Animation

e Animation overview

e Basics of animation in POV-Ray

Animation

e Why it is possible
e History
e Combining art and technology




Classical Animation

e Story e Keyframes

e Storyboard e Inbetweening
e Soundtrack e Pencil test

e Detailed layout e Transfer to cels
e Layout <-->Sound e Paint cels

e Photograph cels

Twelve Techniques of Disney

Squash and Stretch
Anticipation
Staging
Straight-ahead/pose-to-pose action
Follow-through/overlapping action
Slow-in/slow-out
Arcs for motion
Secondary action
Timing
Exaggeration
Solid modeling

Animation and Effects

. Quoted from Issac Kerlow.
Character personallty The Art of 3D Computer

Three techniques




Three techniques

ey

“ 1 \
Three Techniques :
History of Animation :

e Crossover of 3D animation with traditional
animation

e Who Framed Roger Rabbit?
e Luxo, Jr. (http://www.pixar.com/shorts/ljr/)




soe0000

ece0e

ecee
o0

Types of Animation Systems

e Low-level

e Procedural

e Representational
e Stochastic

e Behavioral

Low-level s

e Scripting systems
e Keyframe systems
e Spline-driven

Procedural :

e Movement as a function of time
e Visualize laws of physics

e “Cartoon Laws of Physics”

e POV-Ray example




soe0000

ece0e

ecee
o0

Representational

e Allows an object to change shape
e Three categories:
o Articulated objects Luxo, Jr.
« Soft objects Cave Troll in LOTR
e Morphing cat in Harry Potter

Stochastic Animation

e Controlled randomness
e Large groups of “actors”
e Examples:

o Fireworks, fire, water falls

e Genesis sequence from Star Trek II: The
Wrath of Khan

Behavioral Animation

e Rule-based
e Objects or “actors” react to their environment

e Examples
o Schools of fish, flocks of birds

e Stanley and Stella Break the Ice
e Stampede scene from The Lion King
e Battle scenes in LOTR




POV-Ray

POV-Ray Animation :

POV Ray does NOT generate animations

POV Ray generates the frames on separate .bmp
files

e Frames are sequentially numbered in ascending
order

An external program to take those frames and put
them into an animation is needed

POV-Ray animation

e There are two halves to animation support:
o Telling POV Ray to render more than one frame

o Modify the POV scene file to change on each
frame




soe0000

ece0e

ecee
o0

POV-Ray Animation

e To render more than one frame

o Settings in the INI file (or on the command line)
e To change the scene on every frame

° and keywords

INI Settings :

e Two key things

o Setting the range of frames to render
Initial_Frame
Final_Frame

» Setting the time that occurs between the first and

last frames

Initial_Clock
Final_Clock

INI Settings

e Example
Initial_Frame=1
Final_Frame=60
Initial_Clock=0
Final_Clock=1

e POV Ray will render 60 frames. The clock will

start at 0 and will end at 1, increasing at intervals
of 1/60 for each frame.




INI Settings

e You need to set this
under the desired
resolution entry in your
INI file

e Inthe example here, if
you select the
[320x240, 60F AA]
option, it will render 60
frames, but if you select
the [800x600, No
AA], it will render one
frame.

[800x600, Nu AA]
Width=800
Height=600
Antialias=0n

[320x240, 60F AA]
Width=320
Height=240
Antialias=0n
Initial_Frame=1
Final_Frame=60
Initial_Clock=0
Final_Clock=1

Modify INI file for animation

Locate the INI file
Open the INI file

Add the animation options
Select the animation options for rendering

Step 1: Locate INI file

B PON-Bay - € i fioro. C5TC

Ble L3t Seych [et Tger fowt fende Qpios T

DS H oM@ -n
QoEdRne XD




Step 2: Edit INI file

Step 3: Add animation settings

T v

Step 4: Select the settings

TNy foe Winden Render Settings




Command Line settings

e Can set the animation values at the
command line window

n Same as Initial_Frame=n
n Same as Final_Frame=n
n.n Same as Initial_Clock=n.n
n.n Same as Final_Clock=n.n

Code modifications

e The variable

e Its value changes for each frame
(automatically)

e By default, it goes from 0.0 to 1.0, no matter
how many frames you have

POV-Ray

e sphere {
<0, 0, 0>, 1 +
3

e inifile:
Initial_Frame = 1
Final_Frame = 20
Initial_Clock = 0.0
Final_Clock = 2.0

10



Growing Sphere :
sphere { <0, 0, 0> , 1 +
pigment {
marble
, -
translate <0, 1, 0>
3
Result i

Movies from images

e pjBmp2Avi
o Free simple program

e Takes a sequence of images and dumps them
into an AVI file

11



Rolling Log

Rolling Log and crash

Rolling Log and Crash

e Story board
e 0-2.5 sec: roll right
e 2.5-3sec: off stage
o 3-6.5 sec: roll left
e 7-8 sec: crash

e Statistics
o 80 frames
« 8 clock seconds

12



Rolling Log and Crash

#if (clock <= 2.5)
object {wlog
rotate <0,0,clock*360>
translate <0.21*2*pi*clock-1,0.21,0>

