
5/12/2009

1

Computational Geometry

Complexity Notions

• algorithm
• time, space
• complexity bounds

– O(n2), … (upper bounds)
– Ω(n log n), … (lower bounds)
– Θ(n), … (precise bounds)
– common bounds:

• log n (logarithmic),
• n (linear),
• n log n,
• n2 (quadratic),
• cn (exponential)

Examples:
• linear search
• binary search
• shortest path
• traveling salesman
• indexing
• quantifier elimination

Sorting

• Can sort n numbers in time O(n log n)

– which algorithms do this? Deterministic?

– average versus worst case complexity

• Need Ω(n log n)

– decision tree argument

• lower bounds are rare and typically apply to
restricted models

• searching: preprocessing vs processing time

5/12/2009

2

Output Lower Bounds

Example: line segment intersection

– how many intersections can n line segments have?

– would that make a fair lower bound in all cases?

– can be done in

O(n log n + k) time and O(n) space,

where k = # intersections

– output sensitive complexity

Basic Data Structures

• binary search tree

– build in time O(n log n), storage O(n)

– search in O(log n)
(http://webpages.ull.es/users/jriera/Docencia/AVL/AVL%20tree%20applet.htm)

• dynamic binary search trees (red/black, AVL)

– build in time O(n log n), storage O(n)

– search, insert, delete in O(log n)

Sample Problem:
Windowing a Circuit

• simplify problem: only straight horizontal/vertical lines
(orthogonal layout)

• report all points/line segments with parts in the window

• naïve algorithm ?

• better solution ?

• what is needed ?

5/12/2009

3

1d Range Search

Input: {x0, …, xn}, points on the line,

interval x, x’

Output: {x0, …, xn} *x, x’+

Data structure: binary search tree

• O(n log n) construction

• O(n) space, O(k + log n) time for query

• can be made more efficient by storing
“canonical sets” of leaves

2d Range Search

Input: {x0, …, xn}, points in the plane,

rectangle R := *x, x’+ x *y, y’+

Output: {x0, …, xn} R

How can we solve this ?

kd-Tree

• alternate 1d-strategy for x/y

• split point-set at median value (divide &
conquer)

• e.g. http://homes.ieu.edu.tr/~hakcan/projects/kdtree/kdTree.html

• what’s construction time/storage?

• how long to
determine
whether a
point belongs
to the set ?

http://homes.ieu.edu.tr/~hakcan/projects/kdtree/kdTree.html
http://homes.ieu.edu.tr/~hakcan/projects/kdtree/kdTree.html

5/12/2009

4

kd-Tree

• simple implementation gives

– O(n log n) construction

– O(log n) point query

– O(n) storage

• what about region (rectangle) query ?

kd-Tree range search

• simple implementation gives

– O(sqrt(n) + k) query

• look at horizontal/vertical lines, how many regions can they intersect

• animations: http://www.cs.cmu.edu/~awm/animations/kdtree/

• can be improved to O(log2 n + k) using range trees and O(log n
+ k) using fractional cascading, storage increased to O(n log n)

Circuit Windowing, 1st step

• can reports all points in
window

• what else ?

• what’s left ?

5/12/2009

5

Interval Tree

• answers stabbing queries for axis-parallel line
(segments)

• imagine intervals on a line:

Interval Tree

• find median

– store intervals containing the median in root

– store twice: 1) ordered by left end-point, 2)
ordered by right endpoint

– store intervals to left/right in left/right subtree
with same recursive structure

• stabbing query in time O(log n + k)

• construction: O(n log n), storage O(n)

Circuit Windowing, 2nd step

• line segments intersecting
window:
– inside

– overlap using stabbing
problem: interval trees for infinite

lines, not line segments,

replace lists in roots with ?

• overall analysis:
– query

– storage

– construction

5/12/2009

6

Interval Intersection

Input: a set of n intervals, an interval [x,x’+

Output: list all intervals intersecting [x,x’+

E.g. which English composers could Wagner (1813-1883) have
met?

