
6/3/2014

1

Database Programming

Three-Tier Architecture

Database

Web

Server

Web

Server

Application

Server

Database

Server

Database

Server

Application

Server
Application

Server

Web

Server

Web

Server

SQL in Programs

Embedded SQL:

• SQL code blocks embedded in host language

• Additional commands (cursors, etc.)

• pre-processed into host-language code (fct/proc calls)

Dynamic SQL:

• Dynamic SQL code blocks in host language

• Queries are dynamic (Parameters, etc.)

Database Connectivity:

• CLI (Call-Level Interface):

• Dynamic SQL interface for programs

• ODBC, OLEDB, JDBC

• ORM (Object Relational Mapping)

6/3/2014

2

Programming in SQL: SQL/PSM

PSM (Persistent Stored Module)

• stored in database (stored procedure)

• can be called from host-languages and SQL

• parameterized/programmed SQL

Vendors have proprietary versions of SQL/PSM

 Oracle: PL/SQL

 DB2: SQL/PL

 SQL Server: Transact-SQL
What we’ll do

Procedures and Functions

Procedure

• perform sequence of commands

• can include SQL, loops, conditionals, etc.

• can read through SQL statement one tuple at a time

Function

• like procedure but returns value

Function Example

create or replace function age_yr(year number)

 return number as

begin

 return extract(year from sysdate) - year;

end;

/

SELECT sid, age_yr(started)

FROM student;

6/3/2014

3

Procedure Example

create or replace procedure enroll(sid number, cid

number, quarter varchar2, year number) as

begin

 INSERT INTO enrolled

 VALUES (sid, cid, quarter, year);

end;

/

call enroll(11035, 3201, 'Fall', 2015);

PL/SQL: variable declaration/assignment

declare

 val number := 1;

begin

 val := 1 + 2 * 3;

 dbms_output.put_line(val);

end;

/

• drop declare keyword for procedure/function bodies

• declared variables need not have default values assigned

PL/SQL: assignment

declare

 first_started number;

begin

 SELECT min(started) INTO first_started

 FROM student;

 dbms_output.put_line(first_started);

end;

/

• can assign values of SQL statements that return a

single value to variable using SELECT … INTO:

• error message if SELECT returns no or multiple

values or wrong type

6/3/2014

4

PL/SQL: errors and exceptions

declare

 first_started number;

 sid number;

begin

 SELECT min(started) INTO first_started

 FROM student;

 SELECT SID INTO sid

 FROM student

 WHERE started = first_started;

 dbms_output.put_line(sid);

end;

• what if there are several students?

PL/SQL: errors and exceptions

declare

 first_started number;

 sid number;

begin

 SELECT min(started) INTO first_started

 FROM student;

 SELECT SID INTO sid

 FROM student

 WHERE started = first_started;

 dbms_output.put_line(sid);

exception

 when TOO_MANY_ROWS then

 dbms_output.put_line('Several students

in first year');

end;

PL/SQL: exceptions

DUP_VAL_ON_INDEX

NO_DATA_FOUND

TIMEOUT_ON_RESOURCE

TOO_MANY_ROWS

VALUE_ERROR

ZERO-DIVIDE

http://docs.oracle.com/cd/B10501_01/appdev.920/a96624/07_errs.htm

WHEN OTHERS THEN

6/3/2014

5

PL/SQL: variable declaration/assignment

create or replace function city_count(cname

varchar2) return number as

 cc number;

begin

 SELECT count(*) INTO cc

 FROM student

 WHERE city = cname;

 return cc;

end;

/

select distinct city, city_count('Chicago')

from student;

Simple Examples

• Write a procedure that deletes a student given by SID

• Write a procedure that deletes all students in a given year

• Given a course ID, a quarter and a year, calculate the number

of students enrolled in the course at that time

• Given the name of a department, calculate the number of

courses in the department

• For each student calculate how many courses they have

enrolled in

• For each student calculate how many groups they are

members of

PL/SQL: conditionals

set serveroutput on;

begin

 if dbms_random.value(0,1) > 0.5 then

 dbms_output.put_line('Head');

 else

 dbms_output.put_line('Tails');

 end if;

end;

/

if then end if;

if then else end if;

if then elsif then end if

6/3/2014

6

More Examples

• Write a function that for each course returns whether it is

‘GRD’ or ‘UGRD’

• For every student compute their standing: freshman (< 3

courses), sophomore (< 5 courses), junior (< 7 courses), senior

(everybody else).

