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Abstract. If a graph embeds in a surface with k crosscaps, does it al-
ways have an embedding in the same surface in which every edge passes
through each crosscap at most once? This well-known open problem can
be restated using crossing numbers: the degenerate crossing number,
dcr(G), of G equals the smallest number k so that G has an embed-
ding in a surface with k crosscaps in which every edge passes through
each crosscap at most once. The genus crossing number, gcr(G), of G

equals the smallest number k so that G has an embedding in a surface
with k crosscaps. The question then becomes whether dcr(G) = gcr(G),
and it is in this form that it was first asked by Mohar.
We show that dcr(G) ≤ 6 gcr(G), and dcr(G) = gcr(G) as long as
dcr(G) ≤ 3. We can separate dcr and gcr for (single-vertex) graphs with
embedding schemes, but it is not clear whether the separating exam-
ple can be extended into separations on simple graphs. Finally, we show
that if a graph can be embedded in a surface with crosscaps, then it has
an embedding in that surface in which every edge passes through each
crosscap at most twice. This implies that dcr is NP-complete.

Keywords: degenerate crossing number, non-orientable genus, genus crossing
number.

1 Introduction

When defining the crossing number of a graph, one typically requires that at
most two edges cross in any point. If k > 2 edges cross in a single point, these
edges can be perturbed slightly to create

(
k

2

)
crossings of pairs of edges, so multi-

ple crossings in a single point can always be avoided. Günter Rote and M. Sharir,
according to Pach and Tóth [10] asked “what happens if multiple crossings are
counted only once”. This led Pach and Tóth to introduce the degenerate crossing
number: we allow drawings which are degenerate in the sense that more than two
edges are allowed to cross in a single point (but which are otherwise standard, in
particular, edges have to actually cross, not touch, and self-crossings are not al-
lowed). The degenerate crossing number of the drawing is the number of crossing
points in the drawing. The degenerate crossing number, dcr(G), of a graph G is



the smallest degenerate crossing number of any (degenerate) drawing of G. Some
papers (e.g. [1]) restrict drawings to be simple, that is, every two edges intersect
(or cross, that’s not always clearly defined3) at most once; to distinguish this
variant from dcr we call it the simple degenerate crossing number, dcr∗(G).4

If we modify the definition of the degenerate crossing number to allow self-
crossings of edges, we obtain the genus crossing number, gcr(G), which was
introduced by Mohar [8]. By definition, gcr(G) ≤ dcr(G). Mohar conjectured
that gcr(G) = dcr(G). Equality of these two numbers would be particularly
interesting, since, as Mohar observes, gcr(G) = γ̃(G), where γ̃(G) is the non-
orientable genus (or the minimum crosscap number) of G, the smallest number
k so that G can be embedded on a surface with k crosscaps (we allow the
special case of k = 0 for planar graphs). Each crossing of multiple edges can
be replaced by a crosscap and vice versa, since edges have to cross (and may
not touch) in a crossing point. Similarly, dcr(G) can be viewed (as we did in the
abstract) as the smallest number k so that G has an embedding on a surface with
k crosscaps so that every edge passes through each crosscap at most once. An
edge not being allowed to pass through a crosscap more than once corresponds to
prohibiting self-crossings in degenerate drawings in the plane. We view crosscaps
as geometric, rather than purely topological objects, a view which we believe
makes sense in graph drawing, where we need to visualize objects.5

We do not yet know, whether gcr(G) = dcr(G) in general, but we can separate
them, if we are allowed to equip graphs with an embedding scheme (a fixed
rotation at each vertex, and a signature for each edge). In that case, there are
graphs for which gcr is 3, but dcr is 4 as we will see in Theorem 4.

Remark 1 (Visualizing Graphs in Higher-Order Surfaces). Whether gcr = dcr or
not has consequences for visualizing graphs embeddable in higher-order surfaces
in the plane. Typically, such graphs are visualized using a (canonical) polygonal
schema. There are polynomial-time algorithms for this task, e.g., see [4] for
orientable surfaces, also see [3, 7, 5]. Assuming that vertices may not lie on the
boundary (of the polygonal schema), the question gcr = dcr then becomes: do
edges have to pass through the same side of a schema more than once? Many
of the visualization algorithms (including [3]) start by contracting the graph
to a single-vertex graph with an embedding scheme; for these algorithms, the
example in Theorem 4 shows that edges can be forced to cross through the same
side more than once.

