
1

Animation

Animation overview

Basics of animation in POV-Ray

Animation

Why it is possible
History
Combining art and technology

2

Classical Animation
Story
Storyboard
Soundtrack
Detailed layout
Layout <-->Sound

Keyframes
Inbetweening
Pencil test
Transfer to cels
Paint cels
Photograph cels

Twelve Techniques of Disney
Squash and Stretch
Anticipation
Staging
Straight-ahead/pose-to-pose action
Follow-through/overlapping action
Slow-in/slow-out
Arcs for motion
Secondary action
Timing
Exaggeration
Solid modeling
Character personality Quoted from Issac Kerlow.

The Art of 3D Computer
Animation and Effects

Three techniques

3

Three techniques

Three Techniques

History of Animation

Crossover of 3D animation with traditional
animation
Who Framed Roger Rabbit?
Luxo, Jr. (http://www.pixar.com/shorts/ljr/)

4

Types of Animation Systems

Low-level
Procedural
Representational
Stochastic
Behavioral

Low-level

Scripting systems
Keyframe systems
Spline-driven

Procedural

Movement as a function of time
Visualize laws of physics
“Cartoon Laws of Physics”
POV-Ray example

5

Representational

Allows an object to change shape
Three categories:

Articulated objects Luxo, Jr.
Soft objects Cave Troll in LOTR
Morphing cat in Harry Potter

Stochastic Animation

Controlled randomness
Large groups of “actors”
Examples:

Fireworks, fire, water falls
Genesis sequence from Star Trek II: The
Wrath of Khan

Behavioral Animation
Rule-based
Objects or “actors” react to their environment
Examples

Schools of fish, flocks of birds
Stanley and Stella Break the Ice
Stampede scene from The Lion King
Battle scenes in LOTR

6

POV-Ray

POV-Ray Animation
POV Ray does NOT generate animations
POV Ray generates the frames on separate .bmp
files
Frames are sequentially numbered in ascending
order
An external program to take those frames and put
them into an animation is needed

POV-Ray animation

There are two halves to animation support:
Telling POV Ray to render more than one frame
Modify the POV scene file to change on each
frame

7

POV-Ray Animation

To render more than one frame
Settings in the INI file (or on the command line)

To change the scene on every frame
Clock and Phase keywords

INI Settings

Two key things
Setting the range of frames to render

Initial_Frame
Final_Frame

Setting the time that occurs between the first and
last frames

Initial_Clock
Final_Clock

INI Settings

Example
Initial_Frame=1
Final_Frame=60
Initial_Clock=0
Final_Clock=1

POV Ray will render 60 frames. The clock will
start at 0 and will end at 1, increasing at intervals
of 1/60 for each frame.

8

INI Settings

You need to set this
under the desired
resolution entry in your
INI file
In the example here, if
you select the
[320x240, 60F AA]
option, it will render 60
frames, but if you select
the [800x600, No
AA], it will render one
frame.

[800x600, No AA]
Width=800
Height=600
Antialias=On

[320x240, 60F AA]
Width=320
Height=240
Antialias=On
Initial_Frame=1
Final_Frame=60
Initial_Clock=0
Final_Clock=1

INI file

Modify INI file for animation
1. Locate the INI file
2. Open the INI file
3. Add the animation options
4. Select the animation options for rendering

Step 1: Locate INI file

1

9

Step 2: Edit INI file

1

2

Step 3: Add animation settings

Add your INI
settings 3

Step 4: Select the settings

4

10

Command Line settings
Can set the animation values at the
command line window

+KFIn Same as Initial_Frame=n
+KFFn Same as Final_Frame=n
+KIn.n Same as Initial_Clock=n.n
+KFn.n Same as Final_Clock=n.n

Code modifications

The Clock variable
Its value changes for each frame
(automatically)
By default, it goes from 0.0 to 1.0, no matter
how many frames you have

POV-Ray
sphere {

<0, 0, 0>, 1 + clock
}

ini file:
Initial_Frame = 1
Final_Frame = 20
Initial_Clock = 0.0
Final_Clock = 2.0

11

Growing Sphere

sphere { <0, 0, 0> , 1 + clock
pigment {

marble
...

}
translate <0, 1, 0>

}

Result

Movies from images

pjBmp2Avi
Free simple program
Takes a sequence of images and dumps them
into an AVI file

12

Rolling Log

Rolling Log and crash

Rolling Log and Crash
Story board

0-2.5 sec: roll right
2.5 -3 sec: off stage
3-6.5 sec: roll left
7-8 sec: crash

Statistics
80 frames
8 clock seconds

13

Rolling Log and Crash
#if (clock <= 2.5)

object {wlog
rotate <0,0,clock*360>
translate <0.21*2*pi*clock-1,0.21,0>

}
#else

Rolling Log and Crash

#if (clock >= 3 & clock <= 6.5)
#declare local_clock = clock - 3
object {wlog
rotate <0,0,clock*360>
translate <3-0.21*2*pi*local_clock,0.21,0>}

