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Abstract

If a graph can be drawn in the projective plane so that every two

non-adjacent edges cross an even number of times, then the graph can be

embedded in the projective plane.

1 Introduction

In the plane there is a beautiful characterization of planar graphs known as
the Hanani-Tutte theorem: a graph is planar if and only if it can be drawn in
the plane so that every two non-adjacent edges cross an even number of times.
Equivalently, any drawing of a non-planar graph in the plane must contain two
non-adjacent edges that cross oddly.

There are several proofs of the Hanani-Tutte theorem, including the original
1934 proof by Hanani and the 1970 proof by Tutte, see [7] for more references.
Our goal in the current paper is to show that the result remains true in the
projective plane.1

Theorem 1.1. If a graph G can be drawn in the projective plane so that every
two non-adjacent edges cross evenly, then G can be embedded in the projective
plane.

This is not the first result that indicates that the Hanani-Tutte theorem
is not a special property of the plane. Using homology theory, Cairns and
Nikolayevsky [2] showed that if a graph can be drawn on an orientable surface

1A sphere with a crosscap. We assume that the reader is familiar with the basic terminology
of drawings and embeddings in surfaces. For background see [6, 3].
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so that every pair of edges (not just non-adjacent ones) crosses an even number of
times, then the graph can be embedded in that surface. Pelsmajer, Schaefer, and
Štefankovič [8] gave a new, elementary proof of this weak Hanani-Tutte theorem
that also establishes the result for non-orientable surfaces. Theorem 1.1 is the
first time the strong version of the Hanani-Tutte theorem has been established
for any higher-order surface.

There is an alternative view of the Hanani-Tutte theorem in terms of crossing
numbers. The crossing number of a graph G, denoted by crS(G), is the minimum
number of crossings in any drawing of G in surface S. Hence a graph G is
embeddable in S if and only if crS(G) = 0. The odd crossing number of G,
denoted by ocrS(G), is the minimum number of pairs of edges that cross oddly
in any drawing of G in surface S. The independent odd crossing number of
G, iocrS(G), is the minimum number of pairs of non-adjacent edges that cross
oddly in any drawing of G in surface S.

The strong Hanani-Tutte theorem can now simply be stated as “iocr(G) = 0
implies cr(G) = 0” and Theorem 1.1 becomes “iocrN1

(G) = 0 implies crN1
(G) =

0” using N1 as a symbol for the projective plane. The weak Hanani-Tutte
theorem in this notation reads “ocrS(G) = 0 implies crS(G) = 0” and is true
for all surfaces S as we mentioned above. The crossing number point of view
emphasizes the algebraic nature of the Hanani-Tutte theorem as argued by van
der Holst in [9].

Our proof of the strong Hanani-Tutte theorem for the projective plane uses
techniques we developed for the Hanani-Tutte theorem and related results in the
plane and higher-order surfaces [7, 8] and combines them with ideas from Mohar
and Robertson on embeddings in the projective plane [5]; see Section 2. The
proof will not naturally extend to any surface other than the projective plane,
since it makes use of the list of minimal forbidden minors for the projective
plane.

2 From Embeddings to Drawings

In this section we develop the necessary tools to deal with drawings in the
projective plane. Some of these tools are extensions of well-known results for
embeddings. All of them will play an important role in the proof of the strong
Hanani-Tutte theorem for the projective plane.

2.1 Basic Observations and Redrawing Tools

Recall that a closed curve is contractible if it can be contracted to a point. In
the projective plane a closed curve is contractible if and only if it passes through
the crosscap an even number of times.2

2Any one-sided (or non-contractible) curve can serve as the crosscap. “Passing through
the crosscap” means crossing that curve.
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Lemma 2.1. Suppose that a graph drawn in the projective plane contains two
vertices connected by three internally disjoint paths. Of the three cycles formed
by pairs of paths, exactly one or exactly three are contractible.

Proof. Let P1, P2, P3 be the three paths. Call a path even (odd) if it passes
through the crosscap an even (odd) number of times. Then a cycle is contractible
if and only if it is formed by two paths of the same parity. By the pigeonhole
principle, exactly two or three of the paths have the same parity. The lemma
follows.

Lemma 2.1 is based on [6, Proposition 4.3.1].

For convenience, we say that a particular drawing of a graph is iocr-0 if no
pair of non-adjacent edges crosses an odd number of times.

Lemma 2.2. If a graph G drawn on the projective plane contains two vertex-
disjoint non-contractible cycles, then the drawing is not iocr-0.

