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Chapter 9

Numbers, Cards, and Magic

9.1 Figurative Numbers

There is a famous story about the ten-year old Carl Friedrich Gauss and his
teacher assigning the sum

1 + 2 + 3 + . . . + 99 + 100

to class. While the rest of the students began adding up the numbers, Gauss
immediately solved the problem, by rearranging the terms as follows:

(1 + 100) + (2 + 99) + (3 + 98) + . . . + (50 + 51)

= 101 + 101 + . . . + 101
︸ ︷︷ ︸

50

= 50 ∗ 101 = 5050,

destroying any chance the poor teacher had of a quiet repose. The basic idea be-
hind Gauss’s solution is worth noting: whenever you are dealing with something
that varies (such as the numbers varying from 1 through 100) look for something
that does not change. In this case, Gauss observed that the sum of the first and
the last number is the same as the sum of the second and the second-to-last
number, etc. and was able to use this to find the sum of the numbers quickly.

Let us try to generalize Gauss’ observation. What is

1 + 2 + 3 + . . . + (n − 1) + n ?

Let us assume for the moment that n is even, then using the same argument as
above, we obtain:

(1 + n) + (2 + (n − 1)) + (3 + (n − 2)) + . . . + (n/2 + (n/2 + 1))

= (n + 1) + (n + 1) + . . . + (n + 1)
︸ ︷︷ ︸

n/2

= n/2 ∗ (n + 1) = n(n + 1)/2.
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If n is odd, we have to be a bit more careful: in that case there are (n − 1)/2
pairs, each of them with a sum of n + 1 and one extra term, (n + 1)/2, the
middle term:

(1 + n) + (2 + (n − 1)) + (3 + (n − 2)) + . . . + ((n − 1)/2 + (n + 3)/2) + (n + 1)/2

= (n + 1) + (n + 1) + . . . + (n + 1)
︸ ︷︷ ︸

(n−1)/2

+(n + 1)/2

= (n − 1)/2 ∗ (n + 1) + (n + 1)/2 = n(n + 1)/2.

The same result! We conclude that

1 + 2 + 3 + . . . + (n − 1) + n = n(n + 1)/2.

Euler introduced a simple way of writing sums with a variable number of terms,
using

∑
to denote the sum. In this notation, we have shown that

n∑

i=1

i = n(n + 1)/2.

More generally, we write
n∑

i=1

ti

as a shorthand for

t1 + t2 + · · · + tn,

where ti is a term depending on i such as i itself or i2, 1/i, 2i and so on.

There is something unsatisfactory in our proof of this identity: why did we
need to distinguish between the case that n is even and n is odd? The result
turns out to be the same, an indication that we are not looking at the proof the
right way. Indeed, there is a better way of looking at it suggested by a visual
interpretation. Consider the following picture:

o

oo

ooo

oooo

...

ooooooo

How many pebbles are there? The answer is
∑n

i=1 i, the number we are
interested in. How does visualizing the problem help? Based on the earlier idea
of finding something constant in the rows of pebbles, let us add another set
completing a rectangle:
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o oooooooooo

oo ooooooooo

ooo oooooooo

...

oooooooooo o

The number of pebbles is (by inspection) n(n+1), which means that
∑n

i=1 i,
which is precisely half of the pebbles, must be n(n + 1)/2. We can also phrase
the proof more algebraically, but notice that it is the same proof:

2
n∑

i=1

i =
n∑

i=1

i +
n∑

i=1

i

=

n∑

i=1

i +

n∑

i=1

(n + 1 − i)

=
n∑

i=1

(i + (n + 1 − i))

=

n∑

i=1

(n + 1)

= n(n + 1).

And, therefore,
∑n

i=1 i = n(n + 1)/2.

Exercise 9.1.1. (i) What is the sum of the first n odd numbers? Give a
geometric and an algebraic argument.

(ii) What is the sum of the first n even numbers? Give a geometric and an
algebraic argument.

Counting the number of pebbles in geometric arrangements used to be an
active research area in mathematics called figurative numbers. Indeed, T (n) :=
n(n+1)/2 is known as the nth triangular number, because it counts the number
of pebbles in a triangle with n rows, here, for example, for n = 4:

o

o o

o o o

o o o o

For obvious reasons, S(n) := n2 is known as the nth square number.