#end
#end

Rolling Log and Crash

#if (clock <7)
camera {

location <2, 2, -3>
look_at <0, 0, 3>

}

14

Rolling Log and Crash
#else

#declare pos = seed (8723*clock);
#declare py = rand(pos);
#declare px = rand(pos);
camera {

location <2, 2, -3>
look_at <((px-0.5)*0.8), (py-0.5)*0.8, 3>

}
#end

Ceiling Fan

Animating light

#declare px = clock*12;
light_source {

<20,20,-20>
color White
spotlight
radius 1.5
falloff 2.5
point_at <px-6,0,0>

}

15

Animating light

Animating light
#declare GlitterBall = difference {

sphere {<0,0,0>, 1}
cylinder {<0,-1,0> <0,1,0> 0.2}
cylinder {<-1,0,0> <1,0,0> 0.2}
cylinder {<0,0,-1> <0,0,1> 0.2}

}

Animating light
#declare a = seed(clock*1000);
#declare b = seed(clock*200);
#declare cr = rand(a);
#declare cg = rand(b);

light_source {
<0, 0, 0>
color rgb <cr,cg,1>
fade_distance 0.5 }

16

Animating light
object { GlitterBall

pigment {color Yellow}
finish {ambient 0.5}

rotate <-clock*360, 0, -clock*360>
scale 0.5

}

Animating textures
texture {

pigment {color Orange}
normal{

waves 0.8*(1-clock)
scale 0.3
frequency 15*(1-clock/2)

}
}

Animating textures

17

Animating the camera

Sky keyword
You can also rotate/translate the camera

Sky

Sky vector

“View up”

18

Animate Sky vector
#include “functions.inc”

sky <cos(pi/2 + 2*pi*clock),
sin(pi/2 + 2*pi*clock),
0>

Animating camera

Vertigo

19

Animating the camera

Define a path to follow
Splines give you a way to define 'pathways'

Types of Splines

Polygonal arcs (linear spline)
Cardinal splines
B-splines
Bezier curves
Nurbs (non-uniform rational b-splines)

Arcs and Cardinal Splines

Control points:

http://www.frank-buss.de/spline.html

20

Bezier curves
•shape defined by control points and
•tangents

http://webreference.com/3d/lesson36/part2.html

B-splines

http://www.sunsite.ubc.ca/LivingMathematics/V001N01/UBCExamples/Bezier/bezier.html
http://www.ibiblio.org/e-notes/Splines/Basis.htm

•control points not necessarily on spline
•control points shape spline

B-splines and Nurbs

http://webreference.com/3d/lesson36/part2.html

Nurbs are B-splines that allow weighting of control points

21

Degree of a spline

http://i33www.ira.uka.de/applets/mocca/html/noplugin/curves.html

higher degree creates smoother spline
needs more control points

Spline
#declare IDENTIFIER =

spline {
[SPLINE_IDENTIFIER] |
[SPLINE_TYPE] |
[Val1, <Point1>[,]
Val2, <Point2>[,] ...
Valn, <Pointn>]

}
SPLINE_TYPE: linear_spline | quadratic_spline | cubic_spline |

natural_spline

SPLINE_USAGE: IDENTIFIER(Val) | IDENTIFIER(Val, SPLINE_TYPE)

Spline Example
#declare MySpline =
spline {
cubic_spline
-.25, <0,0,-1>
0.00, <1,0,0>
0.25, <0,0,1>
0.50, <-1,0,0>
0.75, <0,0,-1>
1.00, <1,0,0>
1.25, <0,0,1>

}

A cubic spline is
declared

Points defining the
curve

22

Spline Example
#declare ctr = 0;
#while (ctr < 1)
sphere {
MySpline(ctr),.25
pigment { rgb <1-ctr,ctr,0> }
rotate <90,0,0>
translate <0,1.1,0>

}
#declare ctr = ctr + 0.01;

#end

The spline is used to
define the location of

the spheres

Spline Example

#declare ctr = 0;
#while (ctr < 1)
sphere {
MySpline(ctr),.25
pigment { rgb <1-ctr,ctr,0> }
rotate <90,0,0>
translate <0,1.1,0>

}
#declare ctr = ctr + 0.01;

#end

Camera following a Spline
#declare MySpline =
spline {
cubic_spline
-0.25, <0,1,-4>
0.00, <0,1,-4>
0.25, <1.3,1,0>
0.50, <0,3,4.5>
0.75, <-3,1,0>
1.00, <0,1,-4>
1.25, <0,1,-4>

}

23

Camera following a Spline
camera {

location MySpline(clock)
look_at <0.0 , 1.0 , 0.0>

}

Boom

sky <0,0,1> and
distance <0,0,1> or
look_at – location is parallel to sky

Phase
For textures, especially those that can take a color, pigment,
normal or texture map. Remember the form that these maps
take:

color_map {
[0.00 White]
[0.25 Blue]
[0.76 Green]
[1.00 Red]

}

24

Phase
Phase causes the color values to become shifted
along the map by the amount specified in phase.

If clock value is from 0.0 to 1.0, use it with phase,
and the pattern will smoothly shift over the course of
the animation.

Phase example

sphere { <0, 0, 0> , 1
pigment {

marble
color_map {
[0.0 Blue]
[0.5 Blue]
[0.5 White]
[1.0 White]

}
phase clock
scale .25

}
translate <0, 1, 0>

}

Phase example

25

Selecting frames to render
Good for long animations
Setting

Initial_Frame=n and
Final_Frame=m won’t work.

Use
Subset_Start_Frame=n
Subset_End_Frame=m

