

Data Models

Structure - Operations - Constraints

Types:

Relational data model Object data model Hierarchical data model (Trees) Network data model (Graphs) Semistructured Data Model

Relational Database Model

Introduced by E.F. Codd (1970) http://www.acm.org/classics/nov95/

Based on relational algebra and logic developed by

Schröder (1880s) Charles Peirce (1890s) Russell and Whitehead (1900s)

Codd's Twelve Rules

- Information represented at the logical level in tables. 1.
- 2. Data is determined by table, primary key, and column.
- Missing information is modeled as null values. 3.
- 4. Metadata is part of the database.
- 5. Single language for all tasks in DBMS.
- 6. Views and tables must change simultaneously.
- Single operations for retrieve, insert, delete, update.
 Operations independent of physical storage and access.
- 9. Database modifiable without affecting applications.
- 10. Constraints are part of database.
- 11. DML independent of physical layer (distributed, etc.)
- 12. Row-processing obeys same rules as set-processing.

Relations

Extensional versus intensional

Extensional Representation:

table of values rows = records columns = attributes

Note:

rows in tables are ordered, instances of relations are not

Domains

Set of **atomic** values for an attribute atomic = indivisible (e.g. CSC 355 = CSC + 355 is divisible)

Examples age: integer sex: {male, female}

Physical Level: data type + format

Relational Schemas Example

CUSTOMER(Customer_ID, Customer_Name, City, State, Postal_Code)

ORDER(Order_ID, Order_Date, Customer_ID)

ORDERLINE(Order_ID, Product_ID, Ordered_Quantity)

Instances

Given $R\left(A_{1}\text{, }A_{2}\text{ , }\ldots\text{ , }A_{n}\right)$, A_{i} has domain D_{i}

Instance of schema \mathbb{R} is a table with data from domains

Example: Student(LastName, FirstName, SID, SSN, Career, Program, City, Started)

- student							
LastName -	FirstName +	SID +	.55N +	Career -	Program -	city +	Started +
* Snowdon	Jonathan	8871	123123123	GRD	INFO-515	Springfield	2009
* Winter	Abigail	11035	111111111	GRD	PHD	Chicago	2007
# Patel	Deepa	34662		GRD	COMP-SCI	Evanston	201
* Degroff	Janvis	14995	113311333	GRD	COMP-GAM	Evanston	201
# Starck	Jason	19992	789789789	UGRD	INFO-SYS	Springfield	200
# Johnson	Peter	32305	123456789	UGRD	COMP-SCI	Chicago	2010
# Pollard	2092	39077		GRD	COMP-SCI	Springfield	2010
# Kubik	Dwayne	57923	97979797979	UGRD	COMP-SCI	Springfield	2013
# Skelly	Trinity	58992	555222555	GRD	PHD	Springfield	2013
* Keol	Angelo	60973		UGRD	COMP-SCI	Springfield	2011
# Patel	Prakash	75234		UGRD	COMP-SCI	Chicago	2011
× Brennigan	Marcus	90421	987654321	UGRD	COMP-GAM	Evanston	2010

Records

<101, "Thirty-Nine Steps", mystery, 101, R><510, "Monkey Business", comedy, null, null>

are possible records (or tuples) in

MOVIE(movieID, title, genre, length, rating).

null: value unknown, or attribute does not apply

values **atomic**: no multiple values (first normal form) (e.g. several genres) indivisible (name = first name + last name)

What about multiple values?

