similar),
or (iii) you can simply start walking around making random decisions about
where to continue when the path forks (a technique that works very well, and
doesn’t require you to memorize anything). A global technique means you have
the layout of the maze in front of you to analyze it. Somewhere in between local

1If you are in Illinois, you can test your maze solving powers on foot at the Richardson

Corn Maze, http://www.richardsonfarm.com/r-maze.htm, or the hedge maze at the Morton

Arboretum, http://www.mortonarb.org/maze/index.php.

111

112 CHAPTER 8. GAMES AND GRAPHS

and global are using breadcrumbs and Ariane’s thread, drawing a plan of the
maze, and marking intersections.

Exercise 8.1.1. Draw a maze for which the right-hand rule fails. Draw a maze
for which both the right-hand rule and the left-hand rule fail.

We concentrate on the global perspective. The drawing of a maze contains
a lot of extraneous geometric information; we can simplify the maze quite a bit
if we concentrate on the important parts: entrance, exits, forks and dead ends.
We place nodes at those special locations and connect them by lines to model
the connections between those locations.

s

t

Indeed, we can now imagine the nodes and their connections without the
maze, and the resulting object still contains all the information we need to solve
the maze:

s

t

Even more, we can now redraw the nodes and their connections without
regard to the particular geometry of the maze, obtaining what is called a graph:

8.1. ON MAZES 113

s

t

At this point it has become trivial to see how to go from the entrance node
s to the exit node t.

Note that in building the graph we abstracted nearly all geometric informa-
tion away from the maze—except for the order in which the connections leave
the nodes; this makes it particularly easy to translate a walk through the graph
back into a walk through the maze.

The object we have constructed is known as a graph. A graph is a collection of
vertices (also known as nodes) which can be connected by edges. More formally,
a graph G is a pair G = (V, E) of vertices V and edges E, where an edge in E
is a set of two vertices. For vertices we typically use letters such as u, v, s, t, w
and for edges e, f, g. If e is the edge from u to v then, formally, e = {u, v} but
we will typically write e = uv for simplicity. The vertices u and v are the ends
of the edge uv, and we say that u and v are incident to the edge uv. Since e is
the set {u, v} and {u, v} = {v, u} we do not distinguish between uv and vu (at
least not in this section).

Remark 8.1.2. By the definition of an edge we do not allow an edge from
a vertex to itself or multiple edges between the same pair of vertices. Those
features are allowed in multigraphs, though many books will also call these
objects graphs (and call what we call graphs, simple graphs).

We translated the maze into a graph. Walking through a maze corresponds
to the graph-theoretical notion of a walk. A walk is a sequence u1, e1, u2,
e2, . . . , en−1, un of vertices and edges that traverses the graph; i.e. if you start
at u1, e1 takes you to u2, etc. In other words, e1 = u1u2, e2 = u2u3, and so on
up to en−1 = un−1un.

There are two special types of walks that will interest us: A path is a walk
in which every vertex occurs at most once, and a cycle is a trail with n ≥ 3
whose first and last vertex are the same, u1 = un, but there are no other vertex
repetitions. (We exclude the case n = 2 as a cycle, since it simply means we
walk back and forth along the same edge.)

Exercise 8.1.3. A trail is a walk which contains every edge at most once. By
definition, every trail is a walk. Show that in a path every edge can occur at
most once (this shows that every path is a trail). On the other hand construct
a graph and a walk in the graph in which every edge occurs at most once, but
there are vertices that occur multiple times. (So not every trail is a path.)

Proposition 8.1.4. If G contains a walk from s to t then it contains a path
from s to t.

114 CHAPTER 8. GAMES AND GRAPHS

Proof. If G contains a walk from s to t, let

u1, e1, u2, e2, . . . , en−1, un

be a shortest such walk. Suppose some vertex occurs twice on that walk, that
is ui = uj for some 1 ≤ i < j ≤ n. Then

u1, e1, . . . ei−1ujejuj+1 . . . un

also is a walk from s to t contained in G and it is shorter than the original walk.
So we arrived at a contradiction by assuming that the shortest walk contains a
repeated vertex. Hence, the shortest walk does not contain a repeated vertex
and is therefore the path we are looking for.

Example 8.1.5. Let us study the following graph:

a

b

c

d

e

f

g

In this graph,
a, ab, b, bd, d, de, e, eg, g, gf, f, fd, d, dc, c

is a walk from a to c. It is not a path, since the vertex d is repeated (it occurs
twice), however, the excursion d, de, e, eg, g, fg, f, fd, d is unnecessary to get
from a to c and can be removed from the walk. We get a path a, ab, b, bd, d, dc, c
from a to c. Not the shortest path, since we could have simple walked a, ac, c,
but a path. Note that the excursion we cut out of the walk is a cycle:2

d, de, e, eg, g, fg, f, fd, d.

There is another cycle in this graph: a, ab, b, bd, d, dc, c, ac, a. Note that we
consider a, ab, b, bd, d, dc, c, ac, a to be the same cycle as b, bd, d, dc, c, ac, a, ab, b,
the second is just another way of writing the same cycle.3 With this convention
there are exactly two cycles in the graph; in particular,

a, ab, b, bd, d, de, e, eg, g, fg, f, fd, d, dc, c, ca, a

is not a cycle, since it uses d twice.

2Should this have been g, gf, f instead of g, fg, f? Doesn’t matter since fg and gf are the

same thing: an edge between f and g, we are not distinguishing different directions yet.
3If we wanted to be a bit more formal here, we’d say that a cycle is the equivalence class

of certain types of sequences under rotation.

8.1. ON MAZES 115

Solving a maze corresponds to finding a path between two given vertices s
and t in a graph. How do we do this? For small graphs trial and error seems
fine, but what if the graphs are too large (imagine a graph representing the
network of streets in the US)? How can we systematically determine whether
we can get from s to t and if so, how?

There are two approaches to this problem, the conservative approach that
starts at s and sees what vertices can be reached from s directly, that is, by an
edge; this set of vertices is known as the neighborhood of the vertex:

N(u) := {v : uv ∈ E}.

If t is among the vertices, N(s), we are done, indeed, we can get from s to t
in a single step. If not, we check the neighborhoods of the vertices in N(s), that
is, the vertices that can be reached in two steps from s, or, in other words, the
neighborhood of the neighborhood of s. There is no reason to stop at a distance
of 2 from s, of course. Let

Nk(u) := {v : v can be reached in at most k steps from u},

the k-neighborhood of u. Then N0(u) = {u} and N1(u) = N(u) ∪ {u}.
We saw that the k-neighborhood arises very naturally step by step (or in-

ductively or recursively) as follows: N0(u) = {u} and for k > 0 we have:

Nk(u) := Nk−1(u) ∪ {w : vw ∈ E ∧ v ∈ Nk−1}.

These sets correspond exactly to the conservative method we outlined above,
known as breadth-first search: we investigate larger and larger neighborhoods of
s until we find t; we start with N0(s), and check N1(s), N2(s), and so on until
we find the first k such that t ∈ Nk(s). This even gives us the smallest number
of steps needed to get from s to t.

Remark 8.1.6. In terms of the original maze, we first venture for one step
in each direction from the entrance, returning to the entrance after each step.
Then we start going two steps in all possible directions, always coming back.
Then three steps, and so on. In a physical maze we need some way of finding
our way back (breadcrumbs, or Ariane’s thread will do), and we need to make
sure we systematically try all possible routes (we can try them in clockwise or
counterclockwise order, for example).

Example 8.1.7. Let us see what a breadth-first search for our sample maze
looks like; we will perform it on the graph we abstracted from the maze. To
distinguish all the vertices we have given them names, called labels.

116 CHAPTER 8. GAMES AND GRAPHS

s

t

a

b

c d

e f

h

g

i

j

k

l

n

m

p

q

r

We begin at s, N0(s) = {s}. In at most one step we can reach N1(s) = {s, a},
in two steps: N2(s) = {s, a, b, h}. We see that it is more interesting to look at
the new vertices we obtain; let’s call that the k-boundary, Bk(u); those are the
vertices that can be reached in k steps from u, but not by any shorter path; that
is, Bk(u) := Nk(u)−Nk−1(u). Then B0(s) = {s}, B1(s) = {a}, B2(s) = {b, h}.
Like a wave rippling through the maze. Here is what we see:

B0(s) = {s}
B1(s) = {a}
B2(s) = {b, h}
B3(s) = {c, d, g, i}
B4(s) = {e, f, j, k}
B5(s) = {l, n}
B6(s) = {m, t, p}
B7(s) = {q, r}
B8(s) = {}

and at that point we have seen the whole graph.

Using pseudocode, we can describe the strategy of a breadth-first search
more precisely; for the code we will use a queue. A queue is a set (and we
write it as a set), in which elements are added to the end and taken out at
the beginning (like a queue at the post-office). That is, a set in which order
matters. We use operators append(q, x) to add element x to the end of queue
q, and pop(q) to unqueue the first element of q.

While performing the traversal we simultaneously calculate the distance of
each vertex from s. We keep this information in an array distance. Initially, all
vertices have a distance of infinity from s, they are unvisited. As the algorithm
proceeds and we look at an unvisited neighbor v of a vertex c we know that v
has distance one more from s than c (since otherwise we would have already
encountered it). We also use the distance information to tell whether we have
already visited a vertex or not: a vertex at a distance of infinity is one that has
not been visited yet. In the following code we use −1 to denote infinity.

procedure breadth_first_search(G,s,t)

for each v in G // initially, every vertex+

8.1. ON MAZES 117

distance[v] := -1 // has distance infinity (we use -1)

reached := {s} // current boundary

distance[s] := 0 // s has distance 0 from itself

while reached <> {} // vertices whose neighbors need to be explored

c := pop(reached) // take the first element of the queue

if (c = t) // found the exit

return true

for each v in N(c) // every element of c’s neighborhood

if distance[v] = -1 // which has not been visited yet

append(reached, v) // is appended to the queue

distance[v] := distance[c] + 1 // distance is one more than c

return false // exit not found

If the program reaches its last line, then all vertices that could be reached
from s have been visited and t was not among them (otherwise we would have re-
turned true and stopped), so we return false. The procedure breadth first search(G, s, t)
tells us whether there is a path from s to t in G. This problem is known as
st-connectivity. We need some modifications to the code to trace the actual
path from s to t.

