
1

Constraints and Triggers

Topics discussed earlier

• basic constraints

• entity integrity (not null)

• referential integrity (foreign key)

• key constraint (primary key)

• candidate key constraint (uniqueness)

• Naming constraints

• to add, modify, drop

• deferrable constraints can be deferred

See Section 7.1 and 7.3 for details

Checks and Assertions

CHECK constraints

 attribute-level

 tuple-level

ASSERTIONS

 can include multiple tables

2

Attribute Level Checks
create table enrolled (

 StudentID number(5),

 CourseID number(4),

 Quarter varchar(6)

 CHECK(quarter in ('Fall','Winter','Spring')),

 Year number(4), ...

create table memberof (

 StudentID number(5),

 GroupName varchar(40),

 Joined number(4)

 CHECK(Joined >= (SELECT Started

 FROM student

 WHERE studentID = SID)), ...

• has to be true or unknown (compare WHERE)

• checks get evaluated on a row when row is inserted/updated

• so: checks may get violated

• subqueries not allowed in Oracle checks

Tuple Level Checks

create table course (

 CID number(4),

 CourseName varchar(40),

 Department varchar(4),

 CourseNr char(3),

 primary key (CID),

 check (department <> 'CSC' OR CourseNR > 100)

);

• same as attribute level check, just different placement

Examples

• enforce the following course ranges:

CSC: 200-600, IT 100-500, GAM: 200-500

• a student must have either a first or last name

• we don’t accept any undergraduate COMP-GPH

and IT students after (and including) 2015

• only graduate students can be PhD students

• use to implement sub-classing

EER-modeling problem: Employees can be hourly, in which

case we want their ID, name, Address, the day they were hired,

and the rate at which they were hired. For salaried employees

we want to store their ID, name, address, the day they were

hired, and their annual salary and stock options. Consultants

also get an ID, and we store their name, address, hiring date,

contract number, and billing rate.

3

Assertions

CREATE ASSERTION joined

CHECK (NOT EXISTS

 (SELECT *

 FROM student, memberof

 WHERE SID = StudentID and Joined < Started));

Example: ugrad/grad students can enroll in at most 2/4

courses a quarter

• not supported by anybody?

• can be mimicked using materialized views

and/or triggers (procedural vs. declarative)

Triggers

CREATE OR REPLACE TRIGGER started

BEFORE UPDATE OF started ON student

FOR EACH ROW

WHEN (new.started < old.started)

BEGIN

 :new.started := :old.started;

 DBMS_OUTPUT.PUT_LINE('Rejected change of started');

END;

/

SET SERVEROUTPUT ON;

UPDATE student

SET Started = 2001;

SELECT * FROM student;

Triggers

CREATE OR REPLACE TRIGGER started

BEFORE UPDATE OF started ON student

FOR EACH ROW

WHEN (new.started < old.started)

BEGIN

 :new.started := :old.started;

 DBMS_OUTPUT.PUT_LINE('Rejected change of

started');

END;

/

Create trigger

triggering event

attribute/table

row trigger

trigger restriction

 old: row before update

 new: row after update

trigger action

(in PL/SQL)

4

Triggering Events
CREATE OR REPLACE TRIGGER started

BEFORE UPDATE OF started ON student

FOR EACH ROW

WHEN (new.started < old.started)

BEGIN

 :new.started := :old.started;

 DBMS_OUTPUT.PUT_LINE('Rejected

change of started');

END;

/

When do we trigger:

• before

• after

• instead of

 (only for views)

What is doing the triggering:

• insert, update, delete

• system events

row/statement trigger
CREATE OR REPLACE TRIGGER started

BEFORE UPDATE OF started ON student

FOR EACH ROW

WHEN (new.started < old.started)

BEGIN

 :new.started := :old.started;

 DBMS_OUTPUT.PUT_LINE('Rejected

change of started');

END;

/

CREATE OR REPLACE TRIGGER started

AFTER UPDATE ON student

BEGIN

 DBMS_OUTPUT.PUT_LINE(Student

Table updated');

END;

/

vs

:new/:old only

for row-level

triggers

WHEN only

for row-level

triggers

Restriction (WHEN)

CREATE OR REPLACE TRIGGER started

BEFORE UPDATE OF started ON student

FOR EACH ROW

WHEN (new.started < old.started)

BEGIN

 :new.started := :old.started;

