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Relational Design Theory I 

Functional Dependencies 

Functional Dependencies: why? 

Design methodologies: 

 Bottom up (e.g. binary relational model) 

 Top-down (e.g. ER leads to this) 

Needed: tools for analysis of quality of relational schema 

Goals:  

 reducing redundancy (update/deletion anomalies) 

 avoiding spurious tuples 

 reducing null values 

Redundancy and Anomalies I 

Example (Movie database) 

   MOVIE(title, actorname, year, length, country, role) 

   

Insertion, Update Anomalies 

Consider tasks: 

 update year;  

 insert actor;  

 insert movie 

 delete actor 
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Redundancy and Anomalies II 

Example (student activities) 

Deletion Anomalies 

delete student Abigail Winter. 

Student Activity Fee 

Marcus Brennigan Piano $20 

Deepa Patel Swimming $15 

Marcus Brennigan Swimming $15 

Abigail Winter Tennis $30 

Prakash Patel Skiing $150 

Null values I 

Example (student activities)  

insert new activity Chess with a fee of $20 

(what would be a better design) 

SID Activity Fee 

1001 Piano $20 

1090 Swimming $15 

1001 Swimming $15 

Null values II 

Example 

 

 section(cn, sn, teacherID, collink) 

 

     versus 

 

 section(cn, sn, teacherID) 

 col(cn, sn, collink) 
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Spurious Tuples 

Loss of information through additional, spurious tuples. 

Example:  

 Split student activity into  

 (SID, Fee) and (Activity, Fee) 

 What is the problem? 

 

 What is the real solution? 

FUNCTIONAL DEPENDENCIES 

Functional Dependencies 

Example (university) 

 

 SID determines LastName 

 CID determines CourseName 

 CID determines CourseNr 

 {StudentID, GroupID} determines Joined 
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Functional Dependencies I 

R(A1, A2 , … , An)  

X and Y are subsets of {A1, A2 , … , An} 

X is called a determinant of Y 

X  Y means that fixing the values of all attributes in X 

determines the values of all attributes in Y 

Dependencies as constraints 

• FDs are constraints we put on the relational schema 

• We can see whether a relational state  

   violates a FD (example) 

• We cannot deduce FDs from a relational state. 

• A relational state fulfilling a FD is a model of that FD. 

Keys and Superkeys 

R(A1, A2 , … , An)  

X subset of {A1, A2 , … , An} 

X is superkey if X  {A1, A2 , … , An} 

A minimal superkey is a key, i.e. X is a key if 

 1) X is a superkey, and 

 2) no proper subset of X is a superkey. 

Examples: University Relations 

       Lot(Lot#, County, PropertyID) 
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Inference on FDs 

 

    {SID}  {LastName, FirstName, SID, SSN, Career, 

  Program, City, Started} 

We can conclude (among others) that  

 {SID}  {Career} 

 {SID}  {LastName} 

 {SID}  {SSN, City} 

Inference on FDs 

 

    {StudentID, CourseID}  {Quarter, Year} 

    {StudentID}  {SID, SSN, City} 

    {SSN}  {LastName, FirstName} 

    {Name}  {PresidentID, Founded} 

Which of the following FDs can we infer from these rules?  

 {Name}  {Founded} 

 {StudentID, CourseID}  {Year, LastName} 

 {SSN}  {City} 

Trivial Dependencies 

R(A, B, C, D) with FDs 

 AB  C  (or {A, B}  {C})  

 C  D 

 D  A 

  

• What nontrivial FDs can we deduce? 

• What are the keys of R? 

• Are there superkeys which are not keys? 

X  Y is trivial, if Y is contained in X. 
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Inference Example 

R(A, B, C, D, E) with primary key {A,C,D} 

 

And FDs 

 AB  CD 

 B  E 

 D  E 

  

• What nontrivial FDs can we deduce? 

• What are the keys of R? 

