
1

Transactions

Commit and Rollback

Transfer $100 from account 1001 to 1007.

update account
set balance = balance + 100
where acc_id = 1001;
update account
set balance = balance - 100
where acc_id = 1007;

What if 1007 has less than $100?

• We can undo uncommitted work: ROLLBACK
• What does this mean for multiple users?
• We can commit work: COMMIT

Atomicity

update account
set balance = balance + 100
where acc_id = 1001;
update account
set balance = balance - 100
where acc_id = 1007;

should be a single unit: either
both or neither succeeds

SQL uses Transactions to guarantee Atomicity

2

Transaction (using PL/SQL)

update account
set balance = balance + 100
where acc_id = 1001;
update account
set balance = balance - 100
where acc_id = 1007;

• will fail if 1007 has less than $100
• what if there is no account 1001?

begin
update account
set balance = balance + 100
where acc_id = 1001;
update account
set balance = balance - 100
where acc_id = 1007;

end;

Not transactional Transactional

Consistency

Constraint enforcement can be deferred to end of transaction (if
constraint is deferrable).

EMPLOYEE(emp_id, name, super_id)

insert into employee values (1, 'Brennigan', 3);
insert into employee values (3, 'Patel', null);

set constraint fk_super deferred;
begin
insert into employee values (1, 'Brennigan', 3);
insert into employee values (3, 'Patel', null);
end;

ACID Properties

• Atomicity: Transaction succeeds as a whole or fails as a whole
Example: Money Transfer

• Consistency: Database is in consistent state at end of transaction
Example: Adding employees with supervisors

• Isolation: Transactions appear to serialize
Example: airline seat booking

• Durability: Committed changes are permanent
Example: system failure

3

Concurrent Processing

Let’s try to withdraw money from 1003 at two different ATMs.

What happens ?

T1:
read(balance)
balance := balance – 100
if balance >= 0

write(balance)
commit

T2:
read(balance)
balance := balance – 50
if balance >= 0

write(balance)
commit

Potential problems

P0 (Dirty Writes): T2 overwrites a T1 write before T1 commits
P1 (Dirty Read): T2 reads T1 written cell before T1 commits
P2 (Nonrepeatable Read): T2 modifies data that T1 has read.
P3 (Phantom): T2 adds records that belong to a T1 query
P4 (Lost Update): T2 writes over an item T1 has read, T1

then writes and commits.

T1:
read(balance)
balance := balance – 100
if balance >= 0

write(balance)
commit

T2:
read(balance)
balance := balance – 50
if balance >= 0

write(balance)
commit

Isolation Levels (SQL 92)

Isolation
Level

P1 Dirty Read P2 Nonrepeatable
Read

P3 Phantom

Read Uncommitted Allowed Allowed Allowed

Read Committed x Allowed Allowed

Repeatable Read x x Allowed

Serializable x x x

4

Isolation Levels in Oracle

Read Committed: no P1, but P2, P3 is possible
Serializable: no P1, P2, P3 possible

Read Only: no P1, P2, P3 possible

set transaction isolation level serializable;

set transaction isolation level read committed;

set transaction read only;

P1 (Dirty Read): T2 reads T1 written cell before T1 commits
P2 (Nonrepeatable Read): T2 modifies data that T1 has read.
P3 (Phantom): T2 adds records that belong to a T1 query

more at http://docs.oracle.com/cd/B12037_01/server.101/b10743/consist.htm

default,
minimum level

Implementing Transactions

pessimistic

optimistic

Locking (cell, row, table)

MVCC (Multiversion concurrency control)