Example 8.1.8. Let us go through our maze above using the new procedure.
Initially, reached = {s}. We pop s off the queue, and note that s has been
visited: distance[s] = 0. We then attach N(s) = {a} to reached, which is
now {a}. Next, we pop a off the queue and note that its distance is

distance[a] = distance[s]+ 1 = 1.

We then go through as neighborhood, N(a) = {s, b, h}, and add its unvisited
neighbors (b and h) to the queue: reached = {b, h}. Next we pop b and store
distance[b] = 2; b’s neighbors are a, c and d. We enqueue the unvisited
neighbors c and d and reached now equals {h, c, d}. And so on.

Exercise 8.1.9. (S) Finish the previous example; show the state of the queue
reached after each stage and the distances that have changed.

Exercise 8.1.10. Perform a breadth-first search starting at vertex a of the
following graph; show the state of the queue reached after each stage.

118 CHAPTER 8. GAMES AND GRAPHS

s

a

b

c

d

e

f

g

h

t

The distance calculations in breadth-first search work correctly, since breadth-
first search proceeds conservatively, it always finds a shortest path from s to t,
a useful property to have. On the other hand, it does go into breadth, visiting
every neighbor even in the most unpromising direction, before going one step
farther into depth. At the other extreme there is depth first search which first
goes into depth, as far as it can go, and only when it has reached a dead end
will it turn back (backtrack) and consider alternatives. A very useful strategy,
and a good balance to breadth-first search.

We can describe the strategy of depth-first search as follows: starting with
a vertex s pick one of its neighbors and then continue depth-first searching
from that vertex, until you have explored all possible connections. At that
point return to s and try the next neighbor of s that has not been visited yet.
Continue until you have seen all neighbors of s.

Let us assume that initially all vertices are unvisited, that is we have run
the code

for each v in G // initially, every vertex

visited[v] := false // is unvisited

We now traverse the graph in depth; the following procedure traverses G
depth first starting at s.

procedure depth_first_traverse(G,s)

visited[s] := true

for each v in N(s)

if not visited[v] // the edge to v has not been explored yet

depth_first_traverse(G,v) // visit v

So a depth-first search first needs to initialize the information about visited
vertices and then call on depth first traverse to actually perform the search.

procedure depth_first_search(G,s,t)

for each v in G // initially, every vertex

visited[v] := false // is unvisited

8.1. ON MAZES 119

depth_first_traverse(G,s)

if visited[t]

return true // t was found during the traversal

else

return false // t was not found

Example 8.1.11. Let’s depth-first search our original maze; here are the calls
that are made in order:

depth_first_traverse(G,s)

depth_first_traverse(G,a)

depth_first_traverse(G,b)

depth_first_traverse(G,c)

depth_first_traverse(G,d)

depth_first_traverse(G,e)

depth_first_traverse(G,f)

depth_first_traverse(G,h)

depth_first_traverse(G,g)

depth_first_traverse(G,i)

depth_first_traverse(G,j)

depth_first_traverse(G,k)

depth_first_traverse(G,l)

depth_first_traverse(G,n)

depth_first_traverse(G,m)

depth_first_traverse(G,p)

depth_first_traverse(G,q)

depth_first_traverse(G,r)

depth_first_traverse(G,t)

We typically abbreviate the traversal by simply listing the vertices in the
order that they are visited, so in this case we could have written:

s, a, b, c, d, e, f, h, g, i, j, k, l, n, m, p, q, r, t.

Note that our depth-first traversal went through the whole maze before find-
ing the exit. We could speed up the algorithm by aborting the search once
the exit t has been found. For that we need to modify the code for both
search and traversal. Let us call these new versions depth first traverse’

and depth first search’:

procedure depth_first_search’(G,s,t)

for each v in G // initially, every vertex

visited[v] := false // is unvisited

depth_first_traverse’(G,s,t)

if visited[t]

return true // t was found during the traversal

120 CHAPTER 8. GAMES AND GRAPHS

else

return false // t was not found

procedure depth_first_traverse’(G,s,t)

visited[s] := true

if s = t

return control to depth_first_search’

for each v in N(s)

if not visited[v] // the edge to v has not been explored yet

depth_first_traverse’(G,v,t) // visit v

These algorithms can do better than the original ones if the neighborhoods
are added in a more felicitous order, since the algorithm will stop once it’s
found t rather than continuing to traverse the rest of the graph. In the original
traversal we always added neighbors in alphabetical order, let us try another
order here:

depth_first_traverse’(G,s,t)

depth_first_traverse’(G,a,t)

depth_first_traverse’(G,h,t)

depth_first_traverse’(G,i,t)

depth_first_traverse’(G,k,t)

depth_first_traverse’(G,n,t)

depth_first_traverse’(G,t,t) // found t

or, for short,
s, a, h, i, k, n, t.

In this last traversal, depth-first search found the shortest path from s to t;
there are many unexplored corridors left in the maze, but we don’t care, since
we have found the exit. The problem, of course, is that we don’t know how to
pick the ordering of the neighbors wisely.

Exercise 8.1.12. Traverse the graph from Exercise 8.1.10 using the original
depth first search.

Exercise 8.1.13. Pick one of the easy mazes at http://www.mazes.org.uk/.

(a) Draw the graph corresponding to the maze.

(b) Perform a depth-first search on the maze. (List the vertices in the order
that they are visited.)

(c) Perform a breadth-first search on the maze. (Show the details of how
reached and distance change.)

(d) Does the maze contain cycles? Is there more than one solution?

8.1. ON MAZES 121

How could it happen that there is no path from s to t? In that case s and t
must be in different parts of the graph, the graph is disconnected, that is, there
are two vertices in the graph which are not connected to each other by a path.

Exercise 8.1.14. Draw a maze on a 6× 6 grid that has no solution. Draw the
graph corresponding to the maze.

Exercise 8.1.15. Draw a small graph which is disconnected. How small can
you make the graph?

Exercise 8.1.16. Let G = (V, E) be a graph. Let P (u, v, P) be the ternary
relation expressing that P is a path in G with endpoints u and v. Write a
quantified formula expressing that a graph G is connected.

Both breadth-first search and depth-first search will visit all the vertices that
are reachable from a given vertex s. So we can use either one of them to tell
whether the whole graph is connected, that is, every pair of vertices are reachable
from each other: simply run one of the search algorithms on an arbitrary vertex
and count how many vertices are visited. If the count is the same as the total
number of vertices in the graph, the graph is connected; otherwise it is not.

Let us run one of our search algorithms on the graph from Exercise 8.1.10
and let us keep track of from which vertex another vertex is visited. We use a
breadth-first traversal, where reached goes through the following stages: {s},
{a, b}, {b, c, d}, {c, d, f}, {d, f, e, g}, {f, e, g}, {e, g, h}, {g, h}, {h, t}, {t}. Going
through this list again, we see that a and b are visited from s; c and d are visited
from a; f is visited from b; e and g are visited from c; h is visited from f ; t
is visited from g. Pictorially, we can represent this by arrows pointing from a
vertex to the vertex whose visit it causes. (Edges that are not involved in the
visiting structure are drawn in gray.)

s

a

b

c

d

e

f

g

h

t

Observe that the heavy edges form a special type of graph, a tree; a tree is
a connected graph which does not contain a cycle.

Exercise 8.1.17. Show that a graph is a tree if and only if there is a unique
path between any two of its vertices. Hint: It is easy to show one direction:

122 CHAPTER 8. GAMES AND GRAPHS

a graph containing a cycle has two vertices that do not have a unique path
between them. The other direction needs a bit more care.

What our search procedures show is that every connected graph contains a
tree on all the vertices of the graph. Such a tree is called a spanning tree.

Theorem 8.1.18. Every connected graph contains a spanning tree.

Proof. Let G be the connected graph. Run depth-first search or breadth-first
search on G; during the search, if some vertex v is visited from some vertex u,
then draw an arrow from u to v. Consider the graph T that consists of all the
arrowed edges. We claim that T contains the same vertices as G. The reason is
that G is connected, so the search reaches all vertices of G. Observe that every
vertex is visited at most once, so there is at most one arrow pointing towards
each vertex. Suppose T contained a cycle C. Let v be the vertex on C that was
visited first in the search. Then the two edges of C adjacent to v point away
from v (since it was the first vertex on C). But then C must contain two edges
that point towards the same vertex (follow the arrows starting at v until you
run into an edge pointing the other way; that must happen, since the two edges
at v point in different directions along C). But this is not possible: every vertex
has at most one arrow pointing at it.

In this section, we have seen how to solve three fundamental problems on
graphs using two traversal techniques: breadth-first and depth-first search.

• st-connectivity problem: given a graph G and two vertices s and t can t
be reached from s. Use either breadth-first or depth-first search.

• shortest path problem: given a graph G and two vertices s and t find a
shortest path from s to t if one exists. Use breadth-first search.

• spanning tree problem: given G find a tree that connects all vertices of G.

All of our problem solutions are very fast, since they are based on fast search
algorithms: every vertex is visited only once in both breadth-first and depth-
first search, so the running time of our algorithms is proportional to the size of
our graphs.

