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Relational Design Theory II 

Normalization 

Detecting Anomalies 

SID Activity Fee Tax 

1001 Piano $20 $2.00 

1090 Swimming $15 $1.50 

1001 Swimming $15 $1.50 

• Why is this bad design? 

 

• Can we capture this using FDs? 

Normal Forms 

• Requirements on relational schemas 

• Initiated by Codd (1NF, 2NF, 3NF) 

1NF (First NF) no multivalued attributes 

2NF (Second NF) no partial dependencies 

3NF (Third NF) no bad transitive 
dependencies 

BCNF (Boyce-Codd NF) strengthening of 3NF 

4NF (Fourth NF) 

 

extends BCNF to multivalued 
dependencies 

• there’s more … 
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BCNF 

If XY is not trivial, then X has to be a superkey. 

Has to be true for all valid FDs XY  

Example: 

Activity(SID, Activity, Fee, Tax) 

 SID, Activity  Fee, Tax 

 Activity  Fee 

 Fee  Tax 

 

How to decompose? 

BCNF Decomposition 

What do we want? 

• Relations are in BCNF 

• We can reconstruct data in original relation 

• Keep functional dependencies? 

Note: Relations on two attributes are always BCNF. 

BCNF-Normalization 

Algorithm (BCNF Normalization) 

     Input: Relation R, FDs F 

     Output: BCNF-decomposition D of R 

 

     D := {R} 

     While X Y holds in some Q(A1, …, An) in D, and 

  X Y not trivial, X not a superkey of Q  

 add Q1(X
+ ∩ ({A1, …, An}) and 

        Q2(X ∪ ({A1, …, An} - X+))  

 remove Q. 
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BCNF-Example 

D := {R} 

     While X Y holds in some Q(A1, …, An) in D, and 

  X Y not trivial, X not a superkey 

of Q  

 add Q1(X
+ ∩ ({A1, …, An}) and 

        Q2(X ∪ ({A1, …, An} - X+))  

 remove Q. 

Examples: 

 R(A, B, C, D), FDs: A B, C D 

 R(A, B, C, D), FDs: AC B, C D 

 R(A,B,C,D,E), FDs: A BE, E  D  

BCNF-Normalization Caveat 

Checking whether X  Y holds in some Q in 
D refers to F, not just D. 

Example: 

 R(A,B,C,D,E) 

 FDs:  AB 

  BCD (implies ACD)  

• naïve implementation of algorithm requires exponential time 

• can be improved to polynomial time  
  (Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form, ACM, 

SIGACT News,1982) 

Testing for BCNF 

R(A,B,C,D,E) 

FDs:  AB 

 BCD  

• single R with FDs F 

testing for BCNF can be done in polynomial time,  

it is sufficient to test dependencies in F 

• this is not true for decompositions, e.g. 

decompose into  

  R1(A,B) 

  R2(A,C,D,E)  
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More BCNF-Examples 

 

  phone(Name, City, AreaCode, PhoneNumber, Extension) 

  R(A,B,C,D), keys: AB, CD, FDs: AC, DB 

  R(A,B,C,D,E), FDs: AB, C D, ACE 

Lossless Join Property 

D = {R1, R2 , … , Rn} decomposition of R. 

 

If R1* R2 * … * Rn = R, then  

 D has the lossless join property. 

BCNF decomposition has lossless join property. 

Lossless Join Property 

Test lossless join property for binary decomposition 

 Given: R, D= {R1, R2}, FDs F 

 D is a lossless join decomposition of R, if and only if 

 R = R1 ∪ R2, and either 

 R1 ∩ R2  R1 – R2 holds in F or 

 R1 ∩ R2  R2 – R1 holds in F . 

Example:  Activity(SID, Activity, Fee) 

• necessary? 

• sufficient? 

• implies correctness of BCNF algorithm 
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Lossless Join Property 

Algorithm (Chase Test) 

     Input: relation R(A1, …, An), FDs F 

     decomposition D = {R1, R2 , … , Rm} 

     Output: Is D a lossless join decomposition of R? 

