

Detecting Anomalies

SID	Activity	Fee	Tax
1001	Piano	\$20	\$2.00
1090	Swimming	\$15	\$1.50
1001	Swimming	\$15	\$1.50

- Why is this bad design?
- Can we capture this using FDs?

Normal Forms

- · Requirements on relational schemas
- Initiated by Codd (1NF, 2NF, 3NF)

1NF (First NF)	no multivalued attributes
2NF (Second NF)	no partial dependencies
3NF (Third NF)	no bad transitive dependencies
BCNF (Boyce-Codd NF)	strengthening of 3NF
4NF (Fourth NF)	extends BCNF to multivalued dependencies

• there's more ...

	BCNF		
	If X→Y is not trivial, then X has to be a superkey. Has to be true for all valid FDs X→Y		
g T			
	Example:		
	Activity(SID, Activity, Fee, Tax)		
	SID, Activity \rightarrow Fee, Tax		
	Activity \rightarrow Fee		
	$Fee \rightarrow Tax$		
	How to decompose?		

BCNF Decomposition

What do we want?

- Relations are in BCNF
- We can reconstruct data in original relation
- Keep functional dependencies?

Note: Relations on two attributes are always BCNF.

BCNF-Normalization

Algorithm (BCNF Normalization)

Input: Relation R, FDs \mathcal{F} Output: BCNF-decomposition D of R

$$\begin{split} D &:= \{R\} \\ \text{While $X \rightarrow Y$ holds in some $Q(A_1, \ldots, A_n)$ in D, and} \\ &X \rightarrow Y$ not trivial, X not a superkey of Q add $Q_1(X^+ \cap (\{A_1, \ldots, A_n\})$ and} \\ &Q_2(X \cup (\{A_1, \ldots, A_n\} - X^+))$ remove Q. \end{split}$$

$\begin{array}{l} \textbf{BCNF-Example} \\ \hline \textbf{D} \coloneqq \{R\} \\ \text{While } X \!\!\!\!\! \to \!\!\!\! Y \text{ holds in some } Q(A_1, \dots, A_n) \text{ in D, and} \\ & X \!\!\!\!\!\!\! \to \!\!\!\!\! Y \text{ not trivial, X not a superkey} \\ \text{of } Q \\ \text{add } Q_1(X \cap (\{A_1, \dots, A_n\} \cdot X \cdot)) \\ \text{remove } Q_2(X \cup (\{A_1, \dots, A_n\} \cdot X \cdot)) \\ \text{remove } Q. \\ \hline \textbf{Examples:} \\ R(A, B, C, D), FDs: A \!\!\!\! \to \!\!\!\! B, C \!\!\!\! \to \!\!\!\! D \\ R(A, B, C, D), FDs: A \!\!\!\! \to \!\!\!\! B, C \!\!\! \to \!\!\!\! D \\ R(A, B, C, D, E), FDs: A \!\!\!\! \to \!\!\!\! BE, E \!\!\!\! \to \!\!\!\! D \end{array}$

BCNF-Normalization Caveat Checking whether $X \to Y$ holds in some Q in D refers to \mathcal{F} , not just D. Example: R(A,B,C,D,E) FDs: $A \to B$ BC $\to D$ (implies AC $\to D$) • naïve implementation of algorithm requires exponential time • can be improved to polynomial time (Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form, ACM, SIGACT News, 1982)

Testing for BCNF • single R with FDs F testing for BCNF can be done in polynomial time, it is sufficient to test dependencies in F • this is not true for decompositions, e.g. R(A,B,C,D,E) decompose into FDs: A→B R₁(A,B) BC→D R₂(A,C,D,E)

More BCNF-Examples phone(Name, City, AreaCode, PhoneNumber, Extension) R(A,B,C,D), keys: AB, CD, FDs: A→C, D→B R(A,B,C,D,E), FDs: A→B, C→D, AC→E

Lossless Join Property

 $D = \{R_1, R_2, \dots, R_n\} \text{ decomposition of } R.$

If $R_1 * R_2 * ... * R_n = R$, then

D has the **lossless join property**.

BCNF decomposition has lossless join property.

Lossless Join Property

Test lossless join property for binary decomposition Given: R, D= $\{R_1, R_2\}$, FDs \mathcal{F}

D is a lossless join decomposition of R, if and only if

 $R = R_1 \cup R_2$, and either

 $R_1 \cap R_2 \rightarrow R_1 - R_2$ holds in \mathcal{F} or

 $R_1 \cap R_2 \rightarrow R_2 - R_1$ holds in \mathcal{F} .