student							
LastName	FirstName +	5ID +	55N +	Career +	Program +	city +	Started +
* Snowdon	Jonathan	8871	123123123	GRD	INFO-515	Springfield	2009
* Winter	Abigail	11035	111111111	GRD	PHD	Chicago	2009
# Patel	Deepa	34662		GRD	COMP-SCI	Evanston	2013
* Degroff	Janvis	14995	1133111331	GRD	COMP-GAM	Evanston	2012
# Starck	Jason	19992	789789789	UGRD	INFO-SYS	Springfield	2009
in Johnson	Peter	32305	123456789	UGRD	COMP-SCI	Chicago	2010
# Pollard	Joya	39077		GRD	COMP-SCI	Springfield	2010
# Kubik	Dwayne	57923	97979797979	UGRD	COMP-SCI	Springfield	2013
# Skelly	Trinity	58992	555222555	GRD	PHD	Springfield	2012
# Krol	Angelo	60973		UGRD	COMP-SCI	Springfield	2011
# Patel	Prakash	75234		UGRD	COMP-SCI	Chicago	2011
× Brennigan	Marcus	90421	987654321	UGRD	COMP-GAM	Evanston	2010
# Sexteening	tennifer	93321	321321321	GED	COMP-SCI	Springfield	2012

Multiple

programs ? Telephone numbers ?

Movie Genres?

Constraints

- Domain constraints
- Key (uniqueness) constraints
 Entity integrity constraints
- · Referential integrity constraints
- Data dependencies (functional dependencies, etc.)

Domain Constraints

Restriction on values of attributes (domain).

Specified as data-type: integer, char, etc., or user-defined type

Operations on data-types: +, *, <, =, ...

not null constraint for an attribute

Keys

Key: smallest set of attributes that uniquely identify a record in the relational schema underlined in relational schema

composite: more than one attribute

Examples:

• MOVIE(<u>MovieID</u>, Title, Year, Length, Rating)

{MovieID, Title} is not a key !

• MEMBER(StudentID, Groupname, Joined)

Key Examples

PRODUCT(ProductID, Name, Description, PricePerUnit, UnitSize) ACTIVITY(StudentID, Activity, Fee) COURSE (CourseID, Title, Enrolment)

ENROLED(StudentID, CourseID, Qt, Year)

Candidate Keys

If a relation has more than one key, these keys are called **candidate keys**.

Examples

- EMPLOYEE (EmpID, FirstName, LastName, Salary, Gender)
- DePaul students: peoplesoftID and SSN
 COURSE(Department, Number, Name, Instructor)
- CAR(OwnerName, Vehicle#, Engine#, Color)

One candidate key is declared the primary key of the relation (underlined in schema)

Relational Databases and Schemas

Relational Database **Schema**: Collection of Relations Relational Database **State**: Collection of Instances

ACTIVITIES = {STUDENT, ACTIVITY}

Student	<u>SID</u>	FName	LName	Activity	<u>StudentID</u>	<u>Activity</u>	Fee
	101	Mark	Spencer		971	Piano	\$20
	971	Charles	Loeffler		971	Swimming	\$10

Note: different names (SID, StudentID) for the same concepts

Foreign Key 1

A set of attributes in one relation (R_1) refering to a unique tuple in a second relation (R_2) through R_2 's primary key.

Student	<u>SID</u>	FName	LName		Activity	<u>StudentID</u>	Activity	Fee
	101	Mark	Spencer			971	Piano	\$20
	353	Gil	Ryle			353	Reading	\$5
	971	Charles	Loeffler			971	Swimming	\$10

Terminology $\begin{array}{c} R_1 \text{ referencing relation} \\ R_2 \text{ referenced relation} \end{array}$

Referential Integrity

declaration of foreign keys in a database schema

STUDENT(SID, FName, LName) ACTIVITIES(StudentID references STUDENT, Activity, Fee)

or visually, by an arrow from foreign key to primary key

STUDENT(<u>SID</u>, FName, LName)

ACTIVITIES (StudentID, Activity, Fee)

Integrity Constraints

• Domain Constraints: declaration of domains

- Not Null Constraints: attribute values cannot be null
- Key Constraints: candidate keys (uniqueness)
- Entity Integrity Constraint: primary key is not null

• Referential Integrity Constraint: declaring foreign keys

A valid state is a database state fulfilling all integrity constraints

Integrity Constraints defined by DDL

Semantic constraints (transitions) later