Interval Intersection

• use interval tree

• intersection query for [x,x’+:
– find node f with f.median in [x,x’+, let P be path from root to f

– from f continue as if running two stabbing queries for x and x’, let paths
be Q and Q’

– for all nodes in P, Q, Q’ report intervals containing x or x’

– for Q: report all intervals in right subtrees

– for Q’: report all intervals in left subtrees

General Strategies

• Incremental

• Divide & Conquer

• Line sweep

• Randomization

5/12/2009

7

(I) Convex Hull

• naïve algorithm

assume:

• test whether two line segments intersect

• test whether a point is to the right of a line segment

how to improve this approach ?

Convex Hull (Incremental)

• incremental convex hull

– O(n2)
– http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

how can we improve this ?

• used presorted input

– convex hull algorithm in O(n log n)

– update points of tangency on upper/lower chain

(II) Intersection of Half-planes

• assume we can intersect two convex polygons
with p and p’ vertices in time O(p+p’)

• how do we compute the intersection of n half-
planes? analyze:

– naïve

– divide & conquer

http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html
http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html

5/12/2009

8

(III) Rectangle Intersection

plane sweep approach
• event list (vertical line sweeping across plane)
• active elements list

what do we need to implement this plane sweep ?

Rectangle Intersection
L := {}
for each event e in E (ordered)

if e is start of rectangle R
L := L u {R}
report intersections of [R.y1, R.y2] with
y-ranges of active intervals

if e is end of rectangle R
L := L – {R}

Analysis

(iv) Point Location

Given a planar map, find the face you are in.

you are here

5/12/2009

9

Point Location

partition into slabs

– time: O(log n), but space ?

– how can we improve storage, keeping querying
time low ?

Trapezoidation

build search structure adding segments
incrementally

– x-node (white): left/right of point

– segment node (gray): above/below segment

how do we add a segment ?

Point Location: adding a segment

• find trapezoids that intersect segment

– use search data structure to find left end-point,
follow segments to right

extend data structure and

to include new trapezoids

5/12/2009

10

Point Location via Trapezoidation

• based on order of added line segments,
storage and query time can vary significantly

• determining optimal order hard

• however, random order will do with high
probability:

– expected storage: O(n)

– expected construction time: O(n log n)

– expected query time: O(log n)

Excursion: Art Gallery

How many guards do you need to guard a
museum?

Art Gallery Theorem (Chvatal, Fisk)

Every art gallery (simple polygon) on n vertices
can be guarded by n/3 guards. This bound is
optimal.

5/12/2009

11

Proof of Art Gallery Theorem

• triangulate (how ?)

• show that triangulated graph can be 3-colored
(no two adjacent vertices have the same color)

hint: dual graph (the graph connected the triangles) is
a tree

• select smallest color class

Triangulation

• easy: convex polygons

• how about monotone polygons ?

• strategy:

– split polygon into monotone polygons

– triangulate monotone polygons

Triangulate Monotone Polygon

5/12/2009

12

Splitting into Monotone Polygons

• construct trapezoidation

• “turn” vertex: both neighbors on same side (with
respect to x) and angle > 180º.

• remove turn vertex by connecting it to other vertex
in its trapezoid

Bibliography

de Berg, van Krefeld, Overmars, Schwarzkopf, Computational
Geometry, Algorithms and Applications, Springer 1997.

http://books.google.com/books?id=C8zaAWuOIOcC

Preparata, Shamos, Computational Geometry, An Introduction,
Springer, 1985

http://books.google.com/books?id=gFtvRdUY09UC

Goodman, O’Rourke, Handbook of Discrete and Computational
Geometry, CRC Press, 2004

http://books.google.com/books?id=X1gBshCclnsC

http://books.google.com/books?id=C8zaAWuOIOcC
http://books.google.com/books?id=C8zaAWuOIOcC
http://books.google.com/books?id=gFtvRdUY09UC
http://books.google.com/books?id=gFtvRdUY09UC
http://books.google.com/books?id=X1gBshCclnsC
http://books.google.com/books?id=X1gBshCclnsC

