Relational Design Theory II

Normalization

Detecting Anomalies

<table>
<thead>
<tr>
<th>SID</th>
<th>Activity</th>
<th>Fee</th>
<th>Tax</th>
</tr>
</thead>
<tbody>
<tr>
<td>1001</td>
<td>Piano</td>
<td>$20</td>
<td>$2.00</td>
</tr>
<tr>
<td>1090</td>
<td>Swimming</td>
<td>$15</td>
<td>$1.50</td>
</tr>
<tr>
<td>1001</td>
<td>Swimming</td>
<td>$15</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

• Why is this bad design?

• Can we capture this using FDs?

Normal Forms

• Requirements on relational schemas
• Initiated by Codd (1NF, 2NF, 3NF)

<table>
<thead>
<tr>
<th>Normal Form</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1NF (First NF)</td>
<td>no multivalued attributes</td>
</tr>
<tr>
<td>2NF (Second NF)</td>
<td>no partial dependencies</td>
</tr>
<tr>
<td>3NF (Third NF)</td>
<td>no bad transitive dependencies</td>
</tr>
<tr>
<td>BCNF (Boyce-Codd NF)</td>
<td>strengthening of 3NF</td>
</tr>
<tr>
<td>4NF (Fourth NF)</td>
<td>extends BCNF to multivalued dependencies</td>
</tr>
</tbody>
</table>

• there’s more …
If \(X \rightarrow Y \) is not trivial, then \(X \) has to be a superkey.

Has to be true for all valid FDs \(X \rightarrow Y \)

Example:

Activity(SID, Activity, Fee, Tax)
SID, Activity \(\rightarrow \) Fee, Tax
Activity \(\rightarrow \) Fee
Fee \(\rightarrow \) Tax

How to decompose?

BCNF Decomposition

What do we want?

• Relations are in BCNF
• We can reconstruct data in original relation
• Keep functional dependencies?

Note: Relations on two attributes are always BCNF.

BCNF-Normalization

Algorithm (BCNF Normalization)

Input: Relation \(R \), FDs \(\mathcal{F} \)
Output: BCNF-decomposition \(D \) of \(R \)

\[D := \{ R \} \]

While \(X \rightarrow Y \) holds in some \(Q(A_1, \ldots, A_n) \) in \(D \), and \(X \rightarrow Y \) not trivial, \(X \) not a superkey of \(Q \)

add \(Q_{1}(X' \cap ((A_1, \ldots, A_n) \cap Q)) \) and \(Q_{2}(X \cup ((A_1, \ldots, A_n) - X')) \)
remove \(Q \).
BCNF-Example

\[D := \emptyset \]

While \(X \rightarrow Y \) holds in some \(Q(A_1, \ldots, A_n) \) in \(D \), and

- \(X \rightarrow Y \) not trivial, \(X \) not a superkey
- of \(Q \)

- add \(Q_1(X^+ \cap \{A_1, \ldots, A_n\}) \) and
- \(Q_2(X \cup \{A_1, \ldots, A_n\} - X^+) \)

remove \(Q \).

Examples:

- \(R(A, B, C, D) \), FDs: \(A \rightarrow B, C \rightarrow D \)
- \(R(A, B, C, D) \), FDs: \(AC \rightarrow B, C \rightarrow D \)
- \(R(A, B, C, D, E) \), FDs: \(A \rightarrow BE, E \rightarrow D \)

BCNF-Normalization Caveat

Checking whether \(X \rightarrow Y \) holds in some \(Q \) in

\(D \) refers to \(F \), not just \(D \).

Example:

- \(R(A, B, C, D, E) \)
- FDs: \(A \rightarrow B \)
- \(BC \rightarrow D \) (implies \(AC \rightarrow D \))

- naïve implementation of algorithm requires exponential time
- can be improved to polynomial time

(Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form, ACM, SIGACT News, 1982)

Testing for BCNF

- single \(R \) with FDs \(F \)
- testing for BCNF can be done in polynomial time,
 it is sufficient to test dependencies in \(F \)
- this is not true for decompositions, e.g.

\[
R(A, B, C, D, E) \quad \text{decompose into}
\]

- \(R_1(A, B) \)
- \(R_2(A, C, D, E) \)
- \(R_3(A, B) \)
- \(R_4(A, C, D, E) \)
- \(R_5(A, B) \)
More BCNF-Examples

phone(Name, City, AreaCode, PhoneNumber, Extension)
R(A,B,C,D,E), FDs: A → B, C → D, AC → E

Lossless Join Property

D = {R₁, R₂, …, Rₙ} decomposition of R.

If R₁ ⋂ R₂ ⋂ … ⋂ Rₙ = R, then
D has the lossless join property.

BCNF decomposition has lossless join property.

Lossless Join Property

Test lossless join property for binary decomposition
Given: R, D = {R₁, R₂}, FDs F
D is a lossless join decomposition of R, if and only if
R₁ ⋂ R₂ → R₁ - R₂ holds in F or
R₁ ⋂ R₂ → R₂ - R₁ holds in F.

