

Surface Shading

- Once an object is defined, we need to deal with other issues such as
- Surface color
 - pigment
- Surface properties
 - finish

Surface color

• Pigment statement

Surface properties

- How does light reflect?
 Matte Mirror
- What happens in shadows?
- What kind of highlights are visible?
- Transparency?

phong

- controls the amount of Phong highlighting on the object. It causes bright shiny spots on the object that are the color of the light source being reflected

specular

• produces a highlight which is very similar to Phong highlighting but it uses slightly different model

reflection

• When light does not diffuse and it *does* reflect at the same angle as it hits an object, it is called *specular reflection*

roughness

• The size of the spot is defined by the value given the roughness keyword. Typical values range from 1.0 (very rough - large highlight) to 0.0005 (very smooth - small highlight). The default value, if roughness is not specified, is 0.05 (plastic).

Some typical surfaces

- Dull surface
 - Creates a large, soft highlight on the object's surface

finish {specular 0.5 roughness 0.15}

• Don't forget that ambient and diffuse default values are being used here too (0.1 and 0.6)

finish {specular 1 roughness 0.001}

Other examples

Phong highlights

less "realistic" than specular, but useful for different effects
Worth to try:

Phong_Dull
finish {phong 0.5 phong_size 1}

Phong_Shiny

finish {phong 1 phong_size 200}

Loops

Loops	
#declare b = box { <0.1,0,1>, <1.1,1,2> }	
#declare f = 0.1; The red	component of
#declare Count=0; / the col	lor changes
#while (Count < 5)	
object {b pigment {color rgb(f) 0.1, 0.	5>
filter(f)}	
finish {ambient 0.%}	
translate x*1.2*Count }	
#declare Count=Count+1;	
#declare(f = f + 0.15;)	incy also
#end chan	ges

Arrays

- Include file
 - arrays.inc
 - Functions for handling arrays

Randon numbers

- rand.inc
 - Functions for handling random numbers Seed Rand
 - What is it good for?

Seed and Rand

 Before you can use the randomizer, you need to set a seed #declare a = seed(1);

#declare px = rand(a);

• Px will be a random number between 0 and 1

sor

- Surface of revolution
- Generated by rotating the graph of a function about the y-axis.

lathe

 Similar to sor, but it is different in the way the surface is generated (mathematically speaking)