Exercise 9.1.2. Show that T (n)+T (n+1) = S(n+1) for all n; give a geometric
and an algebraic argument.

The exercise shows that every square number is the sum of two triangu-
lar numbers. There are many other relationships like this between figurative
numbers.
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Exercise 9.1.3. Show the following equalities by giving two arguments: one
geometric, one algebraic.

(i) 3T (n) + T (n − 1) = T (2n).

(ii) 3T (n) + T (n + 1) = T (2n + 1).

(iii) 8T (n) + 1 = S(2n + 1).

There is no reason to stop with squares, we can introduce pentagonal num-
bers, P (n), and hexagonal numbers, H(n), and so on; Figure 9.1 shows the first
pentagonal numbers, 1, 5, 12, 22, . . ..

o o o o

o o o o o o

o o o o o o o o o o

o o o o o o

o o o o o o o o

o o

o o o o

Figure 9.1: Pentagonal numbers: P (1), P (2), P (3), and P (4).

Exercise 9.1.4. Show that P (n) = n + 3T (n − 1) for all n; give a geometric
argument. Conclude that P (n) = n(3n − 1)/2.

The first hexagonal numbers, H(n), are 1, 6, 15, 28, . . ., see Figure 9.2.

o o o o

o o o o o o

o o o o o o o o o o

o o o o o o o o o

o o o o o o

o o o o o o

o o o o

o o

o o

o

Figure 9.2: Hexagonal numbers: H(1), H(2), H(3), and H(4).

Exercise 9.1.5. Show that H(n) = n + 4T (n − 1) for all n; give a geometric
argument. Conclude that H(n) = n(2n − 1).

If we consider our figurative numbers from a recursive point of view, they
all have a simple definition:

T (n) = T (n− 1) + n,
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Q(n) = Q(n − 1) + 2n− 1,

P (n) = P (n − 1) + 3n − 2,

H(n) = H(n − 1) + 4n − 3.

In other words, these numbers are the partial sums of the following series:

1 + 2 + 3 + 4 + 5 . . . ,

1 + 3 + 5 + 7 + 9 . . . ,

1 + 4 + 7 + 10 + 13 . . . ,

1 + 5 + 9 + 13 + 17 . . .

An arithmetical series (or progression, or sequence) is a sequence (ai)1≤i≤n

of numbers such that any two consecutive terms have the same difference. The
sum

∑n
i=1 ai of an arithmetical series, where a1 = a and ai = a1 + (i− 1)d with

d being the common difference between consecutive terms can be computed as

n∑

i=1

ai =

n∑

i=1

(a + (i − 1)d) = n(2a + (n − 1)d)/2.

Exercise 9.1.6. Prove that the sum of the n term arithmetical series with first
term a and difference d is

n(2a + (n − 1)d)/2.

Similar methods work for higher powers; for example, let us determine

Py(n) =
n∑

i=1

i2,

the nth square pyramidal number. (Visualize the first few terms by drawing
square pyramids with n levels; the nth level is S(n)). Actually, before doing this,
it is helpful to determine the tetrahedral number Te(n), that is, the numbers
of pebbles in a tetrahedron of side length n. Te(n) can also be defined by
Te(n) = Te(n − 1) + T (n) (a tetrahedron of height n consists of a tetrahedron
of height n−1 together with one triangular layer of height n). Or, in other words,
Te(n) =

∑n
i=1 T (i). The first few tetrahedral numbers are 1, 4, 10, 20, . . ..

Let us look at Te(4), for example; the layers of the tetrahedron are:

1

1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Let us put those on top of each other:



160 CHAPTER 9. NUMBERS, CARDS, AND MAGIC

1

1 2

1 2 3

1 2 3 4

How can we add these numbers? We use our earlier trick by taking three of
these and adding them the right way:

1 1 4 6

1 2 2 1 3 3 6 6

1 2 3 + 3 2 1 + 2 2 2 = 6 6 6

1 2 3 4 4 3 2 1 1 1 1 1 6 6 6 6

That is, 3Te(4) = 6T (4) = 60, so Te(4) = 20, which we already know to be
true. This proof works in general, and it shows that

3Te(n) = (n + 2)T (n),

in other words,
Te(n) = n(n + 1)(n + 2)/6.

