
Optimal Binary Search Tree

Marcus Schaefer

Department of Computer Science
DePaul University

Chicago, Illinois 60604, USA
mschaefer@cs.depaul.edu

October 9, 2006

1 Finding the optimal binary search tree

We are given n keys k1, k2, . . . kn and a probability pi that a key ki is queried.
We assume that

∑n
i=1

pi = 1 that is, we only allow queries in the set of
keys (alternately, we assume we have listed all possible queries). Given a
particular binary search tree T , we compute the cost of the tree as

∑

1≤i≤n

depthT (ki)pi,

which is the average number of queries needed to find a key: we ask for key
ki with probability ki and finding it will take depthT (ki) queries. (The root
of the tree has depth 1.)

How do we find the optimal binary search tree? Suppose kr is in the root
of the tree, then k1, . . . kr−1 are to the left of the root and kr+1, . . . kn are
to the right of the root. Call the trees they form T1r−1 and Tr+1n, respec-
tively. Then both of these trees are optimal binary search trees. So we can
solve the problem by trying all possibilities for kr and then computing the
optimal search trees on both sides recursively; or, actually, using dynamic
programming.

Let Tij be the optimal binary search tree for keys ki, . . . kj , and let cij

be the cost of Tij . Let pij be the probability that we ask for a key in Tij , in
other words:

pij =

j∑

k=i

pk.

Then
cij = min

i≤r≤j
[(ci r−1 + pi r−1) + (cr+1 j + pr+1 j) + 1 ∗ pr],

1



because if kr is at the root of the tree, the left tree has cost cir−1 to which we
must add 1∗pir−1, because we will ask for a key in that tree with probability
pir−1, increasing the average height of that tree by 1 with that probability
to get (cir−1 + pir−1). The same reasoning applies to the right tree, and the
root will cost us 1 query with a probability of pr. Now,

cij = min
i≤r≤j

[(ci r−1 + pi r−1) + (cr+1 j + pr+1 j) + 1 ∗ pr]

= pij + min
i≤r≤j

[ci r−1 + cr+1 j ]

Since pi r−1 + pr+1 j + pr = pij, by definition.

Here is a small example:

k 1 2 3 4 5

p 0.2 0.1 0.15 0.25 0.3

We first precompute the pij, using dynamic programming (details left to
the reader ...).

0.2 0.3 0.45 0.7 1
0.1 0.25 0.5 0.8

0.15 0.4 0.7
0.25 0.55

0.3

Now, cii = pi, since there is only one key in the tree. So we start the
matrix of cij as

0.2 ∗ ∗ ∗ ∗

0.1 ∗ ∗ ∗

0.15 ∗ ∗

0.25 ∗

0.3

Let us compute c12. There are two possibilities: k1 is on top, or k2 is on
top. In the first case, the cost of the tree is c11 + (c22 + p22) = 0.4, in the
second case, the tree costs c22 + (c11 + p11) = 0.5; let us double-check with
the formula we derived earlier:

c12 = p12 + min(c11, c22),

2



that is, c12 = 0.3 + min(0.2, 0.1) = 0.4, which checks with our earlier com-
putation. So putting k1 on top is the cheaper choice for keys k1, k2:

0.2 0.4 ∗ ∗ ∗

0.1 ∗ ∗ ∗

0.15 ∗ ∗

0.25 ∗

0.3

Similarly, c23 = min(0.35, 0.4) = 0.35.

0.2 0.4 ∗ ∗ ∗

0.1 0.35 ∗ ∗

0.15 ∗ ∗

0.25 ∗

0.3

Next, we can compute c34 = 0.55 and c45 = 0.8:

0.2 0.4 ∗ ∗ ∗

0.1 0.35 ∗ ∗

0.15 0.55 ∗

0.25 0.8
0.3

As a final example, let us compute c13. Now there are three possibilities:
k1, k2, or k3 on top. The first possibility costs p13 + c23 = 0.45 + 0.35 = 0.8,
the second p13 + c11 + c33 = 0.45+0.2+0.15 = 0.8 and the third p13 + c12 =
0.45 + 0.4 = 0.85, so we go with either the first or the second choice (they
are equally good) for a cost of 0.8:

0.2 0.4 0.8 ∗ ∗

0.1 0.35 ∗ ∗

0.15 0.7 ∗

0.25 0.8
0.3

3


