

Detecting	Anomal	1es	-++-
SID	Activity	Fee	Tax
1001	Piano	\$20	\$2.00
1090	Swimming	\$15	\$1.50
1001	Swimming	\$15	\$1.50
	y is this bad des		Ds?

	Normal Forms	
	Requirements on rela Initiated by Codd (1)	
[1NF (First NF)	no multivalued attributes
	2NF (Second NF)	no partial dependencies
1000	3NF (Third NF)	no bad transitive dependencies
	BCNF (Boyce-Codd NF)	strengthening of 3NF
1	4NF (Fourth NF)	extends BCNF to multivalued dependencies

BCNF If X \rightarrow Y is not trivial, then X has to be a superkey. Has to be true for all valid FDs X \rightarrow Y Example: Activity(SID, Activity, Fee, Tax) SID, Activity \rightarrow Fee, Tax Activity \rightarrow Fee

BCNF Decomposition

What do we want?

Fee \rightarrow Tax

How to decompose?

• Relations are in BCNF

• We can reconstruct data in original relation

• Keep functional dependencies?

Note: Relations on two attributes are always BCNF.

BCNF-Normalization

 $\begin{array}{l} \textbf{Algorithm (BCNF Normalization)} \\ \textbf{Input: Relation R, FDs } \mathcal{F} \\ \textbf{Output: BCNF-decomposition D of R} \end{array}$

$$\begin{split} D &:= \{R\} \\ & \text{While } X &\to Y \text{ holds in some } Q(A_1, \, \dots, \, A_n) \text{ in } D, \text{ and} \\ & X \to Y \text{ not trivial, } X \text{ not a superkey of } Q \\ & \text{add } Q_1(X^+ \cap (\{A_1, \, \dots, \, A_n\}) \text{ and} \\ & Q_2(X \cup (\{A_1, \, \dots, \, A_n\} \text{ - } X^+)) \\ & \text{remove } Q. \end{split}$$

BCNF-Example

D := {R}

While $X \rightarrow Y$ holds in some $Q(A_1, ..., A_n)$ in D, and $X \rightarrow Y$ not trivial, X not a superkey of Q

 $\begin{array}{l} \label{eq:Q2} \text{ add } Q_1(X^* \cap (\{A_1,...,A_n\}) \text{ and} \\ Q_2(X \cup (\{A_1,...,A_n\} \cdot X^*)) \\ \text{ remove } Q. \end{array}$

Examples:

 $\begin{aligned} & \mathsf{R}(\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{D}),\mathsf{FDs}{:}\mathsf{A}{\rightarrow}\mathsf{B},\mathsf{C}{\rightarrow}\mathsf{D} \\ & \mathsf{R}(\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{D}),\mathsf{FDs}{:}\mathsf{A}{C}{\rightarrow}\mathsf{B},\mathsf{C}{\rightarrow}\mathsf{D} \\ & \mathsf{R}(\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{D},\mathsf{E}),\mathsf{FDs}{:}\mathsf{A}{\rightarrow}\mathsf{BE},\mathsf{E}{\rightarrow}\mathsf{D} \end{aligned}$

BCNF-Normalization Caveat

Checking whether $X \rightarrow Y$ holds in some Q in D refers to \mathcal{F} , not just D.

Example:

 $\begin{array}{l} R(A,B,C,D,E) \\ FDs: A \rightarrow B \end{array}$

BC \rightarrow D (implies AC \rightarrow D)

naïve implementation of algorithm requires exponential time
 can be improved to polynomial time
 (Ten Eischer Decomposition of a relation scheme into Royce Codd Normal Form ACM)

(Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form, ACM, SIGACT News, 1982)

Testing for BCNF

ullet single R with FDs ${\mathcal F}$

- testing for BCNF can be done in polynomial time, it is sufficient to test dependencies in \mathcal{F}
- this is not true for decompositions, e.g.

 $\begin{array}{l} R(A,B,C,D,E)\\ FDs: \quad A \rightarrow B\\ \quad BC \rightarrow D \end{array}$

decompose into $\begin{array}{c} \mathsf{R}_1(A,B) \\ \mathsf{R}_2(A,C,D,E) \end{array}$

More BCNF-Examples

phone(<u>Name, City, AreaCode, PhoneNumber, Extension</u>) R(A,B,C,D), keys: AB, CD, FDs: A \rightarrow C, D \rightarrow B R(A,B,C,D,E), FDs: A \rightarrow B, C \rightarrow D, AC \rightarrow E

Lossless Join Property

 $D = \{R_1, R_2, \dots, R_n\}$ decomposition of R.

If $R_1 * R_2 * \dots * R_n = R$, then D has the **lossless join property**.

BCNF decomposition has lossless join property.

Lossless Join Property

Test lossless join property for binary decomposition Given: R, D= {R₁, R₂}, FDs \mathcal{F} D is a lossless join decomposition of R, if and only if $R = R_1 \cup R_2$, and either $R_1 \cap R_2 \rightarrow R_1 - R_2$ holds in \mathcal{F} or $R_1 \cap R_2 \rightarrow R_2 - R_1$ holds in \mathcal{F} .

Example: Activity(SID, Activity, Fee)

• necessary?

• sufficient?