We are now ready to compute

Py(n) =

n∑

i=1

i2.

We know that i2 = S(i) = T (i) + T (i − 1), so at each level a pyramid is
the sum of two triangles; summing both sides from from 1 to n gives us that
Py(n) = Te(n) + Te(n− 1), so

Py(n) = n(n + 1)(2n + 1)/6.

We conclude that

n∑

i=1

i2 = n(n + 1)(2n + 1)/6.

9.2 Fractals and Geometric Series

Let us look at a more geometric construction. We start with the line segment
from (0, 0) to (1, 0) on the real line; we erect an equilateral triangle on the
middle third (1/3, 0) to (2/3, 0) of the line. In the next step we erect a smaller
equilateral triangles on each of the middle thirds of the f sides of the new triangle.
And so on; in each step we a new triangle on the middle third of each side. The
following picture illustrates the first few steps of the construction.

If we continue this process indefinitely, we obtain a geometric figure called
a fractal.



9.2. FRACTALS AND GEOMETRIC SERIES 161

0: ______________
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Exercise 9.2.1. Here is an exercise that shows that the figure we constructed
is different from other geometric figures: what is the total length of the fractal
line we are constructing? Hint: Calculate the total length for the nth step.

What’s the area of the resulting figure? The whole fractal is safely contained
in the square with corners (0, 0) and (1, 1), so the area is less than 1. The triangle
we build in step 1 has area A = 1/(24

√
3). The triangles in step 2 have size A/9

(they are scaled copies of the original triangle, where the scaling factor in both
x and y direction is 1/3, so the area scales by a factor of 1/9). Similarly, the
triangles in the third step have size A/92. In general, the triangles we add in the
nth step have size A/9n−1. Moreover, there are 4n−1 triangles added in the nth
step (including the first), since each side turns into four sides by the addition of
a triangle. That is, in the nth step we add an area of 4n−1A/9n−1 = A(4/9)n−1.
Hence, the total area of the figure is

∞∑

n=1

A(4/9)n−1 = A

∞∑

n=0

(4/9)n,

using the distributive law (which holds for infinite sums as well). We can ignore
the factor A for the moment and concentrate on the remaining infinite sum. It
has the form

∞∑

n=0

xn,

for some 0 < x < 1 (x = 4/9 in our case). Let us call that sum S, that is,
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S =
∑∞

n=0 xn. Now

xS = x

∞∑

n=0

xn

=

∞∑

n=0

xn+1

=

∞∑

n=1

xn

= S − 1.

So xS = S − 1, implying that S = 1/(1 − x).

∞∑

n=0

xn = 1/(1 − x) for 0 < x < 1.

In our figure, we have x = 4/9, so S = 9/5, and the total area of the fractal
is

9/5A = 9/(120
√

3) =
√

3/40,

which, roughly, is 0.04.

Remark 9.2.2. Here is a different way of looking at the argument: let us call
the area of the fractal S. Now argue with self-similarity: if you look at the four
sub-figures we build on the four sides of the very figure after the first step, their
areas, because of self-similarity, must be S/9 each; so S = A + 4S/9, where A
is the area of the triangle. Solving for S gives us the same solution as we got
from solving the infinite sum.

The general geometric series has terms of the form an = axn, so a0 = a is
the base term of the series which develops by multiplying a constant factor x
in each step: an+1 = xan. We can now easily compute the sum of the general
geometric series as

∞∑

n=0

an =

∞∑

n=0

axn = a

∞∑

n=0

xn = a/(1 − x).

Exercise 9.2.3. Show that

(i)
∑∞

n=1 xn = x/(1 − x),

(ii)
∑∞

n=k xn = xk/(1 − x) (for any k),

(iii)
∑∞

n=1 nxn = x/(1 − x)2 (Hint: use the difference trick),

(iv)
∑∞

n=1 n2xn = x(1 + x)/(1 − x)3.
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You will often encounter finite geometric series such as
∑m

n=k xn; these can
easily be dealt with as special cases of the infinite series; for example:

m∑

n=k

xn =

∞∑

n=k

xn −

∞∑

n=m+1

xn

= xk/(1 − x) − xm+1/(1 − x)

= (xk − xm+1)/(1 − x).