Example: Activity(SID, Activity, Fee)
• necessary?
• sufficient?
• implies correctness of BCNF algorithm
Lossless Join Property

Algorithm (Chase Test)
Input: relation \(R(A_1, \ldots, A_n) \), FDs \(F \)
decomposition \(D = \{ R_1, R_2, \ldots, R_m \} \)
Output: Is \(D \) a lossless join decomposition of \(R \)?

\(T \) := table with columns \(A_1, \ldots, A_n \), rows \(R_1, R_2, \ldots, R_m \)

\[T[i,j] := \begin{cases}
 a_i & \text{if } A_i \text{ not in } R_j \\
 a_j & \text{if } A_i \text{ in } R_j
\end{cases} \]

Apply FDs in \(F \) to identify elements until
- there is a row \((a_1, \ldots, a_n) \): lossless join
- no more changes are possible: not lossless join

Chase Test Examples

\(R(A,B,C) \), FDs: \(A \rightarrow B \), \(D_1 = \{P(A,B), Q(A,C)\} \)
\(D_2 = \{P(B,C), Q(A,C)\} \)

\(R(A,B,C,D) \), FDs: \(A \rightarrow B, C \rightarrow D \),
\(D = \{P(A,B), Q(B,C), T(C,D)\} \)

\(R(A,B,C,D,E,F,G) \), FDs: \(A \rightarrow G, B \rightarrow A, BCE \rightarrow ADF, C \rightarrow EF,
F \rightarrow CD, G \rightarrow BF, \)
\(D = \{P(A,F,G), Q(B,E,F), S(C,D,G)\} \)

Dependency Preservation

banker(BranchName, CustomerName, BankerName)
BankerName → BranchName
BranchName, CustomerName → BankerName

\(R(A,B,C) \), FDs: \(A \rightarrow B, BC \rightarrow A \)
- why not in BCNF? (Keys?)
- what are possible BCNF decompositions?
- what happens to dependencies?

Deciding whether a given relation has a dependency preserving BCNF decomposition is NP-complete

Tuma, Fischer, *Decomposition of a relation scheme into Boyce-Codd Normal Form*, ACM SIGACT News 1982
Prime Attributes

Prime attribute: part of some key

Examples:

- **R(A,B,C,D,E)**, AB is key, C is key, B→D, D→E
 - A,B,C are prime,
 - D,E are nonprime

- **R(A,B,C,D,E)**
 - AC→D, BD→E, E→AC

Prime Attributes

Prime attribute: part of some key

- How many keys can there be on n attributes?
- How hard is it to find all keys? Algorithm?

Determining primality of an attribute is NP-complete.

(Lucchesi, Osborne; Candidate keys for relations. J. Comput. System Sci. 17, 1978)
3NF

If $X \rightarrow Y$ is not trivial, then X has to be a superkey, or all attributes in $Y-X$ are prime. Has to be true for all valid FDs $X \rightarrow Y$

Violated in

- Book(Author, Title, PriceCategory, Price)
- Movie(Title, Year, MPAA, MinimumAge)

3NF-Examples

R(A,B,C,D) with key A and $B \rightarrow CD$, $C \rightarrow D$, $D \rightarrow C$

Can we find a decomposition of these relations that contains the same information?

3NF-Normalization

Algorithm (3NF Normalization):

1. Compute canonical cover C of F
2. $D = \{\}$
3. For every $X \rightarrow Y$ in C add $Q(XY)$ to D, unless
 a) some S in D already contains all of XY: don’t add Q
 b) some S in D is contained in XY: replace S with $Q(XY)$
4. If no relation in D contains a key of R, then add new relation $Q(X)$ on some key X of R
3NF-Examples
• R(A,B,C,D) with A key, B→CD, C→D, D→C
• R(A,B,C,D) with AB key, A→C, B→D
• R(A,B,C,D,E) with AB and AC keys, BC→D, C→E
• R(A,B,C,D,E) with AB key, A→E, BC→D, D→E
• R(A,B,C,D,E,F) with ABC key, A→E, AC→F, EF→G
• R(A,B,C,D,E,F) with A and BC keys, B→D, D→F
• R(A,B,C,D,E) with AB and CD keys, A→E, C→E

Find 3NF normalization
Results can depend on canonical cover, and order of execution

3NF Algorithm
• 3NF Normalization Algorithm is loss-less join (chase test)
• It is dependency preserving (obviously)
• The resulting relations are in 3NF (not trivial).

3NF vs BCNF: properties
• BCNF is stronger than 3NF
• BCNF and 3NF are loss-less join (no spurious tuples)
• 3NF preserves dependencies
• BCNF does not always preserve dependencies
3NF vs BCNF: algorithmics

• Normalization Algorithms:
 • naïve algorithm for 3NF in polynomial time
 • naïve algorithm for BCNF in exponential time, but can be done in polynomial time

• Recognition Algorithms:
 • BCNF is easy to recognize (polynomial time)
 • Recognizing 3NF is NP-complete

(Jia, Fischer, The complexity of recognizing 3NF relation schemes, Information Processing Letters 14, 1982)