
1

Transactions

Commit and Rollback

Transfer $100 from account 1001 to 1007.

 update account

 set balance = balance + 100

 where acc_id = 1001;

 update account

 set balance = balance - 100

 where acc_id = 1007;

What if 1007 has less than $100?

• We can undo uncommitted work: ROLLBACK

• What does this mean for multiple users?

• We can commit work: COMMIT

Atomicity

 update account

 set balance = balance + 100

 where acc_id = 1001;

 update account

 set balance = balance - 100

 where acc_id = 1007;

should be a single unit: either

both or neither succeeds

SQL uses Transactions to guarantee Atomicity

2

Transaction (using PL/SQL)

update account

set balance = balance + 100

where acc_id = 1001;

update account

set balance = balance - 100

where acc_id = 1007;

• will fail if 1007 has less than $100

• what if there is no account 1001?

 begin

 update account

 set balance = balance + 100

 where acc_id = 1001;

 update account

 set balance = balance - 100

 where acc_id = 1007;

end;

Not transactional Transactional

Consistency

Constraint enforcement can be deferred to end of transaction (if

constraint is deferrable).

STUDENT(sid, lastname, mentorid)

insert into student values (1, 'Brennigan', 3);

insert into student values (3, 'Patel', null);

set constraint fk_super deferred;

begin

insert into student values (1, 'Brennigan', 3);

insert into student values (3, 'Patel', null);

end;

Run as script

ACID Properties

• Atomicity: Transaction succeeds as a whole or fails as a whole

 Example: Money Transfer

• Consistency: Database is in consistent state at end of transaction

Example: Adding employees with supervisors

• Isolation: Transactions appear to serialize

Example: airline seat booking

• Durability: Committed changes are permanent

 Example: system failure

3

Concurrent Processing

Let’s try to withdraw money from 1003 at two different ATMs.

What happens ?

T1:

read(balance)

balance := balance – 100

if balance >= 0

 write(balance)

commit

T2:

read(balance)

balance := balance – 50

if balance >= 0

 write(balance)

commit

Potential problems

P0 (Dirty Writes): T2 overwrites a T1 write before T1 commits

P1 (Dirty Read): T2 reads T1 written cell before T1 commits

P2 (Nonrepeatable Read): T2 modifies data that T1 has read.

P3 (Phantom): T2 adds records that belong to a T1 query

P4 (Lost Update): T2 writes over an item T1 has read, T1

 then writes and commits.

T1:

read(balance)

balance := balance – 100

if balance >= 0

 write(balance)

commit

T2:

read(balance)

balance := balance – 50

if balance >= 0

 write(balance)

commit

Isolation Levels (SQL 92)

Isolation
Level

P1 Dirty Read P2 Nonrepeatable
Read

P3 Phantom

Read Uncommitted Allowed Allowed

Allowed

Read Committed x Allowed

Allowed

Repeatable Read x x Allowed

Serializable x x x

4

Isolation Levels in Oracle

Read Committed: no P1, but P2, P3 is possible

Serializable: no P1, P2, P3 possible

Read Only: no P1, P2, P3 possible

set transaction isolation level serializable;

set transaction isolation level read committed;

set transaction read only;

P1 (Dirty Read): T2 reads T1 written cell before T1 commits

P2 (Nonrepeatable Read): T2 modifies data that T1 has read.

P3 (Phantom): T2 adds records that belong to a T1 query

more at http://docs.oracle.com/cd/B12037_01/server.101/b10743/consist.htm

default,

minimum level

Implementing Transactions

pessimistic

optimistic

Locking (cell, row, table)

MVCC (Multiversion concurrency control)