Exercise 9.2.4. For the general geometric series an = axn find a closed form
for

∑m
n=k an.

Remark 9.2.5. The applet at

http://mathinsite.bmth.ac.uk/applet/aglr/aglr.html

presents arithmetic and geometric series visually and let’s you modify the pa-
rameters a, d and n to get a feel for how these series behave.

9.3 Exercises

1. We create a fractal as follows: start with a 1 × 1 square. On each of the
four sides add a 1/3 × 1/3 square in the middle of the side. Now repeat:
add a 1/9 × 1/9 square on each of the three free sides of the four new
squares. The first three steps of constructing the fractal are shown below:

What’s the area of the fractal? Hint: note that the number of free sides
changes from the first to the second step.
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2. While walking through Chicago you saw a nice ornamental window which
looked like this:

How many squares do you see? Hint: The correct answer is not 24. Also,
ignore the round part on the top, it is just for ornamentation.

3. Look again at the window from the previous exercise. How many rect-
angles do you see? If the window consisted of n × m basic squares, how
many rectangles would you see?

4. How many edges does the complete graph Kn on n vertices have?

5. [The 7/8 puzzle] This is a 3 × 3 version of the 14/15 puzzle. You have a
wooden frame holding square tiles numbered 1 through 8 and arranged as
follows:

-------------

| 1 | 2 | 3 |

-------------

| 4 | 5 | 6 |

-------------

| 8 | 7 | |

-------------

Can you move the tiles to obtain

-------------

| 1 | 2 | 3 |

-------------

| 4 | 5 | 6 |

-------------

| 7 | 8 | |

-------------



9.3. EXERCISES 165

or can you prove that this is not possible?

6. You are given a bar of chocolate consisting of n rows and m columns of
chocolate squares. -picture You can break a bar at a row or a column.
How many steps does it take to break the whole bar into squares of size
1? Note: You can only break one piece at a time.

7. The previous chapter contained the following puzzle by H.E. Dudeney:

The Dobsons secured apartments at Slocomb-on-Sea. There
were six rooms on the same floor, all communicating, as shown in
the diagram. The rooms they took were numbers 4, 5, and 6, all
facing the sea. But a little difficulty arose. Mr. Dobson insisted
that the piano and the bookcase should change rooms. This
was wily, for the Dobsons were not musical, but they wanted to
prevent any one else playing the instrument. Now, the rooms
were very small and the pieces of furniture indicated were very
big, so that no two of these articles could be got into any room
at the same time. How was the exchange to be made with the
least possible labour? Suppose, for example, you first move the
wardrobe into No. 2; then you can move the bookcase to No. 5
and the piano to No. 6, and so on. It is a fascinating puzzle, but
the landlady had reasons for not appreciating it. Try to solve
her difficulty in the fewest possible removals with counters on a
sheet of paper.

------------------------------

| Cabinet| | Piano |

| |

|1 |2 |3 |

--- ----- ----- ---

| | | |

|Drawers Wardrobe Bookcase|

| 4 |5 |6 |

------------------------------

Show that there is no solution to this problem that finishes with the Cab-
inet in room 1, the Drawers in room 4 and the Wardrobe in room 5.

8. [Interview Question] You have b boxes and n dollars. Distribute the
money in the boxes so that you can respond to any request for 0 to n
dollars, by handing over some of the boxes without opening them to change
their content. What are the restrictions on b and n and how do you
distribute the money?

9. (The Baltimore Hilton Inn problem.) Your hotel room has an electronic
lock with a keypad on which you can type digits 0 through 9. Your access
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code is a four digit sequence. The door opens whenever the last four digits
that have been typed in are the correct access code.

10. How many four-digit access codes are there?

11. You forgot your access code. Can you do better than type out all four-
digit access codes? How many digits do you need to type in in the worst
case?

12. There is a cheaper hotel around the corner in which the keypad only has
digits 0, 1, and 2 and your access code consists of three digits. Write down
the shortest sequence of digits that you can construct that will always open
the door.

9.4 Notes and Additional Reading

The material in the section on figurative numbers is mostly drawn from John H.
Conway and Richard K. Guy’s impressive The Book of Numbers, which contain
everything you ever wanted to know about numbers but were afraid to ask.