• Given a student ID, determine whether the student enrolled

during the current year (create output: dbms_output)

• (Requires prereq structure) When a student enrolls in a

course, only allow this if we the student has already enrolled in

all the prerequisite courses (use trigger)

PL/SQL: loops

set serveroutput on;

declare

 i number := 1;

begin

 loop

 i := i + 1;

 exit when i >= 10;

 dbms_output.put_line(i);

 end loop;

end;

/

Loop Examples

• Write code that computes the Fibonacci numbers (up to some

bound)

• Create a look-up table for the Fibonacci numbers

6/3/2014

7

PL/SQL: cursors

set serveroutput on;

declare

 cursor st_cursor IS

 (SELECT sid

 FROM student);

 st_id student.sid%type;

begin

 open st_cursor;

 loop

 fetch st_cursor INTO st_id;

 exit when st_cursor%notfound;

 dbms_output.put_line('Student ID: ' || st_id);

 end loop;

 close st_cursor;

end;

declare

open

close

read

attribute type

done

PL/SQL: cursors

set serveroutput on;

declare

 cursor st_cursor IS

 (SELECT sid, lastname, firstname

 FROM student);

 st_id student.sid%type;

 ln student.lastname%type;

 fn student.firstname%type;

begin

 open st_cursor;

 loop

 fetch st_cursor INTO st_id, ln, fn;

 exit when st_cursor%notfound;

 dbms_output.put_line('Student: ' || fn || ' ' || ln);

 end loop;

 close st_cursor;

end;

Cursor Examples

• Write a procedure that takes as input a course and department name and

writes out the last year the course was offered (or a message that it has never

been offered)

• Write a procedure that takes as input a course ID, cancels the course and

sends a message “Dear FirstName LastName, your course Department

CourseName has been cancelled” (can this be done in SQL?)

• Write a procedure that checks all student enrollments and drops graduate

student enrollments in undergraduate classes and writes a warning message

(sends email)

• Write a procedure that finds courses with the same name in the same

department and cross-lists them: that is, we only keep the course with the

largest CourseNr, delete all the others, and re-enroll students into the

consolidated course (can this be done in SQL?)

6/3/2014

8

Unnecessary loops

update employee

set salary = salary * 1.1

where salary < 90000;

update employee

set salary = salary *0.9

where salary >= 90000;

declare

 cursor emp_cursor IS

 (SELECT emp_id, salary

 FROM employee);

 e employee.emp_id%type;

 s employee.salary%type;

begin

 open emp_cursor;

 loop

 fetch emp_cursor INTO e,s;

 exit when emp_cursor%notfound;

 if s < 90000 then

 update employee

 set salary = s*1.1

 where emp_id = e;

 else

 update employee

 set salary = s*0.9

 where emp_id = e;

 end if;

 end loop;

 close emp_cursor;

end;

doesn’t work

unnecessary

solution:

update employee

set salary =

 case when salary < 90000

 then salary * 1.1

 else salary * 0.9

 end;

declare

 cursor emp_cursor IS

 (SELECT emp_id, salary

 FROM employee);

 e employee.emp_id%type;

 s employee.salary%type;

begin

 open emp_cursor;

 loop

 fetch emp_cursor INTO e,s;

 exit when emp_cursor%notfound;

 if s < 90000 then

 update employee

 set salary = s*1.1

 where emp_id = e;

 else

 update employee

 set salary = s*0.9

 where emp_id = e;

 end if;

 end loop;

 close emp_cursor;

end;

“The best performance improvement

technique for cursors inside the

database is not to use them.”

 Joe Celko