Directed Graphs

If you wanted to use graphs to model the street plan of a city you would soon
realize that our graphs have one deficiency: there is no difference between the
edge uv and the edge vu, they both correspond to {u, v} = {v, u}, we cannot
distinguish direction. In other words: We have no one-way streets. This is easily
remedied by using directed graphs. A directed graph (or digraph) G = (V, E)
consists of a set of vertices V and a set of edges between vertices: E ⊆ V × V .
That is, an edge is now a directed pair: (u, v) differs from (v, u) (unless u = v,
but we do not allow an edge from a vertex to the same vertex). We will write

8.1. ON MAZES 123

uv for (u, v) for the directed edge from u to v.4 We draw a directed edge uv
with an arrow pointing from u to v; u is sometimes called the child vertex and
v the parent vertex, in particular if we are traversing the edge in the direction
of the arrow: we go from a child to a parent.

We have encountered directed graphs already, although we didn’t call them
that: when analyzing the search procedures to prove the existence of a spanning
tree, we drew that tree as a directed tree, pointing from a vertex u to a vertex
v ∈ N(u) if v is visited from u.

Example 8.1.19. The following graph is a graph representation of the streets
in a 4 × 4 block of downtown Chicago. (abcd is Jackson going east, ponm is
Madison going west, aeim Dearborn going north, okgc Wabash going south,
and plhd Michigan going any way it wants.)

a b c d

e f g h

i j k l

m n o p

Suppose you want to drive from the Art Institute (which is at d to the corner
of Monroe and Wabash at k). What are your options? What are the quickest
options? Obviously, it makes a difference whether we have to respect one-way
streets or not.

Exercise 8.1.20. Pick a 4×4 block of your favorite downtown city, and model
the way cars can travel using a directed graph. Is there an example, where the
shortest path ignoring one-way streets differs from the shortest path respecting
one-way streets?

Breadth-first search and depth-first search work fine on directed graphs, we
don’t even need to change the algorithm if we interpret the definition of the
neighborhood of a vertex u,

N(u) := {v : uv ∈ E}

as referring to the directed edge uv. Breadth-first search will now give us the
shortest directed path from s to t, that is, with all edges along the path ori-
ented from s to t (you are not driving backwards through a one-way street),
and both breadth-first and depth-first search will find all the vertices reachable

4So is uv directed or undirected? Depends on the context, i.e. whether we are talking

about a directed graph or not.

124 CHAPTER 8. GAMES AND GRAPHS

from a particular vertex. There is one difference though, and that is in the no-
tion of connectivity: if we remove the direction from the edges, that underlying
undirected graph might be connected, without there being directed paths be-
tween all pairs of vertices: directed connectivity is a much stronger requirement
than undirected connectivity (as those of you that like to drive through one-
way streets the wrong way certainly know). We call a directed graph strongly
connected if there is a directed path between any two vertices.

Exercise 8.1.21. Let G = (V, E) be a graph. Let R(u, v, P) be the ternary
relation expressing that P is a directed path in G from u to v. Write a quantified
formula that expresses that the graph G is strongly connected.

One consequence is that the notion of tree is no longer so interesting for
directed graphs; it is replaced with the notion of a directed acyclic graph—
better known as a dag, that is a graph that does not contain any directed cycle
(all the edges in the cycle pointing in the same direction along the cycle).

Exercise 8.1.22. Construct a small directed graph which is acyclic, but whose
underlying undirected graph contains an (undirected) cycle.

Dags occur very naturally when ordering objects: if ≺ is a strict, even partial,
ordering relation on a set of objects V , then the graph G = (V, E) defined by
E = {uv : u ≺ v} is a dag.

Exercise 8.1.23. Prove that the graph G = (V, E) defined by E = {uv : u ≺ v}
is a dag if ≺ is a strict, partial ordering relation. Hint: the main thing to show
is that G is acyclic; this follows from anti-symmetry.

We can now show a result we hinted at earlier: every partial ordering can
be extended to a total ordering which is consistent with the partial ordering.

Theorem 8.1.24. If ≺ is a strict, partial ordering, there is a strict, total
ordering ≺′ such that x ≺ y implies x ≺′ y for all x and y.

The proof will show how to construct the total ordering explicitly. Before
we see the proof, let us do an example.

Example 8.1.25. Let us illustrate the strict, partial, ordering x ≺ y =“course
x is a prerequisite of course y”, or, in other words, “course y requires course x”;
we visualize this relationship by drawing an arrow pointing towards the required
course.

CSC374

CSC347 CSC373 CSC212

CSC383

IT130 CSC211 IT240

CSC351

CSC352

8.1. ON MAZES 125

For example, you cannot take CSC 373 before having taken CSC 212, which in
turn requires CSC 211, which requires IT 130.

Exercise 8.1.26. This exercise refers to the course prerequisite example above.

(i) List all courses you must have taken before you can take CSC 352.

(ii) List all courses you must have taken before you can take CSC 383.

(iii) Find a longest (directed) path in the prerequisite graph. What meaning
does the length of that path have to somebody wanting to take all the
classes listed? Hint: A longest path in diagrams of this type is often
known as a critical path. Why?

Doing the example might have given you a hint on how to construct the
ordering: we can take a course once we have taken all the prerequisites. If we
think of the dag associated with the prerequisite ordering we can express this
as saying: once we have taken care of all the children of a vertex, we can take
the course represented by the vertex. But this is exactly the information that
depth-first search gives us: at the point where a vertex is popped off the stack
in depth-first search, all its children have been visited. So all we have to do is
slightly modify the depth-first search procedure. Let us assume that initially all
vertices are unvisited, that is, we have run the code

for each v in G // initially, every vertex

visited[v] := false // is unvisited

We can then pick some vertex s and run the following modified depth-first
search:

procedure topological_traverse(G,s)

visited[s] := true

for each v in N(s)

if not visited[v] // the edge to v has not been explored yet

topological_traverse(G,v) // visit v

print(s) // all children of s have been explored

Since G might not be strongly connected, we might have to restart the
depth-first traversal for vertices that haven’t been visited yet (that happened
in the course prerequisite example as well). So our sorting algorithm, known as
topological sort looks as follows:

procedure topological_sort(G)

for each v in G // initially, every vertex

visited[v] := false // is unvisited

for each v in G

if visited[v] = false

topological_traverse(G,v)

126 CHAPTER 8. GAMES AND GRAPHS

This algorithm will print out the vertices in an order which is consistent
with the ordering represented by the dag.

Exercise 8.1.27. Produce a topological sort of the prerequisite example we
saw above. Use the topological sort to design a more readable drawing of the
prerequisite structure of those courses.

In this section we have seen directed and undirected graphs, two very fun-
damental modeling tools; there are many refinements of these models available,
as needed: for example you can color edges and vertices (to express that they
belong to different categories), and you can add weight to edges and vertices;
e.g. an edge weight in a graph could correspond to the distance between two
vertices representing physical locations. A shortest path between two vertices
would be a minimum distance connection. You can see how Google maps would
find this model useful.

In the end, though, the surprising revelation (already hinted at when we
talked about orderings) is that graphs are just a visualization of binary relations:
directed graphs of arbitrary binary relations, undirected graphs of symmetric
binary relations.

Exercise 8.1.28. What does transitivity in a binary relation correspond to in
the graph representing the relation? What about reflexivity and anti-reflexivity?

8.2 Euler Tours

Graph theory began with a famous paper by Leonard Euler on the Königsberg
bridge problem. His question was whether one could take a walk through
Königsberg which would cross each of the seven bridges of Königsberg exactly
once. Instead of Königsberg let us consider a fictitious city, let’s call it K, with
rivers and bridges as shown in the next picture:

