
1

Math Basics

Coordinate Systems, Vectors

Coordinate Systems

Points in 3D are defined by (x,y,z)
Where are the (x,y,z) values coming from?
With respect to what?

Origin
Where is it located?

Coordinate Systems
In CG, objects are
usually placed with
respect to the World
coordinate system

World coordinate
system (0,0,0)

Center of cone
located at (3,0.2,2)

2

Coordinate Systems
In POV Ray, the coordinate system is Left handed
In the standard mathematical system it is Right
handed

Left coordinate
system

Right coordinate
system

Coordinate Systems

Right coordinate
system (math)

Left coordinate
system (POV-Ray)

Coordinate Systems
Objects can also be
represented in their own
coordinate system: Local
coordinate system

Complex objects can have
several local coordinate
systems: one for each sub-
component

World coordinate
system

Local coordinate
system

3

Vectors
In 3D, a vector is defined by 3 scalar numbers:
(vx, vy, vz)

Vector length: |v| = vx
2+vy

2+vz
2

x

y

z

v

vx

vz

vy

Vectors

Vector (0,4,0)

Vector (0,0,4)

Vector (4,0,0)

Vector (2,3,1)

Vector Algebra
Addition

q = v + w

q is obtained by component-wise addition:
qx= vx + wx , qy= vy + wy , qz= vz + wz

x

y

z

v w

q

4

Vector Algebra

Scaling
Scalar number s.
q = sv

q is defined by component-wise scaling:
qx= svx ,,qy= svy , qz= svz

x

y

z

v

q

Dot Product

Given 2 vectors: u and v, where:
u = (ux, uy, uz)
v = (vx, vy, vz)

Their dot product (or “inner product”) is a
scalar number obtained as the sum of the
component-wise products:

u . v = ux vx + uy vy + uz vz

θ

u

v

Dot Product

Given 2 vectors: u and v, where:
u = (ux, uy, uz)
v = (vx, vy, vz)

Their dot product (or “inner product”) is a
scalar number obtained as the sum of the
component-wise products:

u . v = ux vx + uy vy + uz vz

θ

u

v

5

Dot Product
u . v = | u | | v | cos(θ)

Dot Product

Properties
Symmetric: u.v = v.u

Bilinear: v.(u + aw) = v.u + a(v.w)

Non-degenerate: v.v =0 only if v =0.

If v and u are orthogonal: v.u = 0

Dot Product

Positive
If angle is less than 90

Negative
If angle is more than 90

6

Cross Product

The cross product of two vectors produces a
third vector which is perpendicular
(orthogonal) to the plane in which the first two
lie

Cross Product
Given 2 vectors: u and v,

where:
u = (ux, uy, uz)
v = (vx, vy, vz)

Their cross product (or
“outer product”) is a new
vector c=(cx, cy, cz)
computed as follows:

cx = uy vz - uz vy
cy = uz vx - ux vz
cz = ux vy - uy vx

More Concepts in
Graphics

The Frame Buffer

7

The Frame Buffer
The portion of memory reserved for holding the
complete bit-mapped image that is sent to the
monitor
Typically the frame buffer is stored in the memory
chips on the video adapter. In some instances,
however, the video chipset is integrated into the
motherboard design, and the frame buffer is stored
in general main memory

The Frame Buffer
For each pixel there is an entry in the frame buffer
which holds the color information for that pixel

Changing the contents of the frame buffer, changes
the image on the screen

The Graphics Controller sends the frame buffer info
to the computer monitor

Typically, 60 Hz (60 times per second)

The Frame Buffer

Example
A 35x40 pixel image

8

b = black

u = blue

r = orange

The Frame Buffer
Example

Screen resolution: 1280 x 1024 pixels
256 colors per pixel

Size of the frame buffer?
How much space do you need to represent 256
colors?

1 byte (8 bits, 28=256)
So you need 1 byte per pixel to store the color info

1280x1024x1 = 1310720 bytes (1.3 Mb approx)

9

Surface Algorithms

What is visible?

Far, Behind, Away

In order to properly display 3D objects on 2D
screens, we need to deal with additional
issues

How “far” is the object from the viewer?
Which objects are “behind” others?
How are the objects oriented relative to the
viewer? (“away”)

Far, Behind
Which one is closer?
Which one is behind
the other?
We need to know that
so that the frame buffer
is filled out with the
correct information

10

Far, Behind

Knowing the z coordinate of the objects is
essential

Away

Why is it important to know the relative
orientation of the objects?

Lighting
Visibility

How can we determine the orientation?
Normal vector

Normal Vector
Vector perpendicular to
a plane

In CG, every polygon
has a normal vector (a
polygon is a subsection
of a plane, right?)

Tells you which way a
polygon is facing

11

Polygon Normal
The normal to a
polygon can have two
directions

We are interested in the
outer normal

Polygon Normal

The Algorithms

12

Four Basic Algorithms

Wireframe
Hidden line
Z-buffer
Ray tracing

Visual Literacy

Things to look for
Polygon appearance
Visibility of far sides, backgrounds, and horizons
Reflection, refraction, and shadows

Wireframe

Creates a line drawing of a model by
connecting its vertex points
Very fast and is usually used to preview work
in the modeling window
Ignores lighting and doesn’t distinguish
between hollow or solid areas

13

Wireframe

Visual cues
Outlined polygons
Horizons, background objects completely visible

Wireframe

Hidden Line

Draws the polygons same as Wireframe
Removes some of the ambiguities by drawing
only the parts visible to the viewer

14

Hidden Line

Visual cues
Outlined polygons
Occluded objects are invisible

Hidden Line

Backface Cull
Throws away all polygons that face away from the
viewer.

15

Backface Cull

Appel’s Algorithm

0
01 1 0

Z-Buffer (Depth buffer)

This is the method most commonly used in
graphics workstations. Each polygon is
rendered in turn and its colors written into a
frame buffer
The distance to the surface is also calculated
for each pixel rendered: these distance
values are stored in a separate frame buffer
store. As distance is usually the z-coordinate,
this is called the z-buffer

16

Z-Buffer Algorithm
for each x,y

color[x,y] := background_color
z-buffer[x,y] := 0

for each polygon
for each pixel (x,y) that polygon projects to

z := z-value of polygon at pixel (x,y)
if z >= z-buffer[x,y]

color[x,y] := polygon’s color at pixel (x,y)
z-buffer[x,y] := z

Z-Buffer
maintains color and z-value for each pixel
polygons are drawn one at a time

can be done incrementally
does not require object to object comparisons
renders visible surfaces very fast
widely implemented in both software and hardware

Z buffering does not address how light interacts between objects

Z-Buffer

Visual cues
Filled-in polygons
No refraction, reflection or shadow

17

Z-Buffer

Ray Tracing
Rendering technique that calculates an
image of a scene by simulating the way rays
of light travel in the real world

A ray of light is traced in a backwards
direction. That is, we start from the eye or
camera and trace the ray through a pixel in
the image plane into the scene and
determine what it hits. The pixel is then set to
the color values returned by the ray

Ray Tracing

18

Ray tracing

Ray Tracing – Trace Level

Ray Tracing

Visual cues
Solid polygons
Refraction, Reflection, Shadows

19

Ray Tracing

References

http://www.siggraph.org/education/materials/
HyperGraph/raytrace/rtrace0.htm
Foley, van Dam, Feiner, Hughes. Computer
Graphics, Principles and Practice, Addison-
Wesley, 1997

