

Functional Dependencies: why?

Design methodologies: Bottom up (e.g. binary relational model) Top-down (e.g. ER leads to this)

Needed: tools for analysis of quality of relational schema Goals:

> reducing redundancy (update/deletion anomalies) avoiding spurious tuples reducing null values

Redundancy and Anomalies I:

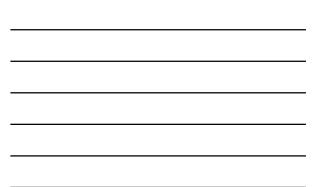
Insertion, Update Anomalies

Example (Movie database) MOVIE(<u>title</u>, <u>actorname</u>, year, length, country, role)

Consider tasks:

update year; insert actor; insert movie delete actor

eletion Anomalies		
xample (student activitie	s)	
Student	Activity	Fee
Marcus Brennigan	Piano	\$20
Deepa Patel	Swimming	\$15
Marcus Brennigan	Swimming	\$15
Abigail Winter	Tennis	\$30
Prakash Patel	Skiing	\$150



Null values I ----

Example (student activities)

SID	Activity	Fee
1001	Piano	\$20
1090	Swimming	\$15
1001	Swimming	\$15

insert new activity Chess with a fee of \$20 (what would be a better design)

Null values II -----

Example

section(SecID, teacherID, GraderID)

versus

section(SecID, teacherID) grader(SecID, studentID)

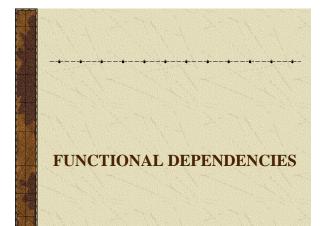
Spurious Tuples

Loss of information through additional, spurious tuples.

Example:

Split student activity into (SID, Fee) and (Activity, Fee) What is the problem?

What is the real solution?



Functional Dependencies

Example (university)

SID determines LastName CID determines CourseName CID determines CourseNr {StudentID, GroupID} determines Joined

Functional Dependencies I

 $\begin{aligned} R(A_1,A_2,\ldots,A_n) \\ X \text{ and } Y \text{ are subsets of } \{A_1,A_2,\ldots,A_n\} \end{aligned}$

 $X \rightarrow Y$ means that fixing the values of all attributes in X determines the values of all attributes in Y

X is called a **determinant** of Y

Dependencies as constraints

- FDs are constraints we put on the relational schema
- We can see whether a relational state violates a FD (example)
- We cannot deduce FDs from a relational state.
- A relational state fulfilling a FD is a model of that FD.

Keys and Superkeys

 $\begin{aligned} R(A_1, A_2, \dots, A_n) \\ X \text{ subset of } \{A_1, A_2, \dots, A_n\} \end{aligned}$

X is superkey if $X \to \{A_1,A_2,\ldots,A_n\}$

A minimal superkey is a **key**, i.e. X is a key if 1) X is a superkey, and 2) no proper subset of X is a superkey.

Examples: University Relations Lot(Lot#, County, PropertyID)

Inference on FDs

 $SID \rightarrow LastName, FirstName, SID, SSN, Career, Program, City, Started \}$

We can conclude (among others) that ${SID} \rightarrow {Career}$ ${SID} \rightarrow {LastName}$ ${SID} \rightarrow {SSN, City}$

Inference on FDs

 $\begin{aligned} & \{ StudentID, CourseID \} \rightarrow \{ Quarter, Year \} \\ & \{ StudentID \} \rightarrow \{ SID, SSN, City \} \\ & \{ SSN \} \rightarrow \{ LastName, FirstName \} \\ & \{ Name \} \rightarrow \{ PresidentID, Founded \} \end{aligned}$

Which of the following FDs can we infer from these rules? $\{Name\} \rightarrow \{Founded\}$ $\{StudentID, CourseID\} \rightarrow \{Year, LastName\}$ $\{SSN\} \rightarrow \{City\}$

Trivial Dependencies

 $X \rightarrow Y$ is **trivial**, if Y is contained in X.

R(A, B, C, D) with FDs AB \rightarrow C (or {A, I

 $AB \rightarrow C \qquad (or \{A, B\} \rightarrow \{C\})$ $C \rightarrow D$ $D \rightarrow A$

- What nontrivial FDs can we deduce?
- What are the keys of R?
- Are there superkeys which are not keys?

Inference Example R(A, B, C, D, E) with primary key {A,C,D} And FDs $AB \rightarrow CD$ $B \rightarrow E$ $D \rightarrow E$ • What nontrivial FDs can we deduce? • What are the keys of R?

Reasoning about FDs

A FD X \rightarrow Y can be **inferred** from a set F of functional dependencies, if it holds true in every relational state that satisfies all FDs in F. In other words:

every model of F is a model of $X \rightarrow Y$

Example: from $\{A \rightarrow BC, C \rightarrow D\}$ we can infer $\{A \rightarrow D\}$

Reasoning about FDs

Two sets F and G of FDs are **equivalent**, if all FDs in F can be inferred from G, and vice versa. In other words: every model of F is a model of G and vice versa

Example: $\{AB \rightarrow C, A \rightarrow B\}$ and $\{A \rightarrow B, A \rightarrow C\}$ are equivalent.