 DBMS_OUTPUT.PUT_LINE('Rejected

change of started');

END;

/

• old

 (before change)

• new

 (after change)

5

Trigger Action

CREATE OR REPLACE TRIGGER started

BEFORE UPDATE OF started ON student

FOR EACH ROW

WHEN (new.started < old.started)

BEGIN

 :new.started := :old.started;

 DBMS_OUTPUT.PUT_LINE('Rejected

change of started');

END;

/

• BEGIN

 pl/sql block

 END;

 /
• :old, :new

 variables

• dbms_output

Example: Logging

CREATE OR REPLACE TRIGGER studentlog

AFTER INSERT OR UPDATE OR DELETE ON student

BEGIN

 DBMS_OUTPUT.PUT_LINE('Insert/Delete/Update on

Student Table');

END;

/

CREATE OR REPLACE TRIGGER started

AFTER INSERT OR UPDATE OR DELETE ON student

BEGIN

 IF UPDATING THEN

 DBMS_OUTPUT.PUT_LINE('Update on Student');

 ELSIF INSERTING THEN

 DBMS_OUTPUT.PUT_LINE('Insert on Student');

 ELSIF DELETING THEN

 DBMS_OUTPUT.PUT_LINE('Delete on Student');

 END IF;

END;

/

Example: Unique IDs

ID fields often needed in tables

• Combinations of attributes can be unhandy

• No natural keys in the relation

Database support through sequences

• Each access gives new ID (by increasing the value)

• Microsoft Access: AutoNumber field (counter datatype)

• Oracle: sequence object

6

Sequences in Oracle

--- create a new sequence for student table

CREATE SEQUENCE SEQ_STUDENT_ID

INCREMENT BY 1

START WITH 1;

--- example application

INSERT INTO student(SID, LastName,FirstName)

VALUES(seq_student_id.nextval, 'Pendleton', 'Gabriela');

--- drop sequence

DROP seq_student_id;

Using sequence with trigger

--- create trigger to insert new ID automatically

CREATE OR REPLACE TRIGGER student_id_trigger

BEFORE INSERT ON student

FOR EACH ROW

BEGIN

 SELECT seq_student_id.nextval

 INTO :new.SID

 FROM dual;

END;

/

--- create a new sequence for student table

CREATE SEQUENCE SEQ_STUDENT_ID

INCREMENT BY 1

START WITH 1;

Example: Logging into table

CREATE OR REPLACE TRIGGER studentlog

AFTER INSERT ON student

FOR EACH ROW

BEGIN

 DBMS_OUTPUT.PUT_LINE('Insert on Student Table');

 insert into elog

 values(seq_student_id.nextval, :new.SID, 'I',

 systimestamp);

END;

/

CREATE TABLE elog(

 eid NUMBER,

 esid NUMBER(5),

 etype CHAR,

 etime DATE,

 PRIMARY KEY(eid)

);

7

Example 7.13

CREATE TRIGGER NetWorthTrigger

AFTER UPDATE OF netWorth ON MovieExec

REFERENCING

 OLD AS Oldtuple

 NEW AS Newtuple

FOR EACH ROW

WHEN (Oldtuple.networth > NewTuple.networth)

BEGIN

 UPDATE MovieExec

 SET netWorth = OldTuple.netWorth

 WHERE cert# = NewTuple.cert#

END;

/

potentially problematic code, why?

Not Oracle Syntax

Example 7.13
CREATE TRIGGER NetWorthTrigger

AFTER UPDATE OF netWorth ON MovieExec

REFERENCING

 OLD AS Oldtuple

 NEW AS Newtuple

FOR EACH ROW

WHEN (Oldtuple.networth > NewTuple.networth)

BEGIN

 UPDATE MovieExec

 SET netWorth = OldTuple.netWorth

 WHERE cert# = NewTuple.cert#

END;

/

Oracle compiles similar example, but rejects at runtime:

Examples

• Extend the logging-into-table example, so it also logs

updates and deletes

• write a trigger that cancels all deletions on the student table

and writes a warning message that a deletion was attempted

(need RAISE_APPLICATION_ERROR)

• if a student’s program is PhD (update or insert), ensure the

career is GRD (change if necessary)

• if a student is inserted without SSN, automatically assign a

unique SSN starting with 900 (those SSNs are not currently

in use)

• if a course is inserted with coursenr 666, allow the insert,

but null the coursenr and issue a warning