T := table with columns A1, …, An, rows R1, R2 , … , Rm 

   

T[i,j] := 

 

Apply FDs in F to identify elements until  

• there is a row (a1 ,…,  an): lossless join   

• no more changes are possible: not lossless join        

ai,j  if Ai not in Rj 

ai    if Ai in Rj 

Chase Test Examples 

R(A,B,C), FDs: AB,  

  D = {P(A,B), Q(A,C)}  

 

R(A,B,C), FDs: AB,  

  D = {P(B,C), Q(A,C)} 

 

R(A,B,C,D), FDs: AB, CD,  

  D = {P(A,B), Q(B,C),T(C,D)} 

 

Dependency Preservation 

    banker(BranchName, CustomerName, BankerName) 

     BankerNameBranchName 

     BranchName, CustomerName  BankerName 

R(A,B,C), FDs: AB, BCA 

• why not in BCNF? (Keys?) 

• what are possible BCNF decompositions? 

• what happens to dependencies? 

Deciding whether a given relation has a dependency 

preserving BCNF decomposition is NP-complete 

Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form, 

ACM, SIGACT News,1982 
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Prime Attributes 

prime attribute: part of some key 

Examples: 

 R(A,B,C,D,E), AB is key, C is key, BD, DE 

  A,B,C are prime, 

  D,E are nonprime 

 

 R(A,B,C,D,E) 

 ACD, BDE, EAC 

  

Prime Attributes 

prime attribute: part of some key 

• How many keys can there be on n attributes? 

• How hard is it to find all keys? Algorithm? 

Prime Attributes 

prime attribute: part of some key 

• How many keys can there be on n attributes? 

• How hard is it to find all keys? Algorithm? 

Determining primality of an attribute is NP-complete. 

(Lucchesi, Osborne, Candidate keys for relations, J. Comput. System Sci. 17, 1978 
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3NF 

If XY is not trivial, then X has to be a 

superkey, or, all attributes in Y-X are prime. 

Book(Author, Title, PriceCategory, Price) 

Movie(Title, Year, MPAA, MinimumAge) 

Violated in 

Has to be true for all valid FDs XY  

3NF-Examples 

R(A,B,C,D) with key A and 

 BCD, CD, DC 

Can we find a decomposition of these relations that 

contains the same information? 

3NF-Normalization 

1. Compute canonical cover C of F 

2. D = {}  

3. For every XY in C add Q(XY) to D, unless 

a) some S in D already contains all of XY: don’t add Q 

b) some S in D is contained in XY: replace S with Q(XY) 

4. If no relation in D contains a key of R, then add  

      new relation Q(X) on some key X of R 

  

Input: Relation R with FDs F  

Output: 3NF decomposition D of R 

Algorithm (3NF Normalization): 
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3NF-Examples 

• R(A,B,C,D) with A key, BCD, CD, DC 

• R(A,B,C,D) with AB key, AC, BD 

• R(A,B,C,D,E) with AB and AC keys, BCD, CE 

• R(A,B,C,D,E) with AB key, AE, BCD, DE 

• R(A,B,C,D,E,F) with ABC key, AE, ACF, EFG 

• R(A,B,C,D,E,F) with A and BC keys, BD, DF 

• R(A,B,C,D,E) with AB and CD keys, AE, CE 

Results can depend on canonical cover, and 

order of execution 

Find 3NF normalization 

3NF Algorithm 

• 3NF Normalization Algorithm is loss-less join (chase test) 

• It is dependency preserving (obviously) 

• The resulting relations are in 3NF (not trivial). 

3NF vs BCNF: properties 

• BCNF is stronger than 3NF 

• BCNF and 3NF are loss-less join (no spurious tuples) 

• 3NF preserves dependencies 

• BCNF does not always preserve dependencies 
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3NF vs BCNF: algorithmics 

• Normalization Algorithms: 

• naïve algorithm for 3NF in polynomial time 

• naïve algorithm for BCNF in exponential time, but 

can be done in polynomial time 

• Recognition Algorithms: 

• BCNF is easy to recognize (polynomial time) 

• Recognizing 3NF is NP-complete  

 (Jou, Fischer, The complexity of recognizing 3NF relation schemes, Information  

Processing Letters 14, 1982) 