Proof. In the projective plane any two non-contractible curves cross an odd
number of times.3 Therefore there must exist two edges in G, one in each of
the two cycles, that cross oddly. These must be non-adjacent, as they belong
to vertex-disjoint cycles, so the given drawing of G is not iocr-0.

We will occasionally apply redrawing moves that lead to self-intersections of
edges. These can be removed as shown in Figure 1.

⇒

Figure 1: Removing a self-intersection; illustration from [7].

A ∆Y -exchange in G is a process that replaces a triangle in a drawing of G

with a claw (a K1,3). The three vertices of the triangle become the leaves of the
claw.

Lemma 2.3. Let G be a graph with iocrN1
(G) > 0, and suppose G′ can be

obtained from G by a ∆Y -exchange. Then iocrN1
(G′) > 0.

Proof. Consider an iocr-0 drawing of G′. Let e1, e2 and e3 be the three edges
of the claw. Draw a new edge f1 by closely following e1 and e2; similarly add f2

following e2, e3 and f3 following e3, e1. Remove any self-intersections as shown
in Figure 1. If f1 crosses an edge e of G′ − {e1, e2, e3} oddly, then e must cross

3Letting the first curve serve as the crosscap, we know that the other curve must pass
through the crosscap an odd number of times since it is non-contractible.
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either e1 or e2 oddly; hence e is incident to f1. Similarly f2 and f3 only cross
adjacent edges oddly. Removing e1, e2, e3 now yields an iocr-0 drawing of G,
which implies that iocrN1

(G) = 0.

The following lemma shows, roughly speaking, that for an iocr-0 drawing
it is not a single vertex that makes the difference between planarity and non-
planarity.

Lemma 2.4. Let x ∈ V (G) and H = G−x. Suppose there is an iocr-0 drawing
of G in the projective plane such that all cycles in H are contractible. Then G

is planar.

Proof. Consider the specified drawing of G in the projective plane.

Claim: We can redraw G so that each edge of H passes through the crosscap
an even number of times, and the drawing is still iocr-0.

Let F be a spanning forest of H and select a root in every component of F .
Process the edges of F in a breadth-first order as follows: suppose uv is an edge
of F so that u is closer to the root of uv’s component than v. Start contracting
uv by moving v along uv towards u, pushing all crossings along with it; stop
when uv passes through the crosscap an even number of times. Call uv processed.
Note that this move does not change the parity of how often any processed edge
of F other than uv passes through the crosscap, since the only edges whose
parity is changed by the contraction are edges incident to v, and none of those
can have been processed already. At the end, every edge of F passes through
the crosscap an even number of times. Every edge in E(H) − E(F ) also uses
the crosscap evenly, since it completes a contractible cycle with some edges in
F .

We now remove the crosscap and replace it with a disk. We reconnect severed
edges by simple curves within the newly added disk.

Any two such curves within the disk have to cross oddly, since their crossings
with the disk boundary alternate. Since each edge of H passes through the disk
an even number of times, its crossing parity with every other edge does not
change. Hence, any two edges whose crossing parity changes must be incident
to x, which means that the independent odd crossing number is not affected by
replacing the crosscap with a disk. We have thus obtained an iocr-0 drawing
of G in the sphere (and, thereby, the plane), which implies that the graph is
planar by the Hanani-Tutte theorem for the plane.

2.2 K-graphs and iocr

Let H be a subgraph of a graph G. An H-component or H-bridge is either an
edge (and its endpoints) that does not belong to H but both of whose endpoints
do, or a connected component of G − V (H) together with all edges (and their
endpoints) connecting this component to H .

H is a K4-graph of G if it is a subdivision of K4, and there is an H-component
that is attached to all the vertices of degree 3 in H . H is a K2,3-graph of G if it
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consists of three internally disjoint paths connecting two vertices, x and y, and
there is an H-component that contains at least one internal vertex of each of
the three paths. A K-graph is either a K4-graph or a K2,3-graph.

The following result is a well-known fact for embeddings (see [5, p326]). We
relax the assumption that G is embedded to allow crossings, but control the
crossings by requiring iocrN1

(G) = 0.

Lemma 2.5. Let G be a graph containing a K-graph. Then every iocr-0 drawing
of G in the projective plane contains two non-contractible cycles in the K-graph.

Proof. Fix an iocr-0 drawing of G in the projective plane; let H be the K-graph
within G. Note that if a K-graph contains one non-contractible cycle, then it
must contain two by Lemma 2.1. Hence, for a contradiction, we may assume
that all the cycles in H are contractible.

