Optimal Binary Search Tree

Marcus Schaefer

Department of Computer Science DePaul University Chicago, Illinois 60604, USA mschaefer@cs.depaul.edu

October 9, 2006

1 Finding the optimal binary search tree

We are given n keys k_1, k_2, \ldots, k_n and a probability p_i that a key k_i is queried. We assume that $\sum_{i=1}^{n} p_i = 1$ that is, we only allow queries in the set of keys (alternately, we assume we have listed all possible queries). Given a particular binary search tree T, we compute the cost of the tree as

$$\sum_{1 \le i \le n} \operatorname{depth}_T(k_i) p_i$$

which is the average number of queries needed to find a key: we ask for key k_i with probability k_i and finding it will take depth_T(k_i) queries. (The root of the tree has depth 1.)

How do we find the optimal binary search tree? Suppose k_r is in the root of the tree, then k_1, \ldots, k_{r-1} are to the left of the root and k_{r+1}, \ldots, k_n are to the right of the root. Call the trees they form T_{1r-1} and T_{r+1n} , respectively. Then both of these trees are optimal binary search trees. So we can solve the problem by trying all possibilities for k_r and then computing the optimal search trees on both sides recursively; or, actually, using dynamic programming.

Let T_{ij} be the optimal binary search tree for keys $k_i, \ldots k_j$, and let c_{ij} be the cost of T_{ij} . Let p_{ij} be the probability that we ask for a key in T_{ij} , in other words:

$$p_{ij} = \sum_{k=i}^{j} p_k.$$

Then

$$c_{ij} = \min_{i \le r \le j} [(c_{i r-1} + p_{i r-1}) + (c_{r+1 j} + p_{r+1 j}) + 1 * p_r],$$

because if k_r is at the root of the tree, the left tree has $\cot c_{ir-1}$ to which we must add $1 * p_{ir-1}$, because we will ask for a key in that tree with probability p_{ir-1} , increasing the average height of that tree by 1 with that probability to get $(c_{ir-1} + p_{ir-1})$. The same reasoning applies to the right tree, and the root will cost us 1 query with a probability of p_r . Now,

$$c_{ij} = \min_{i \le r \le j} [(c_{i r-1} + p_{i r-1}) + (c_{r+1 j} + p_{r+1 j}) + 1 * p_r] = p_{ij} + \min_{i \le r \le j} [c_{i r-1} + c_{r+1 j}]$$

Since $p_{i r-1} + p_{r+1 j} + p_r = p_{ij}$, by definition.

Here is a small example:

We first precompute the p_{ij} , using dynamic programming (details left to the reader ...).

Now, $c_{ii} = p_i$, since there is only one key in the tree. So we start the matrix of c_{ij} as

Let us compute c_{12} . There are two possibilities: k_1 is on top, or k_2 is on top. In the first case, the cost of the tree is $c_{11} + (c_{22} + p_{22}) = 0.4$, in the second case, the tree costs $c_{22} + (c_{11} + p_{11}) = 0.5$; let us double-check with the formula we derived earlier:

$$c_{12} = p_{12} + \min(c_{11}, c_{22}),$$

that is, $c_{12} = 0.3 + \min(0.2, 0.1) = 0.4$, which checks with our earlier computation. So putting k_1 on top is the cheaper choice for keys k_1, k_2 :

Similarly, $c_{23} = \min(0.35, 0.4) = 0.35$.

Next, we can compute $c_{34} = 0.55$ and $c_{45} = 0.8$:

As a final example, let us compute c_{13} . Now there are three possibilities: k_1, k_2 , or k_3 on top. The first possibility costs $p_{13} + c_{23} = 0.45 + 0.35 = 0.8$, the second $p_{13} + c_{11} + c_{33} = 0.45 + 0.2 + 0.15 = 0.8$ and the third $p_{13} + c_{12} = 0.45 + 0.4 = 0.85$, so we go with either the first or the second choice (they are equally good) for a cost of 0.8: