
5/19/2009

1

ALGORITHMS FOR SPATIAL DBMS

Basic Geometry (in 2D)

• cross-product u x v:
– (x1, y1) x (x2, y2) := x1 y2 – y1 x2

– u x v = |u| |v| sin Θ
where Θ is angle between u and v

• can use to get angle between two vectors
– how to test whether p is to the left/right of

segment uv ?

– how to test whether two line segments intersect?

• can use to calculate area of
parallelogram/triangle

Basic Polygon Tasks

• calculate area of polygon

p2

p3

p1

p0

pn

pn-1

Formula:

)(2/1
1

11

n

i

iiii yxyx

5/19/2009

2

Point in Polygon

• horizontal stabbing: O(n)

• if pre-processing is possible:
point location query: O(log n)

Overlays, etc.

Points of interests in overlays:

intersection points

Also useful for

• intersection

• union

• difference

Line Segment Intersection

Given: {s1, …, sn} a set of n line segments

Output (detect): do any two of them intersect

or

Output (compute): list all intersections between
the line segments

5/19/2009

3

Line Segment Intersection

• trivial (detect/compute): O(n2)

• plane sweep approach

– natural: before two segments intersect, they are
next to each other (assuming no three lines
intersect in a point)

– events: endpoints

– active list: segments intersecting the current
sweep line in order

detect Line Segment Intersection

• L needs to be dynamic binary search tree
• time: O(n log n), space: O(n)
• problem: does not report all intersections;

– as it is, it can’t, why?

compute Line Segment Intersection

• what do we need
to implement L ?
• time/space
analysis ?

5/19/2009

4

Red/Blue Intersection

For our applications:

– can assume two intersection-free sets (e.g. two
polygons), think of them as red/blue

– simplifies general problem

– can be solved in time O(n log n + k)

– algorithm is a bit tricky though; main problem:

Polyline Intersection

The algorithms can be adapted to work for
intersections of polylines (i.e. allowing
common endpoints).

Polygon Intersection (detect)

Given: two polygons P, Q
Output: do P and Q intersect ?

Algorithm:
run line segment intersection test on edges of P (red) and Q (blue)
if intersect, then yes,
else

p := point of P;
if p in Q, then yes
else

q := point of Q
if q in P, then yes
else no.

5/19/2009

5

Polygon Operations
General approach:
• calculate common faces
• orient edges along boundary (face is to the left of

an edge), leads to doubly connected edge lists,
each edge has two sides

• run line segment intersection and update edge lists
• recalculate faces
• get union, difference, intersection, etc.

Doubly edge connected lists

Record of
• vertices
• half-edges (sides)
• faces (boundary

traversal in clockwise
order)

• faces can have holes
(traversed counter-
clockwise: face is
always to left of half-
edge)

Updating edge lists

5/19/2009

6

Convex Polygon Intersection

Given: convex polygons P, Q

Output: intersection

Naïve algorithm: |P| |Q|

Can be done in time O(|P|+|Q|):
• Shamos-Hoey

split into slabs, do line sweep
• O’Rourke

follow boundary

Clipping

