
1

Relational Design Theory II

Normalization

Detecting Anomalies

SID Activity Fee Tax

1001 Piano $20 $2.00

1090 Swimming $15 $1.50

1001 Swimming $15 $1.50

• Why is this bad design?

• Can we capture this using FDs?

Normal Forms

• Requirements on relational schemas

• Initiated by Codd (1NF, 2NF, 3NF)

1NF (First NF) no multivalued attributes

2NF (Second NF) no partial dependencies

3NF (Third NF) no bad transitive
dependencies

BCNF (Boyce-Codd NF) strengthening of 3NF

4NF (Fourth NF)

extends BCNF to multivalued
dependencies

• there’s more …

2

BCNF

If XY is not trivial, then X has to be a superkey.

Has to be true for all valid FDs XY

Example:

Activity(SID, Activity, Fee, Tax)

 SID, Activity  Fee, Tax

 Activity  Fee

 Fee  Tax

How to decompose?

BCNF Decomposition

What do we want?

• Relations are in BCNF

• We can reconstruct data in original relation

• Keep functional dependencies?

Note: Relations on two attributes are always BCNF.

BCNF-Normalization

Algorithm (BCNF Normalization)

 Input: Relation R, FDs F

 Output: BCNF-decomposition D of R

 D := {R}

 While X Y holds in some Q(A1, …, An) in D, and

 X Y not trivial, X not a superkey of Q

 add Q1(X
+ ∩ ({A1, …, An}) and

 Q2(X ∪ ({A1, …, An} - X+))

 remove Q.

3

BCNF-Example

D := {R}

 While X Y holds in some Q(A1, …, An) in D, and

 X Y not trivial, X not a superkey

of Q

 add Q1(X
+ ∩ ({A1, …, An}) and

 Q2(X ∪ ({A1, …, An} - X+))

 remove Q.

Examples:

 R(A, B, C, D), FDs: A B, C D

 R(A, B, C, D), FDs: AC B, C D

 R(A,B,C,D,E), FDs: A BE, E  D

BCNF-Normalization Caveat

Checking whether X  Y holds in some Q in
D refers to F, not just D.

Example:

 R(A,B,C,D,E)

 FDs: AB

 BCD (implies ACD)

• naïve implementation of algorithm requires exponential time

• can be improved to polynomial time
 (Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form, ACM,

SIGACT News,1982)

Testing for BCNF

R(A,B,C,D,E)

FDs: AB

 BCD

• single R with FDs F

testing for BCNF can be done in polynomial time,

it is sufficient to test dependencies in F

• this is not true for decompositions, e.g.

decompose into

 R1(A,B)

 R2(A,C,D,E)

4

More BCNF-Examples

 phone(Name, City, AreaCode, PhoneNumber, Extension)

 R(A,B,C,D), keys: AB, CD, FDs: AC, DB

 R(A,B,C,D,E), FDs: AB, C D, ACE

Lossless Join Property

D = {R1, R2 , … , Rn} decomposition of R.

If R1* R2 * … * Rn = R, then

 D has the lossless join property.

BCNF decomposition has lossless join property.

Lossless Join Property

Test lossless join property for binary decomposition

 Given: R, D= {R1, R2}, FDs F

 D is a lossless join decomposition of R, if and only if

 R = R1 ∪ R2, and either

 R1 ∩ R2  R1 – R2 holds in F or

 R1 ∩ R2  R2 – R1 holds in F .

Example: Activity(SID, Activity, Fee)

• necessary?

• sufficient?

• implies correctness of BCNF algorithm

5

Lossless Join Property

Algorithm (Chase Test)

 Input: relation R(A1, …, An), FDs F

 decomposition D = {R1, R2 , … , Rm}

 Output: Is D a lossless join decomposition of R?

T := table with columns A1, …, An, rows R1, R2 , … , Rm

T[i,j] :=

Apply FDs in F to identify elements until

• there is a row (a1 ,…, an): lossless join

• no more changes are possible: not lossless join

ai,j if Ai not in Rj

ai if Ai in Rj

Chase Test Examples

R(A,B,C), FDs: AB,

 D = {P(A,B), Q(A,C)}

R(A,B,C), FDs: AB,

 D = {P(B,C), Q(A,C)}

R(A,B,C,D), FDs: AB, CD,

 D = {P(A,B), Q(B,C),T(C,D)}

Dependency Preservation

 banker(BranchName, CustomerName, BankerName)

 BankerNameBranchName

 BranchName, CustomerName  BankerName

R(A,B,C), FDs: AB, BCA

• why not in BCNF? (Keys?)

• what are possible BCNF decompositions?

• what happens to dependencies?

Deciding whether a given relation has a dependency

preserving BCNF decomposition is NP-complete

Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form,

ACM, SIGACT News,1982

6

Prime Attributes

prime attribute: part of some key

Examples:

 R(A,B,C,D,E), AB is key, C is key, BD, DE

 A,B,C are prime,

 D,E are nonprime

 R(A,B,C,D,E)

 ACD, BDE, EAC

Prime Attributes

prime attribute: part of some key

• How many keys can there be on n attributes?

• How hard is it to find all keys? Algorithm?

Prime Attributes

prime attribute: part of some key

• How many keys can there be on n attributes?

• How hard is it to find all keys? Algorithm?

Determining primality of an attribute is NP-complete.

(Lucchesi, Osborne, Candidate keys for relations, J. Comput. System Sci. 17, 1978

7

3NF

If XY is not trivial, then X has to be a

superkey, or, all attributes in Y-X are prime.

Book(Author, Title, PriceCategory, Price)

Movie(Title, Year, MPAA, MinimumAge)

Violated in

Has to be true for all valid FDs XY

3NF-Examples

R(A,B,C,D) with key A and

 BCD, CD, DC

Can we find a decomposition of these relations that

contains the same information?

3NF-Normalization

1. Compute canonical cover C of F

2. D = {}

3. For every XY in C add Q(XY) to D, unless

a) some S in D already contains all of XY: don’t add Q

b) some S in D is contained in XY: replace S with Q(XY)

4. If no relation in D contains a key of R, then add

 new relation Q(X) on some key X of R

Input: Relation R with FDs F

Output: 3NF decomposition D of R

Algorithm (3NF Normalization):

8

3NF-Examples

• R(A,B,C,D) with A key, BCD, CD, DC

• R(A,B,C,D) with AB key, AC, BD

• R(A,B,C,D,E) with AB and AC keys, BCD, CE

• R(A,B,C,D,E) with AB key, AE, BCD, DE

• R(A,B,C,D,E,F) with ABC key, AE, ACF, EFG

• R(A,B,C,D,E,F) with A and BC keys, BD, DF

• R(A,B,C,D,E) with AB and CD keys, AE, CE

Results can depend on canonical cover, and

order of execution

Find 3NF normalization

3NF Algorithm

• 3NF Normalization Algorithm is loss-less join (chase test)

• It is dependency preserving (obviously)

• The resulting relations are in 3NF (not trivial).

3NF vs BCNF: properties

• BCNF is stronger than 3NF

• BCNF and 3NF are loss-less join (no spurious tuples)

• 3NF preserves dependencies

• BCNF does not always preserve dependencies

9

3NF vs BCNF: algorithmics

• Normalization Algorithms:

• naïve algorithm for 3NF in polynomial time

• naïve algorithm for BCNF in exponential time, but

can be done in polynomial time

• Recognition Algorithms:

• BCNF is easy to recognize (polynomial time)

• Recognizing 3NF is NP-complete

 (Jou, Fischer, The complexity of recognizing 3NF relation schemes, Information

Processing Letters 14, 1982)

