Relational Design Theory Il

Normalization

Detecting Anomalies

SID Activity Fee Tax
1001 Piano $20 |$2.00
1090 Swimming [$15 |$1.50
1001 Swimming [$15 |$1.50

» Why is this bad design?

+ Can we capture this using FDs?

Normal Forms

* Requirements on relational schemas
« Initiated by Codd (INF, 2NF, 3NF)

1NF (First NF) no multivalued attributes

2NF (Second NF) no partial dependencies

3NF (Third NF) no bad transitive
dependencies

BCNF (Boyce-Codd NF) |strengthening of 3NF

4NF (Fourth NF) extends BCNF to multivalued
dependencies

« there’s more ...

BCNF

If X—>Y is not trivial, then X has to be a superkey.
Has to be true for all valid FDs X—Y

Example:

Activity(SID, Activity, Fee, Tax)
SID, Activity — Fee, Tax
Activity — Fee
Fee — Tax

How to decompose?

BCNF Decomposition

What do we want?

* Relations are in BCNF
» We can reconstruct data in original relation
» Keep functional dependencies?

Note: Relations on two attributes are always BCNF.

BCNF-Normalization

Algorithm (BCNF Normalization)
Input: Relation R, FDs F
Output: BCNF-decomposition D of R

D :={R}
While X— Y holds in some Q(A,, ..., A,) in D, and
X— Y not trivial, X not a superkey of Q
add Q,(X* N ({A,, ...,A.}) and
QXU AL . AY-XY)
remove Q.

BCNF-Example

D:={R}
While X— Y holds in some Q(A,, ..., A,) in D, and
X— Y not trivial, X not a superkey of Q
add Q,(X* N ({A,. ..., Ay}) and
QX u{As .. Ak - X))
remove Q.

Examples:
R(A, B, C, D), FDs: A—» B,C— D
R(A, B, C, D), FDs: AC— B,C— D
R(A,B,C,DE), FDs: A—> BE, E —» D

BCNF-Normalization Caveat

Checking whether X — Y holds in some Q in
D refers to F, not just D.

Example:
R(A,B,C,D,E)
FDs: A—B

BC—D (implies AC—D)

« naive implementation of algorithm requires exponential time

« can be improved to polynomial time

(Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form, ACM,
SIGACT News,1982)

Testing for BCNF

«single R with FDs F
testing for BCNF can be done in polynomial time,
it is sufficient to test F

« this is not true for decompositions, e.g.

R(AB,C,D,E) decompose into
FDs: A—B Ri(AB)
BC—D RZ(A,C,D,E)

More BCNF-Examples

phone(Name, City, AreaCode, PhoneNumber, Extension)
R(A,B,C,D), keys: AB, CD, FDs: A—»>C, D—B
R(A,B,C,D,E), FDs: A-B, C— D, AC—E

Lossless Join Property

D={R; R,, ..., R} decomposition of R.

IfR*R,* ... * R, =R, then
D has the lossless join property.

BCNF decomposition has lossless join property.

Lossless Join Property

Test lossless join property for binary decomposition
Given: R, D={R,, R,}, FDs F
D is a lossless join decomposition of R, if
R =R, UR,, and either
R; "R, > R; —R,inF*or
R, "R, > R,—R;inF".

Example: Activity(SID, Activity, Fee)
* necessary?
« sufficient?
« implies correctness of BCNF algorithm

Lossless Join Property

Algorithm (Chase Test)
Input: relation R(A,, ..., A,)), FDs F
decomposition D = {R;, Ry, ... , R}
Output: Is D a lossless join decomposition of R?
T := table with columns A, ..., A, rows R, R,, ... , R,

Tlij] = a; if Ajnotin R;
¢ a if AjinR

Apply FDs in F to identify elements until
e thereisarow (a, ..., a,): lossless join
* no more changes are possible: not lossless join

Chase Test Examples

R(AB,C), FDs: A—B,
D ={P(AB), Q(A.C)}

R(A,B,C), FDs: A—B,
D ={P(B,C), Q(A.C)}

R(AB,C,D), FDs: A>B, C—D,
D = {P(A,B), Q(B,C), T(C,D)}

Dependency Preservation

banker(BranchName, CustomerName, BankerName)
BankerName—»BranchName
BranchName, CustomerName — BankerName

R(A,B,C), FDs: A>B, BCHA

» why not in BCNF? (Keys?)

« what are possible BCNF decompositions?

» what happens to dependencies?
Deciding whether a given relation has a dependency
preserving BCNF decomposition is NP-complete

Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form,
ACM, SIGACT News,1982

Prime Attributes

prime attribute: part of some key

Examples:
R(A,B,C,D,E), AB is key, C is key, B—>D, D—E
A,B,C are prime,
D,E are nonprime

R(A,B,C,D,E)
AC—D, BD>E, E5AC

Prime Attributes

prime attribute: part of some key

» How many keys can there be on n attributes?
» How hard is it to find all keys? Algorithm?

Prime Attributes

prime attribute: part of some key

» How many keys can there be on n attributes?
» How hard is it to find all keys? Algorithm?

Determining primality of an attribute is NP-complete.

(Lucchesi, Osborne, Candidate keys for relations, J. Comput. System Sci. 17, 1978

3NF

If X—Y is not trivial, then X has to be a
superkey, or, all attributes in Y-X are prime.

Has to be true for all valid FDs X—Y

Violated in

Book(Author, Title, PriceCategory, Price)
Movie(Title, Year, MPAA, MinimumAge)

3NF-Examples

R(A,B,C,D) with key A and
B—CD, C—D, D—C

Can we find a decomposition of these relations that
contains the same information?

3NF-Normalization

Algorithm (3NF Normalization):
Input: Relation R with FDs F
Output: 3NF decomposition D of R

1. Compute canonical cover C of F

2. D={}

3. Forevery X—Y in C such thatno S in D
contains all of XY, add new relation Q(XY) to D
4. If no relation in D contains a key of R, then add
new relation Q(X) on some key X of R

3NF-Examples

* R(A,B,C,D) with A key, B—CD, C—D, D—»C

* R(A,B,C,D) with AB key, A—>C, B—>D

* R(A,B,C,D,E) with AB and AC keys, BC—D, C—E

* R(A,B,C,D,E) with AB key, A>E, BC—»D, D—>E

« R(A,B,C,D,E,F) with ABC key, A>E, AC—F, EF—G
* R(A,B,C,D,E,F) with A and BC keys, B—D, D—>F

* R(A,B,C,D,E) with AB and CD keys, A>E, CHE

Find 3NF normalization

Results can depend on canonical cover, and
order of execution

3NF Algorithm

« 3NF Normalization Algorithm is loss-less join (chase test)
« It is dependency preserving (obviously)
« The resulting relations are in 3NF (not trivial).

3NF vs BCNF: properties

» BCNF is stronger than 3NF

» BCNF and 3NF are loss-less join (no spurious tuples)
* 3NF preserves dependencies

» BCNF does not always preserve dependencies

3NF vs BCNF: algorithmics

» Normalization Algorithms:
« naive algorithm for 3NF in polynomial time

« naive algorithm for BCNF in exponential time, but
can be done in polynomial time

* Recognition Algorithms:
« BCNF is easy to recognize (polynomial time)
» Recognizing 3NF is NP-complete

(Jou, Fischer, The complexity of recognizing 3NF relation schemes, Information
Processing Letters 14, 1982)