Example: Activity(SID, Activity, Fee)

- necessary?
- sufficient?
- implies correctness of BCNF algorithm

Lossless Join Property

Algorithm (Chase Test)

$$\begin{split} &\text{Input: relation } R(A_1, \, \dots, A_n), \, FDs \,\, \mathcal{F} \\ &\text{ decomposition } D = \{R_1, \,\, R_2 \,\,, \,\, \dots \,\,, \,\, R_m\} \\ &\text{ Output: Is } D \text{ a lossless join decomposition of } R? \\ &T := \text{table with columns } A_1, \,\, \dots, A_n, \, \text{rows } R_1, R_2 \,, \,\, \dots \,, \, R_m \end{split}$$

 $T[i,j] := \begin{cases} a_{i,j} & \text{if } A_i \text{ not in } R_j \\ a_i & \text{if } A_i \text{ in } R_i \end{cases}$

Apply FDs in \mathcal{F} to identify elements until

- there is a row $(a_1, ..., a_n)$: lossless join
- no more changes are possible: not lossless join

Chase Test Examples

R(A,B,C), FDs: $A\rightarrow B$,

 $D = \{P(A,B), Q(A,C)\}$

R(A,B,C), FDs: $A \rightarrow B$,

 $D = \{P(B,C), Q(A,C)\}$

R(A,B,C,D), FDs: $A\rightarrow B$, $C\rightarrow D$,

 $D = \{P(A,B), Q(B,C), T(C,D)\}$

Dependency Preservation

banker(BranchName, CustomerName, BankerName)
BankerName→BranchName
BranchName, CustomerName → BankerName

R(A,B,C), FDs: $A\rightarrow B$, $BC\rightarrow A$

- why not in BCNF? (Keys?)
- what are possible BCNF decompositions?
- what happens to dependencies?

Deciding whether a given relation has a dependency preserving BCNF decomposition is NP-complete

Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form, ACM, SIGACT News, 1982

Prime Attributes prime attribute: part of some key Examples: R(A,B,C,D,E), AB is key, C is key, B→D, D→E A,B,C are prime, D,E are nonprime R(A,B,C,D,E) AC→D, BD→E, E→AC

Prime Attributes

prime attribute: part of some key

- How many keys can there be on n attributes?
- How hard is it to find all keys? Algorithm?

Prime Attributes

prime attribute: part of some key

- How many keys can there be on n attributes?
- How hard is it to find all keys? Algorithm?

Determining primality of an attribute is NP-complete.

(Lucchesi, Osborne, Candidate keys for relations, J. Comput. System Sci. 17, 1978

3NF If X→Y is not trivial, then X has to be a superkey, or, all attributes in Y-X are prime. Has to be true for all valid FDs X→Y Violated in Book(Author, Title, PriceCategory, Price) Movie(Title, Year, MPAA, MinimumAge)

3NF-Examples

R(A,B,C,D) with key A and $B\rightarrow CD, C\rightarrow D, D\rightarrow C$

Can we find a decomposition of these relations that contains the same information?

3NF-Normalization

Algorithm (3NF Normalization):

Input: Relation R with FDs \mathcal{F} Output: 3NF decomposition D of R

- 1. Compute canonical cover C of ${\mathcal F}$
- 2. D = {}
- 3. For every $X \rightarrow Y$ in C add Q(XY) to D, unless
 - a) some S in D already contains all of XY: don't add Q
 - b) some S in D is contained in XY: replace S with Q(XY)
- 4. If no relation in D contains a key of R, then add new relation Q(X) on some key X of R

3NF-Examples

- R(A,B,C,D) with A key, $B\rightarrow CD$, $C\rightarrow D$, $D\rightarrow C$
- R(A,B,C,D) with AB key, $A\rightarrow C$, $B\rightarrow D$
- R(A,B,C,D,E) with AB and AC keys, $BC \rightarrow D$, $C \rightarrow E$
- R(A,B,C,D,E) with AB key, $A \rightarrow E$, $BC \rightarrow D$, $D \rightarrow E$
- R(A,B,C,D,E,F) with ABC key, $A \rightarrow E$, $AC \rightarrow F$, $EF \rightarrow G$
- R(A,B,C,D,E,F) with A and BC keys, $B\rightarrow D$, $D\rightarrow F$
- R(A,B,C,D,E) with AB and CD keys, $A\rightarrow E$, $C\rightarrow E$

Find 3NF normalization

Results can depend on canonical cover, and order of execution

3NF Algorithm

- 3NF Normalization Algorithm is loss-less join (chase test)
- It is dependency preserving (obviously)
- \bullet The resulting relations are in 3NF (not trivial).

3NF vs BCNF: properties

- BCNF is stronger than 3NF
- BCNF and 3NF are loss-less join (no spurious tuples)
- 3NF preserves dependencies
- BCNF does not always preserve dependencies

Normalization Algorithms: naïve algorithm for 3NF in polynomial time naïve algorithm for BCNF in exponential time, but can be done in polynomial time Recognition Algorithms: BCNF is easy to recognize (polynomial time) Recognizing 3NF is NP-complete (Jou, Fischer, The complexity of recognizing 3NF relation schemes, Information Processing Letters 14, 1982)