On the other hand, we can show that dcr(G) ≤ 6 gcr(G), so any graph
embeddable in a surface with k crosscaps can be embedded in a surface with
at most 6k crosscaps so that every edge passes through each crosscap at most
once. We will establish this in Theorem 2. If we allow an edge to pass through

3 The difference is that a shared endpoint counts as an intersection, but not a crossing.
4 An example in the entry on degenerate crossing number in [12] shows that it matters
whether dcr∗ is defined so as to allow crossings between adjacent edges or not.

5 Mohar [8] uses a “planarizing system of disjoint 1-sided curves to define “passing
through a crosscap” formally.



each crosscap just twice, it turns out that every graph can then be embedded in
a surface with γ̃(G) crosscaps (Theorem 5).

1.1 Known Results

Pach and Tóth [10] showed that dcr(G) < |E(G)|. For the simple degenerate
crossing number, a crossing lemma is known: dcr∗(G) ≥ c · |E(G)|3/|V (G)|2 for
|E(G)| ≥ 4|V (G)| (and some constant c > 0). This was shown by Ackerman
and Pinchasei [1], improving an earlier result by Pach and Tóth. We should also
mention work by Harborth [6], who may have been the first to study multiple
crossings in drawings. His goal is to maximize the number of multiway crossings.
For example, he shows that K2m can be drawn with two m-fold crossings; he
conjectured that K2m cannot be drawn with three or more m-fold crossings.

2 Tools

We start with some basic facts about (simple) closed curves on a non-orientable
surface S. A closed curve C is called non-separating if S −C consists of a single
piece. Otherwise, C is separating. If it is separating, it can be contractible (one of
the two pieces is homeomorphic to a disk) or surface-separating. The sidedness of
a closed curve is the number of sides it has: it is either one-sided (its neighborhood
is a Moebius strip) or two-sided. A closed curve C in a non-orientable surface
maximal if S −C is orientable (equivalently, if C passes through every crosscap
an odd number of times).6

A surface can contain only a small number of different types of closed curves.
The following lemma makes this precise.

Lemma 1 (Malnič, Mohar [9, Proposition 4.2.7]). If G is a graph em-
bedded in a surface S, and P is a collection of internally disjoint paths between
vertices a and b (where a = b is allowed), so that no two of the paths bound a
disk in S, then

|P| ≤

{
3 γ̃(S)− 2 if γ̃(S) ≥ 2
γ̃(S) + 1 otherwise.

Remark 2. We are interested in the case where a = b and there are no surface
separating paths; a better upper bound for that case would improve the upper
bound in Theorem 4.

We also need some tools from topological graph theory to describe and handle
embeddings of graphs on non-orientable surfaces. On orientable surfaces, an
embedding can be described by a rotation system which prescribes a rotation
(a clockwise, cyclic ordering) of the ends of all edges incident to a vertex. On
non-orientable surfaces, we also need to prescribe, for every edge, its signature,

6 There seems to be no standard name for curves of this type in the literature. Bojan
Mohar suggests “orienting”.



which is a number in {−1, 1}. A cycle in G is two-sided if the signature of its
edges multiply to 1, otherwise, it is one-sided. A rotation system ρ and signature
λ together form an embedding scheme (ρ, λ) of a graph on a surface. A drawing of
a graph in a surface realizes an embedding scheme (ρ, λ), if the rotation at each
vertex is as prescribed by ρ, and the sidedness of each cycle is as prescribed by
the signatures of the edges. The sidedness of a cycle is determined by the parity
of how often the cycle passes through crosscaps. Typical operations on graphs
(removing/adding a vertex/edge, contracting an edge) are easily performed on
the embedding scheme as well. For details, see [9, Section 3.3].