1 ~~~~~~~~~~~~~~~~||~~~~~~~~~~~~~~

~ ~

~ ~

=== 3 === 4

~ ~

~ ~

~~||~~~~~~~~~||~~~~~~~~~~~~||~~~~~~

~

2 === 5

~

~~~~~~~~~~~~

Can we walk through K crossing each bridge exactly once? Let us remove
some of the unnecessary details of the problem by modeling it as a graph: the
pieces of land become vertices and the bridges turn into edges.



8.2. EULER TOURS 127

Exercise 8.2.1. Model the bridge problem as a graph.

We can write the graph as: K = ({1, 2, 3, 4, 5}, {{1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 5}, {3, 4}, {4, 5}}).

Euler’s problem is asking for a walk through this graph that contains every
edge exactly once. Such a walk is called an Eulerian trail (the walk is a trail
since each edge occurs at most once). A graph is called Eulerian if it contains
an Eulerian trail. Note that we allow the special case where the start and end-
vertex of the trail are identical. In that case the trail becomes an Eulerian cycle,
also known as an Eulerian tour.

Now let us show that the bridge problem for the city of K cannot be solved.
Imagine that there were a trail s = u1, e1, u2, e2, . . . , e7, u8 = t containing each
edge of the graph exactly once. Note that, with the exception of s and t we
leave each vertex as often as we enter it, so all vertices other than s and t must
be adjacent to an even number of edges; s and t, on the other hand, must be
adjacent to an odd number of edges (adding one for the first leaving of s and
the last return to t).

The number of edges adjacent to a vertex v in G is called the degree of v,
also written degG(v) = |{e : v ∈ e}|. Note that degG(v) = |N(v)| (since each
neighbor is reached by precisely one edge that v is adjacent to; this would not
be true for multigraphs).

What we have shown in general is:

Theorem 8.2.2 (Euler). If a graph G has an Eulerian trail from s to t (with
s 6= t), then all vertices except for s and t have even degree and s and t have
odd degree. If G contains an Eulerian tour, then all vertices have even degree.

Example 8.2.3. The graph K from our opening example has vertices 1, 2, 3, 4, 5
of degrees 3, 3, 3, 3, 2, respectively. By Euler’s theorem there cannot be an Eu-
lerian trail or tour in the graph.

The theorem establishes a necessary condition for being Eulerian: the graph
must have either two or no vertices of odd degree. If P → Q then for P to be
true, Q has to be true as well, since P → Q is equivalent to Q(x) implies P (x);
that is, if Q fails to be true, then so does P . Under these circumstances we say
that Q is a necessary condition for P . If on the other hand Q → P , then Q is
a sufficient condition for P , since if Q is true, then P is also true.

Example 8.2.4. Writing a dissertation is a necessary condition for getting a
PhD, but it is not sufficient (one might fail the exam or not take the required
course work). Being born in Illinois is a sufficient condition for being born in
America, but it is not necessary. One could have been born in Vermont.

Being featherless and a biped is a necessary and sufficient condition for being
human (or so philosophers like to claim).

Exercise 8.2.5. Which of the following are true? (Assume the philosophical
definition of a human as a featherless biped.) If a claim isn’t true, state a
counterexample that shows it is not true.



128 CHAPTER 8. GAMES AND GRAPHS

1. Being featherless is a necessary condition of being human.

2. Being featherless is a sufficient condition of being human.

3. Being human is a necessary condition of being featherless.

4. Being human is a sufficient condition of being featherless.

Interestingly, Euler’s theorem is an instance of a more general phenomenon
in which a necessary condition turns out to be sufficient. Well, nearly sufficient,
we also need to assume that the graph is connected: it is easy to construct a
graph which is not connected and for which all vertex degrees are even. However,
there cannot be an Eulerian trail in that graph, since it is not even connected,
so graphs that are not even connected are not interesting in this context.

Exercise 8.2.6. Draw a graph in which every vertex has even degree but which
is not connected. What is the smallest such graph?

Theorem 8.2.7. If G is connected, then G is Eulerian if and only if all vertices
of G have even degree or exactly two vertices of G have odd degree. More
precisely, if all vertices of G are even, then G contains an Eulerian tour. If
exactly two vertices of G are odd, then there is an Eulerian trail between those
two vertices.

Euler claims, but does not prove, this result in his paper. Instead of a
formal proof, which gets technical, we illustrate the idea of the proof in several
examples.

Example 8.2.8. By Euler’s theorem, the following graph contains an Eulerian
trail starting at s and ending at t.

a

b

s

c

d

e

f

t

h

g

Let us start at s and look for a trail through the graph; we cannot get stuck
at a vertex of even degree, since we enter it as often as we leave it (reducing
the available edges at the vertex by 2, which always leaves an even number).



8.2. EULER TOURS 129

Hence, our trail (whatever choices we make) has to end at t. For example, we
might have chosen

s, sd, d, db, b, be, e, ed, d, df, f, fe, e, et, t.

After removing the edges in this trail all vertices in the remaining graph have
even degree; hence, if we start looking for an Eulerian trail starting at one of
the vertices that is still incident to some edge, we will eventually have to return
to that vertex, giving us a cycle in the graph. We can add that cycle to the
trail we already have, and continue the process until we have run out of edges
in the graph. This will give us an Eulerian trail for the original graph (do this,
by hand, on the graph; try different alternatives).

Euler’s criterion has a nice property: it is easily verified, all we have to do
is count the number of edges leaving each vertex and check that at most two of
those degrees are odd. In the program below we write x % y for the remainder
of dividing x by y. Then x % 2 is 0 if x is even and 1 if x is odd.

procedure Eulerian(G)

odd_degree_vertices = 0

for each v in V(G)

degree := 0 // to compute degree of v

for each u in N(v)

degree := degree + 1

if degree % 2 = 0

odd_degree_vertices = odd_degree_vertices + 1

if odd_degree_vertices > 2

return false

else

return true

The running time of this algorithm is proportional to the number of edges and
vertices, since we look at each vertex at most once, and at each edge at most
twice (for each of its endpoints).

Exercise 8.2.9. Formulate a version of Euler’s criterion for directed graphs.

The criterion for being Eulerian states that either none or two of the vertices
are of odd degree. This suggests a question: What does a graph look like which
has exactly one vertex of odd degree. Can you draw one?

The answer is no, because of the following result.

Lemma 8.2.10. If G = (V, E) and V = {v1, . . . , vn}, then

2|E| = deg(v1) + deg(v2) + · · · deg(vn).

Proof. Look at deg(v1) + deg(v2) + · · · deg(vn). Every edge gets counted twice
in this sum, once at each endpoint, so the sum is 2|E|.



130 CHAPTER 8. GAMES AND GRAPHS

So it cannot be that a single vertex has odd degree, because then the sum
of the degrees would be odd, which is not possible by the lemma. The lemma
is known as the Handshake lemma: if you have a group of people some of
them shaking hands, some of them not, then the number of hands involved in
handshakes is even (and it equals twice the number of times hands are shaken).

You are working on the seating arrangements for a dinner. There are two
tables and you are trying to place people that don’t like each other at different
tables. Your guests are Alice, Bob, Carol, Dan, Eve, Fred, Ginger, Homer, and
Irene. We’ll assume that dislike is mutual, so when we specify that Alice doesn’t
like Carol that also means that Carol doesn’t like Alice. You know that Alice
doesn’t particularly care for Carol, Ginger, or Homer. Bob doesn’t like Carol,
Eve, and Irene. Carol can’t abide Dan and Fred. Dan couldn’t care less about
Eve, Ginger, and Homer, while Eve doesn’t like Fred. Can you seat these people
at two tables?

Before you start trying to work out this example, it may pay off to think
about how to model it. (Do this before continuing to read.)

We model the problem as a graph: the people in the problem become vertices
and edges denote mutual aversion. What we are looking for is a partition5 of
the vertex set V into two sets V1, V2 such that all edges are between vertices
of V1 and V2; that is, there are no edges between two V1 or two V2 vertices.
Graphs whose vertex set can be partitioned in this way are called bipartite.

Example 8.2.11. Consider the graph G = (V, E) with V = {a, b, c, d, e, f} and
E = {ab, ae, bd, bf, cd, cf, de, ef}. The graph pictured on the left side in the
following figure. Its vertex set can be bipartitioned into sets V1 and V2 such
that there are no edges between any two V1 vertices or any two V2 vertices. The
picture on the right shows that bipartition: V1 = {a, d, f} and V2 = {b, c, e}.

a

b

c

d

e

f

a

b

c

d

e

f

V1

V2

Exercise 8.2.12. 1. Construct graphs which are bipartite. (Include graphs
with different numbers of vertices.)

5Remember that V1, V2 form a partition of V if V = V1 ∪ V2 and V1 ∩ V2 = ∅.



8.2. EULER TOURS 131

2. Construct some graphs which are not bipartite. (Include graphs with
different numbers of vertices.)

3. What is the smallest non-bipartite graph? Hint: It has three vertices.

4. Can you find a non-bipartite graph that does not contain the graph you
found in answer to the previous question?

The exercise should illustrate that cycles of odd length are an obstruction to
bipartiteness; let Cn denote a cycle on n vertices (or n edges, the same thing).
Then a graph containing an odd cycle, C2n+1 cannot be bipartite.

Lemma 8.2.13. Odd cycles are not bipartite; consequently, any graph contain-
ing an odd cycle is not bipartite.

Proof. Suppose C2n+1 were bipartite. Using a simple parity argument we show
that this is not possible: suppose the bipartition is V0, V1. Start at some vertex
s ∈ V0 and follow the cycle in one direction. Each step along the cycle takes
you into the other partition. After 2n + 1 steps (an odd number) you are in V1

and not back at s in V0.
If a graph is bipartite, then every subgraph of it is also bipartite, so a graph

containing an odd cycle cannot be bipartite itself.

The lemma says that not containing an odd cycle as a subgraph is a necessary
condition for being bipartite; as it turns out that condition is also sufficient.

Theorem 8.2.14. A graph is bipartite if and only if it does not contain an odd
cycle as a subgraph.

We will give an algorithmic proof of the theorem that constructs a bipartition