Reasoning about FDs 

A FD X  Y can be inferred from a set F of functional 

dependencies, if it holds true in every relational state that 

satisfies all FDs in F. In other words: 

 

 every model of F is a model of X  Y  

 

Example: from {ABC, CD} we can infer {AD} 

Reasoning about FDs 

 

Two sets F and G of FDs are equivalent, if all FDs in F can be 

inferred from G, and vice versa. In other words: 

 every model of F is a model of G and vice versa 

 

Example: 

{ABC, AB} and {AB, AC} are equivalent. 
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Rules 

Reflexivity (triviality) 

Augmentation 

Transitivity 

Decomposition 

Union 

Pseudotransitive rule 

(pg. 81) 

Armstrong’s inference rules 

(imply other rules) 

Closure 

How do we determine whether we can infer a FD X  

Y from a set of FDs F? 

X+, the closure of X, is the set of all attributes 

determined by X under F. 

X  Y follows from F  

if and only if  

Y is in X+ (with regard to F)  

Example: R(A,B,C,D,E) with FD {ABDE, AE 

CBD, DE}, does AD? Does ACD? 

Computing the Closure 

Given: set of FDs F 

 set of attributes X 

Goal: X+, the set of all attributes determined by X 

Algorithm: 

  X+ := X 

  while there is Y  Z in F such that  

  Y  X+ and Z not contained in X+  

      X+ := X+ U Z 
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Closure Examples 

R(A,B,C,D,E,F,G,H) 

 F = {AEB, BHC, CDEF, GEH, GHD 

  

 Compute   

  {A}+  

  {AG}+  

                       {B}+  

                        {AEH}+  

Why closure? 

X  Y follows from F  

if and only if  

Y is in X+ (with regard to F)  

Allows us to test for 

• (Candidate) key 

• Inference 

• Equivalence of systems of FDs 

X is superkey for R(A1, A2 , … , An) with FDs F  

if and only if 

X+ = {A1, A2 , … , An} (with regard to F) 

Cover and Equivalence 

F and G are equivalent,  

 if F covers G and G covers F. 

F, G: sets of FDs 

F covers G,  

 if all FDs in G can be inferred from F. 

 in other words:  

  every model of F is a model of G 

 



9 

Minimal Sets of Dependencies 

F, a set of FDs is minimal, if 

 

1. The rhs of every dependency in F is a single 

attribute (a singleton). 

2. No dependency XA in F can be replaced by 

YA, where Y is a proper subset of X, such that the 

new system of dependencies is equivalent to F. 

3. No dependency can be removed from F such that the 

new system of dependencies is still equivalent to F.  

Canonical form with no redundancies. 

Minimal Cover 

G is minimal cover of F,  

 if G is minimal, and it covers F. 

 

Algorithm: 

1. Use decomposition rule to split all rhs. 

2. Sequentially try removing each attribute from each 

rule, and retain new rule if system is still 

equivalent. 

3. If removing a dependency leaves the system 

equivalent to the old system, then remove it. 

Minimal Cover Algorithm 

To test whether  

 G – {XA} U {(X-{B})A} is equivalent to G  

we only need to test whether  

 X-{B}A can be inferred from G. 

To test whether  

 G – {XA} is equivalent to G  

we only need to test whether  

 XA can be inferred from G - {XA}. 
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Minimal Cover Examples 

R(A,B,C,D) with FDs 

   {ABC, BAC, DABC}  

R(A,B,C) with FDs 

   {ABC, AB} 

R(A,B,C,D,E,F,G) with FDs 

   {BCDA, BCE, AF, FG, CD, AG}  

Canonical Cover 

F, a set of FDs is canonical, if 

 

1. No dependency XY in F can be replaced by 

X’Y, where X’ is a proper subset of X, such that 

the new system of dependencies is equivalent to F. 

2. No dependency XY in F can be replaced by 

XY’, where Y’ is a proper subset of Y, such that 

the new system of dependencies is equivalent to F. 

3. Every lhs of a dependency occurs at most once. 

 

Canonical Cover Algorithm 

We can compute the canonical cover of a set FD of 

functional dependencies, by computing their minimal 

cover and recombining the rules with identical lhs. 

Example: If we have a minimal cover 

FD = {AB, AC, BE, BCD, BCF, CE, }, 

the canonical cover is 

{ABC, BE, BCDF, CE} 