Rules

Reflexivity (triviality) Augmentation Transitivity Decomposition Union Pseudotransitive rule

Armstrong's inference rules (imply other rules) (pg. 81)

Closure

How do we determine whether we can infer a FD X \rightarrow Y from a set of FDs \mathcal{F} ?

 X^+ , the closure of X, is the set of all attributes determined by X under \mathcal{F} .

 $\label{eq:constraint} \begin{array}{l} X \to Y \mbox{ follows from } \mathcal{F} \\ \mbox{ if and only if } \end{array}$

Y is in X+ (with regard to \mathcal{F})

Example: R(A,B,C,D,E) with FDs { $AB \rightarrow DE$, $A \rightarrow E$ $C \rightarrow BD$, $D \rightarrow E$ }, does $A \rightarrow D$? Does $AC \rightarrow D$?

Computing the Closure

Given: set of FDs \mathcal{F} set of attributes X Goal: X⁺, the set of all attributes determined by X

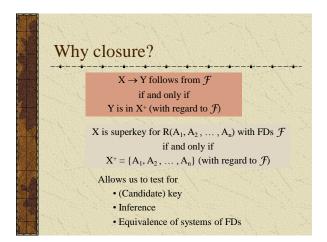
Algorithm:

 $\begin{array}{l} X^{+}:=X\\ \text{while }Y\rightarrow Z\text{ in }\mathcal{F}\text{ with}\\ Y\subseteq X^{+}\text{, and}\\ Z\text{ not contained in }X^{+}\\ X^{+}:=X^{+}\text{ U }Z \end{array}$

Closure Examples

R(A,B,C,D,E,F,G,H) \mathcal{F} = {AE→B, BH→C, CDE→F, G→EH, GH→D} Compute

> {A}⁺ {AG}⁺ {B}⁺ {AEH}⁺



Cover and Equivalence

 \mathcal{F}, \mathcal{G} : sets of FDs

 \mathcal{F} covers \mathcal{G} , if all FDs in \mathcal{G} can be inferred from \mathcal{F} . in other words: every model of \mathcal{F} is a model of \mathcal{G}

 \mathcal{F} and G are **equivalent**, if \mathcal{F} covers \mathcal{G} and \mathcal{G} covers \mathcal{F} .

Minimal Sets of Dependencies

\mathcal{F} , a set of FDs is **minimal**, if

- 1. The rhs of every dependency in \mathcal{F} is a single attribute (a *singleton*).
- No dependency X→A in *F* can be replaced by Y→A, where Y is a proper subset of X, such that the new system of dependencies is equivalent to *F*.
- 3. No dependency can be removed from \mathcal{F} such that the new system of dependencies is still equivalent to \mathcal{F} .

Canonical form with no redundancies.

Minimal Cover

G is minimal cover of \mathcal{F} , if G is minimal, and it covers \mathcal{F} .

Algorithm:

- 1. Use decomposition rule to split all rhs.
- 2. Sequentially try removing each attribute from each rule, and retain new rule if system is still equivalent.
- 3. If removing a dependency leaves the system equivalent to the old system, then remove it.

Minimal Cover Algorithm

To test whether $\mathcal{G} - \{X \rightarrow A\}$ is equivalent to \mathcal{G} we only need to test whether $X \rightarrow A$ can be inferred from $\mathcal{G} - \{X \rightarrow A\}$.

To test whether

 $G - {X \rightarrow A} \cup {(X-{B}) \rightarrow A}$ is equivalent to Gwe only need to test whether $X-{B} \rightarrow A$ can be inferred from G.

Minimal Cover Examples

 $\begin{array}{l} R(A,B,C) \text{ with FDs} \\ \{AB \rightarrow C, A \rightarrow B\} \end{array}$

 $\begin{aligned} R(A,B,C,D) \text{ with FDs} \\ & \{A{\rightarrow}BC, B{\rightarrow}AC, D{\rightarrow}ABC\} \end{aligned}$

 $\begin{aligned} &R(A,B,C,D,E,F,G) \text{ with FDs} \\ & \{BCD \rightarrow A, BC \rightarrow E, A \rightarrow F, F \rightarrow G, C \rightarrow D, A \rightarrow G \} \end{aligned}$

Canonical Cover

\mathcal{F} , a set of FDs is **canonical**, if

- No dependency X→Y in *F* can be replaced by X'→Y, where X' is a proper subset of X, such that the new system of dependencies is equivalent to *F*.
- No dependency X→Y in *f* can be replaced by X→Y', where Y' is a proper subset of Y, such that the new system of dependencies is equivalent to *f*.
- 3. Every lhs of a dependency occurs at most once.

Canonical Cover Algorithm

Algorithm (Canonical Cover):

- 1. Calculate Minimal Cover
- 2. Recombine rules with identical lhs

Example: If we have a minimal cover $\mathcal{F} = \{A \rightarrow B, A \rightarrow C, B \rightarrow E, BC \rightarrow D, BC \rightarrow F, C \rightarrow E\},\$ then the canonical cover is $\mathcal{G} = \{A \rightarrow BC, B \rightarrow E, BC \rightarrow DF, C \rightarrow E\}$