Analysis of Randomized Quicksort

Marcus Schaefer
Department of Computer Science
DePaul University
Chicago, Illinois 60604, USA
mschaefer@cs.depaul.edu

September 18, 2006

1 Analysis of Randomized Quicksort

We analyze the running time of randomized quicksort as presented on page 146 of CLRS. Let $T(n)$ be the time taken on average by randomized quicksort on n-element arrays. Note that if we partition around the pth element, the algorithm will take time

$$T(p - 1) + T(n - p) + cn.$$

Since we picked the partition element at random, every value of p from 1 to n is equally likely, so

$$T(n) = \frac{1}{n} \sum_{p=1}^{n} (T(p - 1) + T(n - p) + cn)$$

$$= cn + \frac{1}{n} \sum_{p=1}^{n} (T(p - 1) + T(n - p))$$

Now

$$\sum_{p=1}^{n} (T(p - 1) + T(n - p)) = (T(0) + T(n - 1)) + (T(1) + T(n - 2)) + \ldots + (T(n - 1) + T(0))$$

$$= 2 \sum_{p=0}^{n-1} (T(p))$$

1
by reordering terms, so

\[T(n) = cn + 1/n \sum_{p=1}^{n} (T(p - 1) + T(n - p)) \]

\[= cn + 2/n \sum_{p=0}^{n-1} T(p) \]

Multiply both sides by \(n \) to obtain

\[nT(n) = cn^2 + 2 \sum_{p=0}^{n-1} T(p). \]

Compare this to the same equation for \(n-1 \) in place of \(n \):

\[(n-1)T(n-1) = c(n-1)^2 + 2 \sum_{p=0}^{n-2} T(p). \]

Subtract the second equation from the first, and you get

\[nT(n) - (n-1)T(n-1) = 2nc - c + 2T(n-1), \]

since \(\sum_{p=0}^{n-1} (T(p) - \sum_{p=0}^{n-2} T(p)) = T(n-1) \). We reorder the terms to get

\[nT(n) = 2nc - c + (n + 1)T(n-1). \]

To simplify we drop the \(c \):

\[nT(n) \leq 2nc + (n + 1)T(n-1). \]

Dividing both sides by \(n(n + 1) \) gets us

\[T(n)/(n + 1) \leq 2c/(n + 1) + T(n-1)/n. \]

Since then

\[T(n-1)/n \leq 2c/n + T(n - 2)/(n - 1), \]

we can conclude that

\[T(n)/(n + 1) \leq \frac{2c}{n + 1} + \frac{T(n - 1)}{n} \leq \frac{2c}{n + 1} + 2c/n + T(n - 2)/(n - 1). \]

Continuing like this gives us

\[T(n)/(n + 1) \leq \frac{2c}{n} \sum_{p=1}^{n+1} 1/p. \]
We now use the fact that
\[\sum_{p=1}^{n+1} \frac{1}{p} = O(\log n), \]
(see equation A.7 in CLRS [Appendix A]), to conclude that
\[T(n)/(n + 1) = O(\log n), \]
or, in other words,
\[T(n) = O(n \log n). \]