of G if there is one (and we will show that the only obstacle to the algorithm
succeeding is an odd cycle). We think of bipartitioning the vertices as coloring
them: initially all vertices are without color; we will color them red and green,
thereby placing them into the red and the green partition.

Proof. We can assume that the graph is connected; if it is not, we can separate
the graph into its components and find a bipartition for each graph separately;
since the different components do not have any edges between them, we can
combine the different bipartitions into a single one.

Pick an arbitrary vertex s of the graph and color it red; then run breadth-
first search and color the layers of distance 1, 2, and so on, from s alternately
green and red. If we try to color a vertex that is already colored, the algorithm
fails and the graph is not bipartite. If the algorithm succeeds, then the graph
is bipartite, one partition being all the red vertices and the other partition
consisting of the green vertices. Unvisted vertices in the algorithm are gray.

procedure bipartite(G)

for each v in G // initially, every vertex

color[v] := gray // is gray



132 CHAPTER 8. GAMES AND GRAPHS

reached := {s} // current boundary

color[s] := red // s is red

while reached <> {} // vertices whose neighbors need to be explored

c := pop(reached) // take the first element of the queue

for each v in N(c) // every element of c’s neighborhood

if color[v] = gray // unvisited vertex

if color[c] = red

color[v] = green

else

color[v] = red

else

if color[v] = color[c] // both vertices are green or red

return false // bipartition not possible

return true

If the algorithm colors a vertex u red, that vertex must have even distance from
s, since the algorithm finds a shortest path from s to u and colors vertices along
that path in alternating colors. Similarly, if u is colored green, it must have odd
distance from s. Suppose the algorithm colors two vertices u and v with the
same color and there is an edge between u and v. Then u and v must have the
same distance from s (their distances differ by at most one, because of the edge
uv, but they cannot differ by one, since then the colors of u and v would be
different, so the distances must differ by 0). Follow the shortest-path tree back
starting at u and v until you find a common ancestor z of both u and v. Then
the path from z to u, followed by the edge uv, followed by the path from v to
z forms a cycle of odd length (since the paths from u to z and v to z have the
same length), but we assumed that G did not contain any odd cycles. Hence, in
the absence of any odd cycles, we can never run into the situation that a vertex
c and its child v have the same color; so the algorithm succeeds in finding a
coloring of the whole graph, and there are no edges between any two vertices of
the same color, so the graph is bipartite.

This finishes the proof, since we argued in Lemma 8.2.13 that a bipartite
graph cannot contain an odd cycle.

8.3 Graph Drawing

Ernst Dudeney, one of the great British puzzlemakers wrote:

There are some half-dozen puzzles, as old as the hills, that are per-
petually cropping up, and there is hardly a month in the year that
does not bring inquiries as to their solution. Occasionally one of
these, that one had thought was an extinct volcano, bursts into
eruption in a surprising manner. I have received an extraordinary



8.3. GRAPH DRAWING 133

number of letters respecting the ancient puzzle that I have called
”Water, Gas and Electricity”. It is much older than electric light-
ing, or even gas, but the new dress brings it up to date. The puzzle
is to lay on water, gas, and electricity, from W, G and E, to each of
the three houses, A, B and C, without any pipe crossing another.

W G E

A B C

After trying this for a while, you might be giving it up as impossible. Indeed,
it is impossible, but how can we see this? Quite easily, actually, all we need is
to remember the Jordan curve theorem, which said that any closed curve has
an inside and an outside and separates the two.

We can rephrase the water, gas, electricity problem as a graph problem as
follows: let K3,3 be the graph consisting of two sets {A, B, C} and {W, G, E} of
three vertices each, with edges between vertices belonging to different sets. We
are looking for a planar drawing of K3,3, that is, a drawing without intersections.
Now, K3,3 contains the cycle AWBGCEA. Since we are assuming that the
drawing is planar, the edges of this cycle are drawn without any intersections:

W----B----G

| |

| |

A----E----C

Now consider the three edges AG, WC, and BE. Since they cannot intersect
the cycle, they must all lie entirely within or without the cycle; so at least two
of them must lie on the same side, let us say they both lie inside. But then they
have to cross each other, which we assumed was not the case.

Graphs which can be drawn in the plane without edge intersections are called
planar; we have just seen that K3,3 is not a planar graph, and indeed any graph
containing K3,3 cannot be planar. To state this more formally, we need the
notion of subgraph: H = (U, F ) is a subgraph of G = (V, E) if U ⊆ V and
F ⊆ E. This notion is rather restrictive: for example, H = ({1, 2}, {12}) (a
simple edge) is not a subgraph of G1 = ({a, b, c}, {ab, bc}) since these graphs
are on different vertex sets and it is not a subgraph of G2 = ({1, 2, 3}, {13, 23})
either. Hence, we typically use the notion of subgraph in a slightly wider sense
to mean: there is a bijection between H and a subgraph of G. In that case, H ,
the simple edge in the example above, does occur as a subgraph in G1 (as ab, for
example) and in G2 (as 13). Two graphs that are the same up to a bijection (a
renaming of the vertices) are called isomorphic. We typically do not distinguish
between two graphs that are isomorphic. (Another useful equivalence relation:
isomorphism between graphs.)



134 CHAPTER 8. GAMES AND GRAPHS

So when we speak about a graph containing a K3,3, or not, we are talking
about a graph containing a subgraph isomorphic to K3,3. We can then summa-
rize the discussion by stating that no graph containing a K3,3 is planar. More
is true: take a K3,3 and split one of its edges by introducing a vertex along it;
formally, let uv be an edge of K3,3. Remove the edge uv and add edges uw and
wv, where w is a new vertex. This operation is called subdividing an edge or
edge subdivision. The resulting graph is still not planar, since, if we could draw
it, we could also draw a K3,3: simply remove the vertex w and reintroduce the
edge uv in place of uwv to get a planar drawing of K3,3, which is impossible.

Lemma 8.3.1. Any subdivision of a non-planar graph is non-planar.

Proof. Let G be a subdivision of H , which is not planar. If G is planar, we can
draw it without intersections in the plane. Do so, and remove all the subdivision
vertices (they have a degree of 2) from the drawing of G (and bridge the gap
between the two edges ending in that vertex). This results in a planar drawing
of G contradicting the assumption that H was non-planar.

If a subdivision of G is isomorphic to a subgraph of H , we call G a topological
minor of H . By the lemma we just proved any graph containing K3,3 as a
topological minor is not planar. K3,3 is only one obstruction to planarity; as
it turns out there is one more: K5, the complete graph on 5 vertices; that is, a
graph on five vertices with an edge between any pair of vertices.

Exercise 8.3.2. Draw a K5 (with edge intersections, perforce). What is the
smallest number of edge intersections you can achieve?

Exercise 8.3.3. Show that K5 is not planar, that is, any drawing of a K5 in the
plane must contain an edge intersection. Hint: Let the vertices be a, b, c, d, e.
Consider the triangle formed by a, b and c. How must d and e lie with respect
to the triangle? Then argue that either the triangle dab contains eab or vice
versa. That will force an edge intersection.

We have seen that K3,3 and K5 are non-planar graphs, and, indeed, any
graph containing a subdivision of either one is non-planar. In other words, it
is a necessary condition of a graph G being planar that G do not contain a
subdivision of either K3,3 or K5. This condition turns out to be sufficient as
well, a famous result known as Kuratowski’s theorem.

Theorem 8.3.4. A graph is planar if and only if it does not contain a subdivi-
sion of K3,3 or K5 as a subgraph.

The crossing number of a graph is the smallest number of intersections in a
drawing of the graph (where we do not allow more than two edges to cross at
a time, and edges are not allowed to pass through vertices). Determining the
crossing number of a graph is a hard problem, unfortunately so, since it plays
a central role in graph drawing and visualization.



8.3. GRAPH DRAWING 135

Exercise 8.3.5. Show that the crossing number of K3,3 is 1. Hint: lower and
upper bound.

A special type of drawing often considered in graph drawing are straight-line
drawings in which every edge is drawn as a straight-line segment.6 The smallest
number of crossings required by a straight-line drawing of a graph is known
as the graph’s rectilinear crossing number. In general, the rectilinear crossing
number can be much larger than the crossing number, but for K5 and K3,3 it
is 1 again.

Exercise 8.3.6. Find straight-line drawings of K5 and K3,3 realizing a crossing
number of 1.

Also, for planar graphs, crossing number and rectilinear crossing number
agree:

Theorem 8.3.7. Every planar graph has an intersection-free straight-line draw-
ing in the plane.

We omit the proof.

Theorem 8.3.8. In the drawing of a planar, connected graph we always have

n − m + f = 2,

where n is the number of vertices, m the number of edges and f is the number
of faces.

Proof. Start with the drawing of the given graph. We will show how to modify
the drawing in such a way that the value of f −m + n does not change and we
obtain a drawing for which we can explicitly verify that f − m + n = 2. From
this the claim of the theorem follows.

For the purposes of this proof (and this proof only) we will allow multigraphs,
that is, multiple edges between two vertices and loops, edges that lead from a
vertex to itself; these will naturally occur in the contraction process underlying
the proof.

Pick an arbitrary edge e = uv of the graph; contract that edge by moving
u along e towards v, extending edges incident to u. Finally, pull u over v,
identifying u and v and attaching the edges incident to u to v. This contraction
operation removed a single vertex and a single edge, so f − m + n does not
change (since it contains the term n − m). At the end of the contractions we
are left with a single vertex (remember that the graph is connected), so n = 1.
Moreover, all the edges form loops at the single vertex, so the resulting graph
is a bouquet of loops. Every loop bounds two different faces, so if we remove a
loop, we reduce the number of faces by 1. Again, f − m + n does not change
during that operation, because of the term f − m. If we remove all loops this

6To get a feeling for straight-line drawings, play around with the applet mentioned in the

notes at the end.



136 CHAPTER 8. GAMES AND GRAPHS

way, we will be left with a single vertex, n = 1 and a single face, f = 1 and no
edges, m = 0. So f − m + n = 1 − 0 + 1 = 2. We argue that the value did not
change throughout the process, so f − m + n was 2 at the start.

One conclusion we can draw from Euler’s theorem is that a planar graph
cannot contain too many edges: if n − m + f = 2, then m = n + f − 2. A face
in a planar graph (without multiple edges now), must be bounded by at least
three edges. Since each edge can bound at most 2 different faces, we know that
f ≤ 2/3m. So m = n + f − 2 ≤ n + 2/3m − 2, which implies m/3 ≤ n − 2 or
m ≤ 3n − 6.

Corollary 8.3.9. If G is a planar connected graph with n ≥ 3, then m ≤ 3n−6

Exercise 8.3.10. Give a new proof that K5 is not planar using the corollary
to Euler’s formula.

Exercise 8.3.11. The average degree of a graph G = (V, E) is
∑

v∈V deg(v)/n.
Show that the average degree of a planar connected graph is less than 6. Con-
clude that a planar connected graph always contains a vertex of degree at most
5. Hint: To compute the average degree use the handshake lemma.

The ancient Greeks suspected that there could be only five regular solids;
that is, shapes made up from boundary pieces that are regular polygons such
as equilateral triangles, squares, pentagons, hexagons, and so on. For example,
we can put six squares together so they form a cube; similarly, four equilateral
triangles form a tetrahedron, eight equilateral triangles form an octahedron (try
it), twenty triangles make an icosahedron and twelve pentagons a dodecahedron.
And this is it, there are no more regular solids; we can show that this is true
using Euler’s formula.

Before we state the theorem, we need to make our terms precise: we call a
solid regular if all of its faces are made of the same type of polygon, that is every
face has the same number b of edges, and, if every vertex of the solid is incident
to the same number r of faces. We are interested in convex solids, that is, with
every two points the convex solid also contains any point on the line segment
between the two points (there are no dents in the solid, it bulges outwards).

Theorem 8.3.12. There are only five regular convex solids, corresponding to
(b, r) being (3, 3), the tetrahedron; (3, 4), the octahedron; (4, 3), the cube; (3, 5),
the icosahedron and (5, 3), the dodecahedron.

Exercise 8.3.13. The fact that these five regular solids exist can be demon-
strated by building them out of paper; do so.

Proof. Take a regular convex solid; it is made up of polygons each of which has
b edges, and there are r faces incident to each vertex. We have to show that
(3, 3), (3, 4), (4, 3), (3, 5), (5, 3) are the only possible values for (b, r).

Imagine the solid is made out of wire, so only the edges and vertices are
visible. If we look at the wires from a point very close to the center of one of the



8.4. *RAMSEY THEORY 137

polygons, we can see all the wires, and, furthermore, they will not obstruct each
other (all this is true because the solid is convex). In other words, the edges
of the solid are really a planar graph; another way of seeing this is by picking
one of the polygons and stretching it and the remaining faces with it, until they
come to rest in the plane, without intersections. (Try doing this for some, not
necessarily regular, convex solids.)

By Euler’s formula, we then know that f − m + n = 2, where f is the
number of faces of the solid, m the number of edges, and n the number of
vertices. Since we have f faces, and every face is made up of b edges, we count
fb edges; however, as in the handshake lemma, we double-counted each edge,
since every edge belongs to two faces, so 2m = fb. Since there are r faces that
meet at each vertex, there are also r edges that meet at each vertex; so, again,
we double-count the edges as nr and conclude that nr = 2m. Substituting this
in

f − m + n = 2,

gives us
2m/b − m + 2m/r = 2.

Now, b ≥ 3, since a polygon must have at least three edges, and r ≥ 3, since
otherwise we would have a vertex adjacent to at most two edges, which would
mean the solid is flat. If both b > 3 and r > 3, then

2m/b − m + 2m/r = m(2/b + 2/r − 1) < m(1/2 + 1/2 − 1) = 0,

which is not possible, so either b = 3 or r = 3. If, for example, b = 3, we obtain

2m/3− m + 2m/r = 2,

or, solving for r,
r = 6m/(6 + m).

The only possible values for r are 3, 4 and 5, giving us m = 6, m = 12 and
m = 20.

If, on the other hand, we assume that r = 3, we use the same argument that
b can have only values 3, 4 and 5. This proves the theorem.

8.4 *Ramsey Theory

It is a dark winter morning and the lights in your clothes cabinet aren’t working.
So you can’t see the color of the socks you are picking. Your socks all look the
same, but they come in five different colors that you can’t distinguish in the
dim light. How many socks do you need to grab to make sure that you have
two socks of the same color?

The smallest answer is six. Five won’t do, since you could have one sock of
each kind. Why is six sufficient? Imagine sorting the socks you grabbed into five
heaps depending on their color. Since there are six socks and only five heaps,
one heap must contain at least two socks.



138 CHAPTER 8. GAMES AND GRAPHS

This principle is known as the pigeonhole principle (or Dirichlet’s principle):
if you place more than n pigeons into n pigeonholes, then one of the pigeonholes
must contain at least two pigeons.

The pigeonhole principle is an example of a type of combinatorial phenom-
ena that are collectively known as Ramsey theory, named after the Cambridge
philosopher and mathematician F.R. Ramsey. Results from Ramsey theory
show that if you take a large enough, but otherwise arbitrary collection of any
type of object, there will be a part of that collection that is structured. In other
words, we cannot avoid structure: if there are only five colors of socks then any
collection of more than five socks will contain two socks of the same color. That
is, we couldn’t avoid structure.

The following table contains the stock information for a famous internet
company in the year 2006:

9/1 9/5 9/6 9/7 9/8 9/11 9/12 9/13 9/14 9/15
28.15 28.68 28.21 27.53 28.51 28.08 28.45 28.00 28.05 27.85

The same data displayed in a chart:

0 1 2 3 4 5 6 7 8 9 1011
2
3
4
5
6
7
8
9

b

b

b

b

b

b

b

b b

b

The look at the graph makes the data look nearly random; but imagine what
you can do with this. If you want to hurt the company, you could point out
how the stock has been decreasing: just pick the data on 9/5, 9/11, 9/15: 28.68,
28.08, 27.85;

0 1 2 3 4 5 6 7 8 9 1011
2
3
4
5
6
7
8
9

b

b

b

b

b

b

b

b
b

b

b

b

b

or, if you like it more dramatic: 9/5, 9/6, 9/7: 28.68, 28.21, 27.53. Or, more
subtle and devious, you can suggest a slow, but continuing decline: 9/5, 9/8,
9/12, 9/14, 9/15: 28.68, 28.51, 28.45, 28.05, 27.85:

0 1 2 3 4 5 6 7 8 9 1011
2
3
4
5
6
7
8
9

b

b

b

b

b

b

b

b
b

b

b

b

b



8.4. *RAMSEY THEORY 139

On the other hand you can as easily make the company look good: consider the
dramatic increase 9/7, 9/11, 9/12: 27.53, 28.08, 28.45.

0 1 2 3 4 5 6 7 8 9 1011
2
3
4
5
6
7
8
9

b

b

b

b

b

b

b

b
b

b

b

b

b

An illustration, how you can make your data prove anything you want, While
this illustrates the importance of good judgement in tabulating, visualizing,
and interpreting data (and how hard it is to keep these apart), there also is
a Ramsey-theoretic observation lurking in the wings. With sufficient data it is
impossible to avoid local structure: There will always have to be long increasing
or decreasing subsequences in our data, whatever it looks like.

Let us make the terminology precise (we will talk more about sequences
in the next chapter). A sequence (ai)i∈I is a series of values, indexed by pa-
rameters in the index set I ⊆ N. The number of indices, |I|, is the length
of the sequence. For example, we could have written the stock market ex-
ample above as a sequence of length ten: (ai)i∈{1,...,10} or a1, . . . , a10, where
a1 = 28.15, a2 = 28.68, . . . , a10 = 27.85.

As local structure we consider subsequences of the original sequence, as
we did with the stock market values. Formally, a subsequence of a sequence
results by selecting some of the indices: J ⊆ I for inclusion in the subsequence.
E.g. with J = {4, 6, 7} we get a4, a6, a7 = 27.53, 28.08, 28.45 an increasing
subsequence. A sequence (ai)i∈I is increasing if ai ≤ aj for every i ≤ j, i, j ∈ I;
it is decreasing if ai ≥ aj for every i ≤ j, i, j ∈ I. A sequence is monotone if it
is either decreasing or increasing.

Our sequence of ten stock values contained many monotone subsequences as
we saw. In general, we cannot claim that there will always be long increasing
and decreasing subsequences in an arbitrary sequence; for example,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

contains only increasing subsequences (we ignore subsequences of length 1, which
are, by definition, both increasing and decreasing, but not very interesting).

Exercise 8.4.1. Build a sequence of length 6 that only contains decreasing
subsequences (of length 2 and more).

Theorem 8.4.2 (Erdős-Szekeres). If we have a sequence of length at least n2+1,
then the sequence contains a monotone subsequence of length at least n + 1.



140 CHAPTER 8. GAMES AND GRAPHS

Example 8.4.3. The theorem tells us that in a sequence of length 10 there
must be a monotone subsequence of length at least 4. In the stock market
example, we even saw a decreasing sequence of length 5. On the other hand,
the stock market example did not contain an increasing sequence of length 4.

Exercise 8.4.4. Find longest monotone subsequences in the following sequences:

1. 9, 1, 7, 5, 4, 2, 8, 3, 10, 6.

2. 2, 1, 4, 3, 6, 5, 8, 7, 10, 9.

Exercise 8.4.5. In this exercise we will see that the bounds given in the Erdős-
Szekeres theorem as sharp, i.e. they cannot be improved:

1. Construct a sequence of length 4 that contains no monotone subsequence
of length 3.

2. Construct a sequence of length 9 that contains no monotone subsequence
of length 4.

3. Show how to construct, for an arbitrary n, a sequence of length n2 that
does not contain a monotone subsequence of length n + 1.

We still owe the proof of the theorem; it turns out to be surprisingly simple.