Arguments and algorithms for graph embeddings can often be simplified by
replacing an embedded graph with a single-vertex graph with embedding scheme.
This is often done for visualizing embeddings of graphs in higher-genus surfaces
in the plane (see Remark 1). Note that in a single-vertex graph every edge is
a loop, hence a closed curve, and we can talk about the sidedness, which then
directly correspond to its signature: a one-sided loop has signature −1, and a
two-sided loop signature 1. For a graphG with embedding scheme (ρ, λ) we define
gcr(G, ρ, λ) as the smallest number k so that G has an embedding realizing (ρ, λ)
on a surface with k crosscaps. Similarly, dcr(G, ρ, λ) is the smallest degenerate
crossing number of any drawing of G which realizes the embedding scheme (ρ, λ).

The next lemma shows that as far as gcr is concerned, we can replace a graph
with a graph on a single vertex equipped with an embedding scheme. For dcr
we can do so for upper bounds only.

Lemma 2. For every graph G there is a single-vertex graph G′ with embedding
scheme (ρ, λ) so that gcr(G) = gcr(G′, ρ, λ), and dcr(G) ≤ dcr(G′, ρ, λ).

Proof. Fix an embedding of G on a surface S with k = gcr(G) crosscaps. We
can assume that G is connected (if it is not, we can extend G to a triangulation
of S). Let T be a spanning tree of G. Contract edges of T , merging rotations
in the embedding scheme at vertices that are identified and updating signatures
of edges. Let G′ be the resulting single-vertex graph with embedding scheme
(ρ, λ). Then gcr(G′, ρ, λ) ≤ gcr(G). If gcr(G′, ρ, λ) < gcr(G) were true, we could
undo the operations which turned G into G′ (since we maintained the embedding
scheme) to find an embedding of G on a surface with less than gcr(G) crosscaps,
which is a contradiction, so gcr(G) = gcr(G′, ρ, λ). The same argument shows
that dcr(G′, ρ, λ) < dcr(G) is not possible, so dcr(G) ≤ dcr(G′, ρ, λ).

Note that we do not claim that dcr(G) ≥ dcr(G′, ρ, λ), the construction we
used may force an edge through a crosscap multiple times, so dcr can increase.
Lemma 2 allows us to replace a graph with a single-vertex graph when showing
that dcr can be bounded in gcr.

Finally, we need some basic techniques to deal with curves in a surface.

Theorem 1 (Weak Hanani-Tutte Theorem for Surfaces [2, 11]). If G is
drawn in a surface so that every pair of edges crosses an even number of times,
then G has an embedding on the same surface with the same embedding scheme.



It is well-known that a handle and two crosscaps are equivalent in the pres-
ence of another crosscap. So a graph embeddable on a surface with h handles can
be embedded on a surface with 2h+1 crosscaps so that every edge is two-sided.
The following lemma shows that the odd number of crosscaps is not accidental
when restricting to orientable embeddings, where we call an embedding (G, ρ, λ)
of a graph G orientable if all cycles in G are two-sided (equivalently, multiplying
the signatures of edges along each cycle, one always gets 1). Note that if G is a
single-vertex graph, then its embedding is orientable, if all loops have signature
1.

Lemma 3. Suppose k is minimal so that a connected graph (G, ρ) with rotation
ρ has an orientable embedding on a surface with k crosscaps. Then either k = 0,
or k ≥ 3 and k is odd.

Proof. Fix an orientable embedding of (G, ρ) in a surface with k crosscaps, where
k is minimal. We can assume that G is a single-vertex graph (contract edges of
a spanning tree, this leaves the embedding orientable, so λ(e) = 1 for all loops
e now). Suppose k is even. Let c be one of the crosscaps. For any edge that
passes oddly through c, push that edge over all crosscaps. Note that pushing an
edge over all crosscaps does not change the parity of crossing between any pair
of edges since the number of crosscaps is even and every edge initially crosses
through an even number of crosscaps oddly, and this remains true. At the end
of this operation we have a drawing of G in which every pair of edges crosses an
even number of times, and all edges pass through c an even number of times. We
can then push all edges off c, again maintaining that every pair of edges crosses
evenly. Now, by Theorem 1, (G, ρ, λ) has an orientable embedding in the surface
with k − 1 crosscaps, so k cannot have been even if it was minimal. If k = 2,
then an orientable embedding on the projective plane implies that the graph is
planar (since every edge passes through the single crosscap an even number of
times).