Suppose first that H is a subdivision of a K2,3. Then H is the union of
three internally disjoint paths P1, P2, P3 that have the same endpoints x and
y, and there is an H-component B containing an internal vertex of each path.
Consider three edges from these vertices of H to V (B) − V (H), and let T be
a minimal tree in B that contains those edges. Then T has three leaves, so it
must contain a unique vertex z of degree 3. Let G′ = H ∪ T . By construction,
G′ is a subdivision of K3,3. The drawing of G yields an iocr-0 drawing of G′.
All the cycles in G′ − z are cycles in H , which are contractible by assumption.
Applying Lemma 2.4 implies that G′ is planar, which is a contradiction.

If H is a subdivision of a K4, let S be the set of its 4 vertices of degree 3
and let B be an H-component that contains S. As above, there is a tree T in
B such that the set of its leaves is S. Since T has four leaves it either has a
unique vertex of degree 4 or two vertices of degree 3. Let G′ = H ∪ T . Since
G′ contains a K5-minor it is not planar. If T contains a vertex z of degree 4
we proceed as in the case of K2,3: the cycles in G′ − z are cycles in H and
therefore contractible, but then Lemma 2.4 implies that G′ is planar, which is
a contradiction. If T contains two vertices u, v of degree 3, let Q be the path
between u and v in T . Let uw be the first edge in the path (possibly w = v).
Contract uw by moving u along uw to w and then identifying u and w. As
we contract, we may create odd crossings and self-intersections. Only drawings
of edges incident to u may contain self-intersections; remove them as shown in
Figure 1. Any new odd crossing will be between an edge e1 that was incident
to u before the contraction, and an edge e2 that had crossed uw oddly. But e2

must have been incident to either u or w, since the drawing was iocr-0. After
contraction both edges are incident to u = w, so the drawing is still iocr-0. In
this fashion we can contract all the edges along the path Q until we have a single
vertex of degree 4, with the drawing of H unchanged. Then we are back in the
first case, which suffices.

Apart from applying Lemma 2.5 directly, we will also use it in the following
variant.

Corollary 2.6. If a graph G contains two disjoint K-graphs, then iocrN1
(G) > 0.
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Proof. Assume iocrN1
(G) = 0. Applying Lemma 2.5 twice gives us two vertex-

disjoint non-contractible cycles, which contradicts Lemma 2.2.

3 Proof of the Main Theorem

If G cannot be embedded in the projective plane, then it must contain at least
one of 35 minimal forbidden minors for the projective plane determined by
Archdeacon, Glover, Huneke, and Wang [1, 4]. For a complete list of minimal
forbidden minors and their names see [5]4 or [6, p198]. We show that all these
graphs have independent odd crossing number larger than zero. This establishes
Theorem 1.1 since from an iocr-0 drawing of a graph, one can easily obtain an
iocr-0 drawing of any minor of the graph.5

The first twelve graphs are formed from two Kuratowski graphs by a disjoint
union, a one-vertex identification, or a two-vertex identification and possibly
deleting an edge between these vertices. It is easy to see that each contains two
disjoint K-graphs. By Corollary 2.6 the independent odd crossing number of
each of these twelve graphs is nonzero.

Of the remaining 23 minimal forbidden minors, C7, E19, D12, E11, E27, D9,
G1 [5, Fig. 3] and D17, E20, F4 [5, Fig. 6] also contain two disjoint K-graphs, as
observed in [5]. Again, by Corollary 2.6, the independent odd crossing number
is nonzero for all of these graphs.

It is also known that each graph B7, C4, C3, D2 and E2 [5, Fig. 6] can be
obtained from graph A2 through a sequence of ∆Y -exchanges, and the graph
E5 can be obtained from the graph D3 in the same way [5]. By Lemma 2.3 we
need only show that iocrN1

(D3) > 0 and iocrN1
(A2) > 0 to prove a nonzero

independent odd crossing number for all of these graphs.

Thus we are left with seven graphs, E22, A2, D3, F1, B1, E18, and E3.
For each we will assume an iocr-0 drawing in the projective plane, then find a
contradiction.

Consider E22, letting x be its unique degree 4 vertex as seen in Figure 2.
Every 4-cycle not containing x is disjoint from a K2,3-graph, so it must be
contractible, by Lemma 2.2. For any two 4-cycles that share exactly one edge,
their symmetric difference forms a 6-cycle, and by Lemma 2.1 this 6-cycle is
contractible. Any other cycle in E22 − x is the symmetric difference of one
of those 6-cycles C and a 4-cycle C′, such that C ∩ C′ is a path; it is also
contractible by Lemma 2.1. Then Lemma 2.4 gives a planar drawing of E22, a
contradiction.

