
1

Indexes and Indexing

Searching

Telephone book

 Phone number of “Samuel Clemens”

 Address of person with phone number “123-456-7890”

Other examples

 Searching on the web

 Searching for a topic in a book

 Using codebooks

Sorting and Searching

Searching on an unordered domain of n items: linear search

• takes n/2 steps on average

• n steps worst case

Searching on an ordered domain of n items: binary search

• O(log2 n) worst case

2

Order

Conclusion: order is important, but expensive

Ordered data can be searched fast

Establishing order is expensive, O(n log n)

Maintaining order

requires dynamic data structures (for deletions and

insertions) and

is expensive, O(log n), or O(1) amortized (with more

difficult algorithms)

Order is important?

SELECT *

FROM lg_student

WHERE SID = 123456;

SELECT *

FROM lg_student

WHERE SSN = 272906957;

• 1 million entries in database

• SID is indexed, SSN is not

• queries refer to same student

Creating Index

CREATE INDEX SSNIndex

ON lg_student(SSN);

SELECT *

FROM lg_student

WHERE SSN = 272906957;

DROP INDEX SSNIndex;

Also try with random SSN

3

Creating Index, Multiple

Attributes

CREATE INDEX stprof

ON lg_student(started, program);

SELECT count(*)

FROM lg_student

WHERE started = 2005;

SELECT count(*)

FROM lg_student

WHERE program = 'COMP-SCI';

• Compare with/without index

• Compare execution plans

Indexes speeding Joins

SELECT count(*)

FROM lg_student, lg_contact

WHERE SID = StudentID;

vs

SELECT count(*)

FROM lg_student, lg_contact

WHERE SSN = StudentSSN;

SELECT count(*)

FROM lg_student, lg_contact

WHERE SSN = StudentSSN AND

StudentSSN = 14161180;

Also

investigate execution plans

Indexes

Two basic types of indexes:

• Ordered Indices (based on order)

• Hash Indices (based on hashing)

4

Record Storage

Memory:

• Volatile: cache (random access), flash memory

• Nonvolatile: discs, tapes (sequential access)

Discs

• Bit/byte

• Optical Juke Box/Disc/track/block

• pages (typically 4Kb)

Records

• Variable-lengths

• Optional or repeating fields

• Mixed records

Files

Unordered (heap files)

Records are saved sequentially on disk, block

after block

Ordered (sorted files)

Records are saved in order (ordered by some

ordering field)

Hashed files

Records are saved at a location based on a

hashing function; conflicts are resolved using

several different techniques

Index

Access structure to records to facilitate locating a record.

Indexes are created for particular fields in a record,

usually a single field (e.g. Name in telephone book)

Indexes can have multiple levels (e.g. dictionary)

5

Single-Level Ordered Indexes

Example: index at the end of a book

Types Ordering Field Nonordering field

Key field Primary index Secondary index (key)

Nonkey field Clustering index Secondary index (nonkey)

Examples: find address given phone number in telephone book

 find phone number given name in telephone book

 find topic in a book

 find info in a TV schedule

Primary Indexes

Index for ordering keyfield.

• File is physically ordered by field

• Values are unique (since it is a key)

Primary index is a file of records consisting of two parts of

fixed length:

 value of key field

 pointer to disk block containing record with that value

Key is called primary key (not the same as p.k. in relational

model), a record in the index file is called index entry.

Problems

Dynamic changes

 insertion of a record

 deletion of a record

 modification of a record (new record might be longer)

Solutions:

 Unordered overflow file

 List of overflow records for each block

 Deletion markers

Periodical file reorganization is necessary

6

Clustering Index

Index for ordering field which is not a key

• File is physically ordered by field

• Values are not unique

• Only distinct values are indexed

Same issues as with primary index

Primary/Clustering

Implementation?

Need dynamic data structures for maintaining

indexes based on search trees:

• B-Tree

• B+-Tree

Hash Indexes

A hash function maps a large set (the set of

potential records) to a small set (the storage

locations) without causing too many conflicts.

Use hash function to find a location to store

the index information of a record.

http://www.seanster.com/BplusTree/BplusTree.html

7

Tuning

• By default, key fields are indexed

• Deciding which fields to index should be based on

statistical analysis of frequent queries

• need to consider SELECT as well as INSERT,

UPDATE and DELETE

SELECT *

FROM lg_contact

WHERE StudentID = 123;

SELECT *

FROM lg_contact

WHERE telnr = 131313131;

INSERT INTO lg_contact

analyze (see 8.4.3)