Corollary 1. If a single-vertex graph (G, ρ) has an orientable embedding on a
non-orientable surface with k ≥ 2 crosscaps, we can add a one-sided loop into
its embedding scheme, without changing the surface.

Proof. Let k′ ≤ k be minimal so that (G, ρ) has an orientable embedding on the
surface with k′ crosscaps. If k′ = 0, then we can add two crosscaps, and a loop
that passes through one of them; since k ≥ 2 this is sufficient. Otherwise, by
Lemma 3 we can assume that k′ is odd and at least 3. To G add a loop with its
ends consecutive in the rotation. Now push this loop once over each crosscap.
Since all other loops are two-sided, every pair of edges crosses evenly, so by
Theorem 1 the graph embeds in the surface with the same embedding scheme.
The loop we added is one-sided and maximal.

3 Removing Self-Crossings

Theorem 2. dcr(H) ≤ 6 gcr(H).



So a degenerate drawing with self-crossings can be cleaned of self-crossings
at the expense of increasing the degenerate crossing number by a factor of six.
We will make use of the following lemma.7

Lemma 4. dcr(H) ≤ 2|E(H)|.

Proof. Use Lemma 2 to create a single-vertex graph G on vertex v with embed-
ding scheme (ρ, λ) so that dcr(H) ≤ dcr(G, ρ, λ). We proceed by induction on
|E(G)| = |E(H)|. If |E(G)| = 0, there is nothing to show, so G has at least one
loop. Pick a loop e whose ends at v are closest in the sense, that no other edge
begins and ends in the wedge formed by the two ends of e (we direct e to differ-
entiate between the two parts of the rotation system at v enclosed by the ends of
v). If we can, we pick e one-sided. Suppose e is one-sided. Let (G′, ρ′, λ′) be the
graph obtained from G by reversing the order of the edges enclosed in the wedge
formed by e (we “flip” the wedge), changing all their signatures (since every edge
has at most one end in the wedge that flips the signature of every edge which has
an end in the wedge), and removing e. By induction dcr(G′, ρ′, λ′) ≤ 2|E(G′)|.
We can now add a crosscap close to v and pass all edges in the former wedge
through that crosscap, reattaching them to v in their original order. This also
reestablishes the original signatures of edges in G. Finally, we add back e in its
proper place in the rotation, passing it through the crosscap once. By construc-
tion, dcr(G, ρ, λ) ≤ 1 + dcr(G′, ρ′, λ′) ≤ 2|E(G)|.

If there is no closest, one-sided loop, e must be two-sided. Let G̃ be the same
as G with one modification: let λ̃(e) = −1 and proceed as in the first case.
We obtain a graph G̃′ so that dcr(G̃, ρ, λ̃) ≤ 1 + dcr(G̃′, ρ′, λ̃′). Now add one
additional crosscap passing only edge e through it, making it two-sided again.
This shows that dcr(G, ρ, λ) ≤ 1 + dcr(G̃, ρ, λ̃) ≤ 2 + dcr(G̃′, ρ′, λ̃′) ≤ 2|E(G)|.

Proof (of Theorem 2). Let H be a graph with gcr(H) = k. Fix an embedding
of H on a surface S with k crosscaps. By Lemma 2 we can transform H into a
graph G on a single vertex v with an embedding scheme (ρ, λ) so that gcr(H) =
gcr(G, ρ, λ) and dcr(H) ≤ dcr(G, ρ, λ). We show the result by induction on
|E(G)| = |E(H)|.