We deal with A2 by a similar argument. Let x be the unique degree 6 vertex
in A2 (see Figure 2). Any triangle not containing x is disjoint from a K4-graph
and is therefore contractible (Lemma 2.2). Suppose that C is a minimal non-
contractible cycle in A2−x. If C is not an induced cycle, then Lemma 2.1 yields

4All references to [5] in this section are to the proof of Theorem 3.1 in that paper.
5We already used this in the proof of Lemma 2.5. This fact also underlies almost all proofs

of the strong Hanani-Tutte theorem.
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a shorter non-contractible cycle, contradicting minimality. If C is an induced
cycle, then C is a 4-cycle and there is a vertex y 6= x adjacent to every vertex
of C. Let u and v be a pair of non-adjacent vertices in C. The union of either
u, v-path in C and the path uyv forms a 4-cycle that is not induced, so it is
contractible. Then C is contractible as well by Lemma 2.1, a contradiction.
Hence, every cycle in A2 − x is contractible. Then Lemma 2.4 gives a planar
drawing of A2, a contradiction.

x
x

Figure 2: Vertex x in E22 (left) and in A2 (right)

For graphs F1 and D3 we borrow part of an argument from [5]. The cy-
cles v1v2v3v4 and v1v2v3u1 in F1 (see Figure 3) are each disjoint from a K2,3-
graph, so they must both be contractible by Lemma 2.2. But the vertices
v1, v2, v3, v4, u1 induce a K2,3-graph in F1, and at most one of its three cycles is
contractible, which contradicts Lemma 2.5.

For D3 we apply the same argument to its cycles v1v3v2x and v1v3v2y

(see Figure 3): Each is disjoint from a K4-graph so both are contractible
(Lemma 2.2). But there is a K2,3-graph on vertices v1, v2, v3, x, y, and at most
one of its cycles is non-contractible, contradicting Lemma 2.5.

Next consider B1. Any triangle containing exactly one of the vertices x, y, z

is contractible since it is disjoint from a K4-graph. Then by Lemma 2.1, the
4-cycles xu1yu2, xu1zu2, yu1zu2 are all contractible. But these are all the cycles
in the K2,3-graph on vertices {x, y, z}, {u1, u2}, which contradicts Lemma 2.5.

v1 v2

v3

v4

u1 u2 u3

u4 u5

v1 v2

v3
x z y

u1 u2

v1 v2

x y

z

u1 u2

Figure 3: F1, D3 and B1 (left to right) with labels

For the two remaining graphs we employ counting arguments. First consider
E18, which is K4,4 with one edge removed (see Figure 4). Let {u1, u2, u3, u4},
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{v1, v2, v3, v4} be the two partite sets and let u4v4 be the missing edge. Each
of u4 and v4 is contained in 9 induced 4-cycles. Furthermore, for each 4-cycle
containing u4 there is a disjoint 4-cycle containing v4 [5]. Hence, at least one
of the two cycles must be contractible by Corollary 2.6. So one of u4, v4, say
u4, belongs to at most 4 non-contractible cycles. But {u4, vi, vj , ui, uj} induces
a K2,3-graph for each distinct pair i, j in {1, 2, 3}, and by Lemma 2.5 each one
contains two non-contractible cycles. Since all these cycles are pairwise distinct,
there are at least 6 non-contractible 4-cycles containing u4, a contradiction.

u1

u2

u3

u4

v1

v2

v3

v4

Figure 4: E18 = K4,4 − u4v4

Finally consider E3, which is K3,5. Let A, B be the two partite sets, with
|A| = 5. By Lemma 2.5, for all {a1, a2, a3} ⊂ A, {b1, b2} ⊂ B, exactly one of the
three cycles in the K2,3 induced by these 5 vertices is contractible. There are
30 possible choices of subsets of A and B as above, and every 4-cycle is present
in 3 of the resulting subgraphs. Thus there are exactly 10 contractible 4-cycles
in the given drawing of K3,5. Some pair of vertices of B is shared by at least 4
of them, and two of these 4-cycles must also share a vertex of A. The union of
these two 4-cycles is a K2,3-graph, but by Lemma 2.5, the K2,3-graph contains
only one contractible cycle, a contradiction.

Acknowledgment. The authors wish to thank the anonymous referee, whose
suggestion shortened the proof.
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even crossings. J. Combin. Theory Ser. B, 97(4):489–500, 2007.

[8] Michael J. Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Removing
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