Database 1. Db models aspects of the real world (miniworld, universe of discourse) 2. Collection of data logically coherent Meaningful Information 3. Designed for specific purpose

Uses of Database

- Traditional (Employee, student, product database)
- Online Shopping Search Engines
- Data Warehousing (OLAP)
- Data Mining
 Genetic Databases
- Geographical Information Systems

Types of Database

- Deductive Databases
- Multimedia Databases
- Distributed Databases
- Spatial Databases
- Object-Oriented Databases

Personal (1 User), Megabytes Workgroup (<25 Users), Megabytes Department (25-100 Users), Gigabytes Enterprise (100-1000s), Gigabytes Internet (100-1000s), Terabytes

Database Management System (DBMS)

Software to

- 1. Define a database (data types, structures, constraints)
- 2. Construct a database (populate database with data)
- 3. Manipulate database (query and update data in database)

Database People

- ** Application developers
- Database administrators
- ***** Users

-		

Sample Database See Figure 2-12 (page 61) Pine Valley Furniture (available from DLweb) User Data •Records, Fields (Columns) •Data elements Meta Data •Data Types •Relationships •Indexes •Application Metadata (Forms, Reports, etc.)

File Processing File system is backbone of operating system Example (file system for data storage): Figure 1-3 (page 11)

Disadvantages of File Processing

- •Program-Data Dependence •Redundancy (Duplication of Data)
- •Limitation on data sharing
- •Development time •Maintenance

Advantages of Databases

- •Program-Data Independence •Control of Data Redundancy
- •Data Consistency
- •Data Quality (constraints)
- •Data Sharing (customized access through views)
- •Improved Data Access
- •Program Maintenance

Three Schema Architecture

Describe structure of data (relationships, behavior) at different levels of abstraction.

External

high-level user view

Conceptual

view of data administrator

Logical: structure of data for DBMS

Physical: storage details (indexes) for DBMS

Data Models Conceptual/External ER-model (Entity-Relationship) Logical Relational data model Object data model Network data model Hierarchical data model Physical Frame-memory model **ER-modeling** Describes entities, their relationships, and attributes Used for designing and analyzing a database Figure 1-4, page 13 Figure 2-16, page 68 Examples: Relational Data Model Data in tables (extensional representation of relation) Models relationship between data in tables Example: Figures 5-3, 5-4, pp 191/192

Database Languages DDL: Data definition language defines data types, tables includes DSL (Data storage language) DML: Data Manipulation Language language for retrieving and manipulating data Types: high-level (nonprocedural, declarative): SQL low-level (procedural)

Class Outline

Intro to Databases (Chapter 1)
Relational Database Model (Chapter 5)
SQL (Chapters 7 and 8)
ER Model (3 and 4)
Forms and Reports
Advanced Topics