Look at a sequence, let’s say a1, . . . , a10 = 7, 5, 8, 2, 6, 1, 10, 9, 4, 3. For each
index i in the sequence, we tabulate the length of the longest increasing and the
longest decreasing subsequence ending at that index:

sequence 7 5 8 2 6 1 10 9 4 3
increasing 1 1 2 1 2 1 3 3 2 2
decreasing 1 2 1 3 2 4 1 2 3 4

Let us verify some of the values: initially, a1 = 7 and the longest increasing
and decreasing subsequence is 7, for a length of 1. For a2 = 5 we have a
longest decreasing subsequence ending at a2 of length 2, namely 7, 5. The
longest increasing subsequence ending at a2 is 5, for a length of 1. For a3, the
longest increasing subsequence ending at a3 is of length 2 (actually, there are
two options 7, 8 and 5, 8). Since 8 is the largest number we have seen so far,
the longest decreasing subsequence ending in a3 is just 8 itself, for a length of
1. And so on.

Note that there is something interesting about the two sequences we tabu-
lated below the values of ai; if we consider them as pairs of values, no pair ever
repeats: (1, 1), (1, 2), (2, 1), (1, 3) and so on. There is a reason for this; suppose
you have a pair (p, q) as position i, and let us also look at the pair (r, s) at po-
sition j (for j > i). Take, for example, i = 5 and j = 8, then (p.q) = (2, 2) and
(r, s) = (3, 2). There are two possibilities: either ai < aj , then aj can be used
to extend the longest increasing subsequence ending at i to get an increasing
sequence of length p + 1 ending at j; hence, r ≥ p + 1 in this case. Otherwise,
ai ≥ aj , then aj can be used to extend the longest decreasing subsequence end-
ing at i to get a decreasing sequence of length q+1 ending at j; hence s ≥ q+1.



8.4. *RAMSEY THEORY 141

So, either r ≥ p + 1 or s ≥ q + 1. In either case, (p, q) 6= (r, s). For i = 5 and
j = 8, we see that 6 = a5 < a8 = 9, so r ≥ p + 1 in this case, and, indeed, they
are equal: r = 3 and p = 2.

We conclude that every pair occurs at most once; however, if all monotone
sequences have length at most 3, then there are at most 32 = 9 possible pairs.
However, the sequence has length 10. This is impossible, so the value 4 has to
occur somewhere (indeed, it does twice in the example.

The same proof works in general: if you have a sequence of length at least
n2+1 but all monotone sequences have length at most n, then there are at most
n2 pairs; however, since all pairs are pairwise different, this cannot actually
happen, and there must be a monotone subsequence of length at least n + 1.

Exercise 8.4.6. As we did in the proof of the Erdös-Szekeres theorem, com-
pute the table of longest increasing and decreasing subsequences ending at each
position for our original data set:

9/1 9/5 9/6 9/7 9/8 9/11 9/12 9/13 9/14 9/15
28.15 28.68 28.21 27.53 28.51 28.08 28.45 28.00 28.05 27.85

Ramsey’s Theorem

In a group of six people there will always be three people who know each other
or three people who do not know each other; in other words, any two of the three
know each other or any two of them don’t know each other. We can phrase this
as a graph question by using colored edges; the six people are represented by
six vertices. We also add all possible edges to the graph. This graph is known
as K6, the complete graph on 6 vertices:

In general, the complete graph, Kn on n vertices is the (undirected) graph
consisting of n vertices and all possible edges.

Exercise 8.4.7. How many edges does K6 have? How many edges does Kn

have?

We color an edge between two vertices red if the two people represented by
the vertices know each other; otherwise we color the edge green (in the picture
we represent red as a dotted edge and green as a dashed edge):



142 CHAPTER 8. GAMES AND GRAPHS

Our claim that there are always three people who know each other or three
people who do not know each other translates into the presence of a monochro-
matic triangle, that is a K3 all of whose edges have the same color. We can
easily verify the presence of a monochromatic triangle in the above coloring of
K6; the claim is that there always is such a triangle.7

Exercise 8.4.8. Show that the claim is not true for a K5, that is, find a coloring
of a K5 that does not contain a monochromatic triangle.

Exercise 8.4.9. Maybe the claim looks trivial to you; does it easily generalize?
How about: every coloring of a K8 contains a monochromatic K4. Is that true?
Hint: No. Find a coloring that proves this generalization is not true.

The proof of the claim is not very hard, it is two step sequence of pigeonhole
arguments. Take a K6 and fix any coloring of the K6. We have to find a
monochromatic triangle. Pick an arbitrary vertex of the K6. That vertex is
incident to 5 edges. Since there are only two colors, at least 3 of the edges
must have the same color. Let us say that color is red (if it’s green, the same
argument will work with colors exchanged). Look at the three vertices the red
edges connect us to. If there is a red edge between any two of them, we have
completed a red triangle. Otherwise all the edges between those three vertices
are green, and we have found a green triangle.

The result is not about people knowing or not knowing each other, of course;
it is about a binary relation R: if your universe contains at least 6 objects, then,
for any binary relation, there are either three objects such that R is always true
for any two of them, or always false.

Compare this result to the Erdös-Szekeres theorem: that result is a for a
special type of relation: an ordering relation, and it gives us a stronger con-
clusion: a sequence of n elements contains a monotone subsequence of length√

n − 1. For arbitrary relations, the bound is quite a bit worse:

Theorem 8.4.10 (Ramsey). Every coloring of a Kn with two colors contains
a monochromatic Klog n/2.

7For all colorings of K6 there is a triangle in K6 such that all edges in the triangle have

the same color. The logical structure here is ∀∃∀.



8.5. EXERCISES 143

We will prove Ramsey’s theorem in the following form: every coloring of
a K2n contains a monochromatic K⌈n/2⌉. The proof is similar to the one we
saw earlier. Fix a coloring of K2n and let the vertices be named v1, . . . , v2n .
Consider v1. At least ⌈(2n − 1)/2⌉ = 2n−1 of the edges leaving v1 have the
same color, let us say c1. Remove all but the 2n−1 vertices that are connected
to v1 by an edge of color c1. Now consider v2. Among its 2n−1 − 1 neighbors
there must be ⌈(2n−1 − 1)/2⌉ = 2n−2 that are reached by edges of the same
color, c2. Again, restrict the graph to those 2n−2 vertices. We can continue
picking vertices like this, until 2n−k = 1, that is k = n. So we have a sequence
of vertices v1, . . . , vn such that all edges vivj (with j > i) have color ci. Now
there are only two colors, so among the n values of ci at least ⌈n/2⌉ must be
the same. If we choose the corresponding vertices, we have found ⌈n/2⌉ vertices
such that all edges between them have the same color.

Remark 8.4.11. The argument just given is essentially Ramsey’s own; this
beautiful proof still works if the set of vertices is infinite.

Exercise 8.4.12. Ramsey’s theorem is stated in terms of graphs; we can do the
same for the Erdös-Szekeres theorem: restate that theorem as a theorem about
directed graphs. Hint: A tournament graph is a directed graph G = (V, E) in
which for every u, v ∈ V exactly one of uv or vu is in E (for u 6= v), and if
uv ∈ E and vw ∈ E, then uw ∈ E.

8.5 Exercises

1. Check out the picture of the hedge maze at the Morton Arboretum
(http://www.mortonarb.org/maze/images/imgMap.gif) and draw the
corresponding to the maze; there should be one vertex for each fork, dead
end, entrance and for the goal (rather than exit), the sycamore tree.

2. There is a famous game called “The Kevin Bacon Game”. Before you read
the exercise, familiarize yourself with the rules of the game at

http://en.wikipedia.org/wiki/Six_Degrees_of_Kevin_Bacon,

and try playing the game yourself at “The Oracle of Bacon at Virginia”,
see

http://oracleofbacon.org/.

(a) Describe how you would model this game as a graph. Hint: you need
to determine what are the vertices and what are the edges of your
graph. How would you model the actors in terms of graphs?

(b) In your graph model what does it mean for somebody (like Paul
Robeson) to have a Bacon number of 3?

(c) In your graph model what does it mane for somebody to have a Bacon
number of k? Rephrase in graph-theoretical terms.



144 CHAPTER 8. GAMES AND GRAPHS

Figure 8.1: A maze.

3. Consider the maze in Figure 8.1

(a) Draw the graph corresponding to the maze; there should be one ver-
tex for each fork, dead end, entrance and for the goal.

(b) Perform a depth-first search on the maze. (Show the details of how
reached changes.)

(c) Perform a breadth-first search on the maze. (Show the details of how
reached changes.)

(d) Does the maze contain cycles? Is there more than one solution?

4. The maze in Figure 8.2 is taken from Sam Loyd’s Cyclopedia of puzzles
(published in 1914 as prepared for publication by Loyd’s son, who was
also known as Sam Loyd).

The accompanying text reads (with spelling mistakes left intact):

Any or every style of puzzle which excites interest or affords
amusement is beneficial, in that it trains the mind to concentrate
and pursue a line of thought to a definite purpose. Maze puzzles
are always interesting to both young and old on account of the
historical associations which connects them with noted mazes
in ancient parks and gardens, as well as from the inate pleasure
we all feel in over coming seeming obstacles. Of course there are
many styles of labarynths with various conditions which make
them more or less difficult, but the above may be said to be one
of the best because the crossing of paths by means of bridges
permits of a much wider range of travel than the old fashioned
limitation to branch walks. This puzzle is by Lewis Caroll, who



8.5. EXERCISES 145

Figure 8.2: A maze by Lewis Carroll.

as you all remember, wrote Alice in Wonderland, was a great
mathematician and a noted puzzlist. It is sup posed to represent
poor little Alice lost in the woods ; she starts from the little park
in the centre and wishes to get out of the woods to go home.
Can you give her any assistance in finding the correct path? You
will notice that some of the paths are obstructed so as to make
you retrace your steps, but not to be discouraged just remember
that Euler formulated a rule for solving all mazes. Nevertheless
it is quite a clever and difficult puzzle.

Note: There are several little obstructions in the maze that may not be
crossed.

5. Suppose we are given the drawing of a graph representing a maze; in
particular, we have special vertices s (entrance) and t (exit), and vertices
for each fork and dead end in the maze; two vertices are connected by