• implies correctness of BCNF algorithm

	Lossless Join Property								
	Algorithm (Chase Test)								
	Input: relation $R(A_1,, A_n)$, FDs \mathcal{F}								
	decomposition $D = \{R_1, R_2, \dots, R_m\}$								
	Output: Is D a lossless join decomposition of R? T := table with columns $A_1,, A_n$, rows $R_1, R_2,, R_m$								
	$\int a_{i,j} = if A_{i,j} a_{i,j}$ instead of $A_{i,j}$, $a_{i,j}$, $a_{i,j}$								
	$T[i_{j}] := \begin{cases} a_{i,j} & \text{if } A_i \text{ not in } R_j \\ a_i & \text{if } A_i \text{ in } R_j \end{cases}$								
	В, 0 _j , 0, …								
ġ.	Apply FDs in \mathcal{F} to identify elements until								
	• there is a row $(a_1,, a_n)$: lossless join								
	• no more changes are possible: not lossless join								

Chase Test Examples

R(A,B,C), FDs: A \rightarrow B, $D_1 = \{P(A,B), Q(A,C)\}$ $D_2 = \{P(B,C), Q(A,C)\}$

 $\begin{aligned} \mathsf{R}(\mathsf{A},\mathsf{B},\mathsf{C},\mathsf{D}), \,\mathsf{FDs}: \mathsf{A}{\rightarrow}\mathsf{B}, \,\mathsf{C}{\rightarrow}\mathsf{D}, \\ D &= \{\mathsf{P}(\mathsf{A},\mathsf{B}), \,\mathsf{Q}(\mathsf{B},\mathsf{C}), \mathsf{T}(\mathsf{C},\mathsf{D})\} \end{aligned}$

 $R(A,B,C,D,E,F,G), FDs: A \rightarrow G, B \rightarrow A, BCE \rightarrow ADF, C \rightarrow EF, F \rightarrow CD, G \rightarrow BF,$

 $D = \{P(A,F,G), Q(B,E,F), S(C,D,G)\}$

Dependency Preservation

banker(BranchName, CustomerName, BankerName) BankerName→BranchName BranchName, CustomerName → BankerName

the second s

R(A,B,C), FDs: A \rightarrow B, BC \rightarrow A

- why not in BCNF? (Keys?)
- what are possible BCNF decompositions?
- what happens to dependencies?

Deciding whether a given relation has a dependency preserving BCNF decomposition is NP-complete

Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form, ACM, SIGACT News, 1982

Prime Attributes

prime attribute: part of some key

Examples:

R(A,B,C,D,E), AB is key, C is key, $B\rightarrow D$, $D\rightarrow E$ A,B,C are prime, D,E are nonprime

R(A,B,C,D,E) $AC \rightarrow D, BD \rightarrow E, E \rightarrow AC$

Prime Attributes

prime attribute: part of some key

How many keys can there be on n attributes?How hard is it to find all keys? Algorithm?

Prime Attributes

prime attribute: part of some key

How many keys can there be on n attributes?How hard is it to find all keys? Algorithm?

Determining primality of an attribute is NP-complete. (Lucchesi, Osborne, Candidate keys for relations, J. Comput. System Sci. 17, 1978

3NF If $X \rightarrow Y$ is not trivial, then X has to be a superkey, *or*, all attributes in Y-X are prime. Has to be true for all valid FDs $X \rightarrow Y$

Violated in

Book(Author, Title, PriceCategory, Price) Movie(Title, Year, MPAA, MinimumAge)

3NF-Examples

R(A,B,C,D) with key A and B \rightarrow CD, C \rightarrow D, D \rightarrow C

Can we find a decomposition of these relations that contains the same information?

3NF-Normalization

Algorithm (3NF Normalization):

- Input: Relation R with FDs \mathcal{F} Output: 3NF decomposition D of R
- 1. Compute canonical cover C of \mathcal{F}
- 2. D = {}
- 3. For every X→Y in C add Q(XY) to D, unless
 a) some S in D already contains all of XY: don't add Q
 b) some S in D is contained in XY: replace S with Q(XY)
- 4. If no relation in D contains a key of R, then add new relation Q(X) on some key X of R

3NF-Examples

- R(A,B,C,D) with A key, $B \rightarrow CD$, $C \rightarrow D$, $D \rightarrow C$
- R(A,B,C,D) with AB key, $A \rightarrow C, B \rightarrow D$
- R(A,B,C,D,E) with AB and AC keys, BC \rightarrow D, C \rightarrow E
- R(A,B,C,D,E) with AB key, $A \rightarrow E$, $BC \rightarrow D$, $D \rightarrow E$
- R(A,B,C,D,E,F) with ABC key, $A \rightarrow E$, $AC \rightarrow F$, $EF \rightarrow G$
- R(A,B,C,D,E,F) with A and BC keys, $B \rightarrow D$, $D \rightarrow F$
- R(A,B,C,D,E) with AB and CD keys, $A \rightarrow E, C \rightarrow E$

Find 3NF normalization

Results can depend on canonical cover, and order of execution

3NF Algorithm

- 3NF Normalization Algorithm is loss-less join (chase test)
- It is dependency preserving (obviously)
- The resulting relations are in 3NF (not trivial).

3NF vs BCNF: properties

- BCNF is stronger than 3NF
- BCNF and 3NF are loss-less join (no spurious tuples)
- 3NF preserves dependencies
- BCNF does not always preserve dependencies

3NF vs BCNF: algorithmics

- Normalization Algorithms:
 - naïve algorithm for 3NF in polynomial time
 - naïve algorithm for BCNF in exponential time, but
 - can be done in polynomial time
- Recognition Algorithms:
 - BCNF is easy to recognize (polynomial time)
 - Recognizing 3NF is NP-complete
 - (Jou, Fischer, The complexity of recognizing 3NF relation schemes, Information Processing Letters 14, 1982)