# CSC 355 Database Systems

Marcus Schaefer

## Databases ?





## Database

- 1. DB models aspects of the real world (miniworld, universe of discourse)
- 2. Collection of data
  - logically coherent → Information
     Meaningful
- 3. Designed for specific purpose

## Uses of Database

- Traditional (Employee, student, product database)
- Online Shopping
- •
- Search Engines Data Warehousing (OLAP) •
- Data Mining
- Genetic Databases
- Geographical Information Systems

## Types of Database

- Traditional (Postgres, Oracle, MySQL)
- Deductive Databases •
- Multimedia Databases
- Distributed Databases
- Spatial Databases •
- Object-Oriented Databases
- No-SQL Databases

## **No-SQL Databases**

- Key-Value (Riak) ٠
- Columnar (Cassandra, HBase)
- Document (MongoDB)
- Graph (Neo4J)

## Sizes of Database

- Personal (1 User), Megabytes
- Workgroup (<25 Users), Megabytes
- Department (25-100 Users), Gigabytes
- Enterprise (100-1000s), Gigabytes
- Internet (> 1000s), Terabytes Petabytes

How long does it take to find a piece of data in petabytes of data?

### Database Management System (DBMS)

#### Software to

- 1. Define a database (data types, relations, constraints)
- 2. Construct a database (populate database with data)
- 3. Manipulate database (query and update data in database)

## Database People

- Database designers
- Application developers
- Database administrators
- Users

## Explore University Sample Database

| Relationships 🛄 student |           |       |           |        |          |             |           |
|-------------------------|-----------|-------|-----------|--------|----------|-------------|-----------|
| LastName                | FirstName | SID + | SSN +     | Career | Program  | City +      | Started - |
| Snowdon                 | Jonathan  | 8871  | 123123123 | GRD    | INFO-SYS | Springfield | 2005      |
| Winter                  | Abigail   | 11035 | 111111111 | GRD    | PHD      | Chicago     | 2003      |
| Patel                   | Deepa     | 14662 |           | GRD    | COMP-SCI | Evanston    | 2003      |
| Starck                  | Jason     | 19992 | 789789789 | UGRD   | INFO-SYS | Springfield | 2003      |
| E Johnson               | Peter     | 32105 | 123456789 | UGRD   | COMP-SCI | Chicago     | 2004      |
| 🖲 Patel                 | Prakash   | 75234 |           | UGRD   | COMP-SCI | Chicago     | 2001      |
| 🕀 Brennigan             | Marcus    | 90421 | 987654321 | UGRD   | COMP-GPH | Evanston    | 2001      |
| E Snowdon               | Jennifer  | 93321 | 321321321 | GRD    | COMP-SCI | Springfield | 2004      |

## Explore University Sample Database



## University Sample Database

#### User Data

- Records, Fields (Columns)
- Data elements

#### Meta Data

- Data Types
- Other Data

  Log Records
- Statistics
- Relationships Constraints
- Indexes
- Records
- ics

Relational Databases

## File Processing

File system is backbone of operating system

File system for data storage:

| Tables         |          |
|----------------|----------|
| Files          | 00000000 |
| File System    |          |
| Logical Volume |          |
| Disks          |          |

Adapted from http://blogs.netapp.com/databases/WindowsLiveWriter/image\_29.png

# Disadvantages of File Processing

- Program-Data Dependence
- Redundancy (Duplication of Data)
- Limitation on data sharing
- Development time
- Maintenance

## Advantages of Databases

- Program-Data Independence
- Control of Data Redundancy
- Data Consistency
- Data Quality (constraints)
- Data Sharing (customized access through views)
- Improved Data Access
- Program Maintenance

# DBMS Architecture



## DBMS

Open Source H2 MySQL, Postgres Proprietary Access (Microsoft) DB2 (IBM) Oracle SQL Server (Microsoft) Sybase (SAP)

## Data Modeling

Describe structure of data (relationships, behavior) at different levels of abstraction.

Conceptual/External high-level user view

Internal

Logical: structure of data for DBMS Physical: storage details (indexes) for DBMS

## Data Models

Conceptual/External ER-model (Entity-Relationship) UML

Logical

Relational data model Object data model Network data model Hierarchical data model

## ER-modeling

#### Describes entities, their relationships, and attributes

Used for designing and analyzing a database



Ullman, Widom, A First Course, p. 149



## Database Languages

- DDL: Data definition language defines data types, tables includes DSL (Data storage language)
- DML: Data Manipulation Language language for retrieving and manipulating data

Types:

high-level (nonprocedural, declarative): SQL low-level (procedural)

## **Transactional Processing**

Transaction: A group of database operations that should appear as a unit to the user.

Example: Transfer \$100 from account A to account B.

Requirements on transactions:

Atomicity Consistency Isolation Durability

## **Class Outline**

| Week |                                                                             |  |  |  |  |
|------|-----------------------------------------------------------------------------|--|--|--|--|
| 1    | Intro to Database systems, Relational Model (Chapters 1/2)                  |  |  |  |  |
| 2-4  | SQL (with transactions) (Chapter 6)                                         |  |  |  |  |
| 5    | Relational Design: Functional Dependencies and<br>Normalization (Chapter 3) |  |  |  |  |
| 6    | Constraints & Triggers (Chapter 7)                                          |  |  |  |  |
| 7    | Views & Indices (Chapter 8)                                                 |  |  |  |  |
| 8-9  | Database Programming (Chapter 9)                                            |  |  |  |  |
| 10   | Advanced Topics: recursive SQL, ORL, semi-structured data, No-SQL           |  |  |  |  |