#else

Rolling Log and Crash

#if (clock >= 3 & clock <= 6.5)
#declare local_clock = clock - 3
object {wlog
rotate <0,0,clock*360>
translate <3-0.21*2*pi*local_clock,0.21,0>}
#end
#end

Rolling Log and Crash

#if (clock <7)
camera {
location <2, 2, -3>
look_at <0, 0, 3>

13



Rolling Log and Crash

#else
#declare pos = seed (8723*clock);
#declare py = rand(pos);
#declare px = rand(pos);
camera {
location <2, 2, -3>
look_at <((px-0.5)*0.8), (py-0.5)*0.8, 3>
#end
R (1]
Ceiling Fan :

Animating light

#declare px =
light_source {
<20,20,-20>
color White
spotlight
radius 1.5
falloff 2.5

14



Animating light

Animating light :

#declare GlitterBall = difference {
sphere {<0,0,0>, 1}
cylinder {<0,-1,0> <0,1,0> 0.
cylinder {<-1,0,0> <1,0,0> 0
cylinder {<0,0,-1> <0,0,1> 0

Animating light

#declare a = seed(clock*1000);
#declare b = seed(clock*200);
#declare cr = rand(a);
#declare cg = rand(b);

light_source {
<0, 0, 0>
color rgb <cr,cg,1>
fade_distance 0.5 }

15



Animating light

object { GlitterBall
pigment {color Yellow}
Finish {ambient 0.5}

rotate <-clock*360, 0, -clock*360>
scale 0.5

Animating textures

texture {

pigment {color Orange}

normal{
waves 0.8*(1-clock)
scale 0.3
frequency 15*(1-clock/2)

b

b

Animating textures

16



Animating the camera :
e Sky keyword

e You can also rotate/translate the camera
Sky :

Sky vector :

e “View up”

17



Animate Sky vector

#include “functions.inc”

sky <cos(pi/2 + 2*pi*clock),
sin(pi/2 + 2*pi*clock),
0>

Animating camera :

Vertigo :




soe0000

ece0e

ecee
o0

Animating the camera

e Define a path to follow
e Splines give you a way to define 'pathways'

Types of Splines :

e Polygonal arcs (linear spline)

e Cardinal splines

e B-splines

e Bezier curves

e Nurbs (non-uniform rational b-splines)

Arcs and Cardinal Splines :

/N

Control points: ®

http://www.frank-buss.de/spline.html

19



Bezier curves

«shape defined by control points and
tangents

http://webreference.com/3d/lesson36/part2.html

B-splines

«control points not necessarily on spline
«control points shape spline

1NO1/UBCExamples

site.ubc.calLivingMathe ier.htm

ibiblio.org/e-notes/Splines

be:

B-splines and Nurbs

Nurbs are B-splines that allow weighting of control points

http://webreference.com/3d/lesson36/part2.html

20



Degree of a spline

e higher degree creates smoother spline
e needs more control points

http://i33www.ira.uka.de/applets/mocca/html/noplugin/curves.html

Spline

#declare IDENTIFIER =
{

[SPLINE_IDENTIFIER] |

[SPLINE_TYPE] |

[vall, <Pointl>[,]

Val2, <Point2>[,] ...

Valn, <Pointn>]

3

SPLINE_TYPE: ] ] 1

SPLINE_USAGE: IDENTIFIER(Val) | IDENTIFIER(Val, SPLINE_TYPE)

Spline Example

#declare MySpline =

-.25, <0,0,-1>

0.00, <1,0,0>

oz %t A cubic spline is
0:75: <0,6,:1> declared

1.00, <1,0,0>
1.25, <0,0,1>
¥ T
Points defining the
curve

21



Spline Example

#declare ctr = 0;
#while (ctr < 1)
sphere {
MySpline(ctr), .25
pigment { rgb <l-ctr,ctr,0> }
rotate <90,0,0>
translate <0,1.1,0>

#declare ctr = ctr + 0.01;
#end

The spline is used to
define the location of
the spheres

Spline Example

#declare ctr = 0;
#while (ctr < 1)
sphere {
MySpline(ctr), .25
pigment { rgb <l-ctr,ctr,0> }
rotate <90,0,0>
translate <0,1.1,0>

#declare ctr = ctr + 0.01;
#end

Camera following a Spline

1.25, <0,1,-4>

22



Camera following a Spline :

camera
location MySplin
look_at <0.0 ,

Boom

e sky <0,0,1> and
o distance <0,0,1> or
o look_at — location is parallel to sky

Phase

e For textures, especially those that can take a color, pigment,
normal or texture map. Remember the form that these maps
take:

color_map {
[0.00 White ]
[0.25 Blue ]
[0.76 Green ]
[1.00 Red ]
}

23



Phase

e Phase causes the color values to become shifted
along the map by the amount specified in phase.

e If clock value is from 0.0 to 1.0, use it with phase,
and the pattern will smoothly shift over the course of
the animation.

Phase example

sphere { <0, 0, 0> , 1
pigment {
marble
color_map {
[0.0 Blue ]
[0.5 Blue 1]
[0.5 White ]
[1.0 White ]

phase clock
scale .25

translate <0, 1, 0>

Phase example

24



Selecting frames to render

e Good for long animations
e Setting

o Initial_Frame=n and

o Final_Frame=m won't work.

e Use
° =n
° =m

soe0000

ece0e

ecee
o0

25