an edge if there is a corridor directly leading from one location to the
other (without passing through any other location that is represented as



146 CHAPTER 8. GAMES AND GRAPHS

a vertex). We also assume that the order of the edges leaving a vertex
represents the order in which the corresponding corridors leave the vertex
location.

Show that you can find a way from s to t using the right-hand rule if and
only if the graph does not contain a cycle C which separates s and t, in
the sense that exactly one of s and t lies within the region enclosed by the
cycle, and the other one lies outside.

6. We present another way of implementing topological sort; recall that for
a directed graph the out-degree of a vertex is the number of edges leaving
the vertex (as opposed to entering the vertex). Given a directed graph G
without any directed cycles proceed as follows: repeatedly (and as long
as you can) pick a vertex of out-degree 0, remove it and all its outgoing
edges from G. (Do this on the course prerequisite example.) The vertices
are a topological sort in the order you remove them.

(a) Why is there always a vertex of out-degree 0? Hint: what can you
say about a graph in which every vertex has out-degree at least 1
(keep following that edge)?

(b) Argue that the algorithm described in this exercise produces a topo-
logical sort.

7. Here is a simplified version of the prerequisite structure of the graphics
degree. GPH 213 and GPH 212 require GPH 211, GPH 338 requires GPH
213 and GPH 325. GPH 325 requires CSC 212, which requires CSC 211,
which requires IT 130. GPH 339 requires GPH 325 and CSC 212. CSC
321 requires CSC 393 and MAT 140. CSC 393 requires CSC 212. MAT
220 requires MAT 141, which requires MAT 140. GPH 329 requires CSC
393 and MAT 220. GPH 375 quires GPH 329. GPH 372 requires GPH
329. GPH 395 requires GPH 338 and GPH 372.

(i) Draw the dependency graph for the classes in the graphics degree.

(ii) Run topological sort on the graph.

(iii) Find a longest path in the graph. What does it mean?

(iv) Redraw your dependency graph so it is easy to follow.

8. Which of the five regular solids have Hamiltonian cycles? Include a draw-
ing with the Hamiltonian cycle if it exists.

(i) Tetrahedron

(ii) Octahedron

(iii) Cube

(iv) Icosahedron

(v) Dodecahedron



8.5. EXERCISES 147

9. You are given a 3×3×3 cube consisting of 27 smaller cubes (from outside
it would look rather like a Rubik’s cube).8 By making six straight cuts
you can get all 27 of the smaller cubes. Is there a solution that uses less
than six straight cuts? (Either find a better solution, or argue that it
cannot be done.) In a single cut you are allowed to cut multiple pieces at
the same time (by piling them on top of each other), but all the cuts you
make have to be straight.

10. Another classic puzzle (Loyd includes it in his Cyclopedia under “After
dinner tricks” on page 41. On your table there are 8 wineglasses in a row,
four empty glasses followed by four full glasses:

⋃⋃⋃⋃⊎⊎⊎⊎
. In

Loyd’s own words:

Proposition: Pick up two adjacent glasses at a time and in four
moves change the positions so that each alternate glass will be
empty.

11. A small variation of the previous problem: you have 10 wineglasses, five
full, five empty arranged in a circle on your table. The full and empty
glasses alternate along the circle. A single move consists of swapping two
of the glasses. How many moves do you need at most to bring all the full
glasses together into a single group?

12. Look at the following playing field:

a

b c d e

f g

h

i j

Place a coin on an arbitrary node and move it to an adjacent node. Overall,
you want to place nine coins like this, without ever placing a coin on a node
already occupied and without moving a coin onto a field that is already
occupied. Spell out a sequence of moves that achieves this.

13. For each of the following figures try to draw a single curve which crosses
each line of the drawing exactly once. Your curve should not intersect
itself. There might not always be a solution; in that case, give an argument
that there cannot be a solution. Hint: think of modeling the problem using
multigraphs.

8If you don’t know what a Rubik’s cube is, go buy one.



148 CHAPTER 8. GAMES AND GRAPHS

(i)

(ii)

(iii)

14. [H.E. Dudeney] The following puzzle is by Dudeney entitled “A Lodging-
House Difficulty”; his original description reads as follows:

The Dobsons secured apartments at Slocomb-on-Sea. There
were six rooms on the same floor, all communicating, as shown in
the diagram. The rooms they took were numbers 4, 5, and 6, all
facing the sea. But a little difficulty arose. Mr. Dobson insisted
that the piano and the bookcase should change rooms. This
was wily, for the Dobsons were not musical, but they wanted to
prevent any one else playing the instrument. Now, the rooms
were very small and the pieces of furniture indicated were very
big, so that no two of these articles could be got into any room
at the same time. How was the exchange to be made with the
least possible labour? Suppose, for example, you first move the
wardrobe into No. 2; then you can move the bookcase to No. 5
and the piano to No. 6, and so on. It is a fascinating puzzle, but
the landlady had reasons for not appreciating it. Try to solve



8.5. EXERCISES 149

her difficulty in the fewest possible removals with counters on a
sheet of paper.

------------------------------

| Cabinet| | Piano |

| |

|1 |2 |3 |

--- ----- ----- ---

| | | |

|Drawers Wardrobe Bookcase|

| 4 |5 |6 |

------------------------------

Write down your solution as a sequence of numbers, where a number
represents the room that you are moving a piece of furniture from. (Since
there is only one empty room, the room you are moving it to is always
determined.) Hint: The solution will change the order of Cabinet, Drawers
and Wardrobe. Unavoidably so, as we will see later.

15. [Martin Gardner] We start with a 3×3 chessboard. Place a knight on the
chessboard and make one move with it. You want to repeat this six more
times. Where do you have to place the knights in what order to make this
possible? How did you arrive at the solution?

16. An old children’s game; draw the picture

without lifting your pen. That is, start at some point, and then draw the
picture, finishing it before lifting up the pen again. Can you do that and
end at the same point where you started?

17. Connect A to A, B to B and C to C (without leaving the field).



150 CHAPTER 8. GAMES AND GRAPHS

A

B

C

A B C

18. Connect A to A, B to B, C to C and D to D (without leaving the field).

A

B

C

D

A B C D

19. Connect A to A, B to B, C to C, D to D and E to E (without leaving
the field).



8.5. EXERCISES 151

A

B

C

A

D

D

E

C

B

E

20. [Interview Question] You have a bucket of jelly beans. Some are red, some
are blue, and some green. With your eyes closed, you pick jelly beans from
the bucket. How many do you have to grab to be sure you have 2 of the
same color?

21. Does a longest monotone subsequence of a sequence have to contain the
first or the last element of the sequence? Either prove that it does, or
show a counterexample.

22. In the proof of the Erdős-Szekeres theorem we used pairs of numbers
(pi, qi)i∈I where pi was the length of the longest increasing subsequence
ending at position i and qi was the length of the longest decreasing sub-
sequence ending at position i. Write an algorithm in pseudocode that
computes these numbers quickly, by just looking at all the previous value.
Hint: if you were filling the table by hand, how would you proceed sys-
tematically (that is, without explicitly searching for subsequences).

23. The full Erdős-Szekeres theorem is a bit stronger than what we stated
above:

Theorem 8.5.1 (Erdős-Szekeres). If we have a sequence of length at least
rs + 1, then the sequence contains either an increasing subsequence of
length r + 1 or a decreasing subsequence of length s + 1.

(i) Show an application of the full Erdős-Szekeres that doesn’t follow
from the version presented earlier.

(ii) Prove the full version of the theorem. Hint: The original proof will
only need minor adjustments.

24. Imagine a K6 and two players alternately coloring the edges red (Player I)
and green (Player II). Player I goes first. Players will win or lose depending
on whether there is a monochromatic triangle in their color. By Ramsey’s



152 CHAPTER 8. GAMES AND GRAPHS

theorem we know that there will always be a monochromatic triangle, so
there cannot be a tie in this game.

(i) A player wins if he is the first to complete a monochromatic triangle
in his color. Does Player I have a winning strategy, that is, can he
always win?

(ii) A player wins if the other player completes a monochromatic triangle
in their color. Play this version of the game online at
http://www.dbai.tuwien.ac.at/proj/ramsey/index.html.

25. A farmer claims he has four trees that are pairwise equidistant; is he lying?

8.6 Notes and Additional Reading

There are many good books and web-pages on mazes; an old classic is William
Henry Matthews’ Mazes and Labyrinths: Their History and Development, which
is available as a Dover reprint. There are several web-pages that allow you to
generate your own mazes, for example, Maze Maker at

http://hereandabove.com/maze/.

Euler’s formula is a ubiquitous tool; the web-page

http://www.ics.uci.edu/%7Eeppstein/junkyard/euler/

collects nineteen different proofs of it.
Sam Loyd was one of the most imaginative American puzzle inventors; there

is a famous collection of his puzzles edited posthumously by his son under the
title Sam Loyd’s Cyclopedia of Puzzles. The MAA uploaded the book in its
entirety at

http://www.maa.org/editorial/mathgames/mathgames\_01\_03\_05.html.

E.H. Dudeney was the British counterpart to Sam Loyd; his Amusements in
Mathematics are still worth working through; the book is online at

http://www.web-books.com/Classics/Nonfiction/Science/AmuseMath/Contents.htm.

For a nice discussion of the utilities problem, see

http://www.cut-the-knot.org/do_you_know/3Utilities.shtml#wells.

There are many graph-drawing tools, professional, as well as for fun. If you
want to get familiar with straight-line drawings, check out the applet at

http://mathdl.org/images/upload\_library/3/EnsleyPlanar/planarApplets.html,

there are exercises there as well.



8.6. NOTES AND ADDITIONAL READING 153

The Erdös-Szekeres theorem might not be as ubiquitous a tool as Euler’s
formula, but it is very well-known and there are many proofs of it; there is
a fine survey article by J. Michael Steele called Variations on the Monotone
Subsequence Problem of Erdös and Szekeres, available online at

http://www-stat.wharton.upenn.edu/~steele/Publications/PDF/VOTMSTOEAS.pdf.