If |E(G)| ≤ 3k, then the result follows from Lemma 4. So we can assume that
|E(G)| > 3k. Lemma 1 implies that in this case there are two loops e and f so
that e ∪ f bounds a disk (e and f are homotopic). Remove the disk (with any
loops it may contain) from the surface, and identify e and f . Since this removes
at least one edge from G we can apply induction to the resulting graph G′. From
G′ we can reconstruct an embedding of G by splitting e, f into two loops and
reinserting the disk. Any loops in the disk which are not homotopic to e and f
can be drawn close to v (so they do not use any crosscaps that e and f may be
using). Any loops parallel to e and f use the same crosscaps as e and f , so in

7 This approach was suggested by one of the reviewers, and simplifies the original
proof.



the resulting drawing no edge uses any crosscap more than once (note that any
such loops have the same signature as e and f , since e and f bound a disk).

Since the proof works with single-vertex graphs with embedding schemes, the
separation of gcr and dcr for those types of graphs (Theorem 4) implies that the
proof approach in Theorem 2 will not yield gcr = dcr, but we can prove equality
for small values.

Theorem 3. If dcr(G) ≤ 3, then gcr(G) = dcr(G).

For graphs with embedding scheme, this result is sharp, as Theorem 4 shows.

Proof. Since gcr(G) ≤ dcr(G) it is sufficient to show that if gcr(G) ≤ 2, then
dcr(G) ≤ gcr(G). By Lemma 2 it is sufficient to prove the result for single-vertex
graphs with embedding scheme: for G there is a single-vertex graph G′ and
an embedding scheme (ρ, λ) so that dcr(G) ≤ dcr(G′, ρ, λ) and gcr(G′, ρ, λ) =
gcr(G), so establishing dcr(G′, ρ, λ) ≤ gcr(G′, ρ, λ) will prove the result.

If gcr(G′, ρ, λ) = 0, there is nothing to prove. If gcr(G′, ρ, λ) = 1 all loops are
either two-sided and contractible or one-sided. Pick a closest loop e (in the sense
defined in Lemma 4: every edge has at most one end in the wedge formed by e). If
e is one-sided, we can proceed as in Lemma 4, cutting along e, flipping the wedge
enclosed by e and changing the signature of all edges in the wedge. The resulting
graph is embedded in a plane, and we can add back e so that it, and the edges
it encloses cross through the crosscap exactly once. If e is two-sided, the ends
of e must be consecutive. We can then remove e from the drawing, inductively
draw the remaining graph, and add e back locally without using any crosscaps.
If gcr(G′, ρ, λ) = 2, there may be two-sided loops which are not contractible.
However, if there is a closest one-sided loop, or a closest two-sided loop which
is contractible, we can proceed as in the case of a single crosscap. Hence, all
closest loops are two-sided, and either separating, or maximal. Suppose there is
a one-sided loop f . Then the wedge enclosed by f must contain both ends of
another loop e. Pick e so it is closest (within the wedge formed by f). Now e
cannot be maximal, since the ends of a maximal loop alternate with the ends of a
one-sided loop in the rotation. Hence e is separating. But then anything starting
inside the wedge formed by e must end within the wedge as well, so since e was
chosen to be closest, its ends have to be consecutive in the rotation. We can
then remove e, inductively draw the remaining graph, and add e back into the
rotation without using any additional crosscaps. We conclude that there is no
one-sided loop f , so all loops are two-sided. By Lemma 3, the graph is planar in
this case.

A closer look at the proof of Theorem 2 and Theorem 3 show that they are
purely combinatorial, and the bounds can be implemented algorithmically.

4 Separating dcr and gcr with Embedding Schemes

Theorem 4. There is a single-vertex graph G with embedding scheme (ρ, λ) for
which 3 = gcr(G, ρ, λ) < dcr(G, ρ, λ) = 4.



Proof. See the graph pictured in Figure 1(a). The single vertex is drawn as
the outer cycle, to make the picture easier to read. So there are 5 loop edges
e1, . . . , e5 in this graph, the rotation at v is e1, e2, e3, e4, e5, e3, e2, e1, e4, e5, and
the signatures are as in the embedding: λ(e1) = λ(e3) = λ(e4) = λ(e5) = 1 and
λ(e2) = −1. The drawing of G in Figure 1(a) shows that gcr(G, ρ, λ) ≤ 3. If
gcr(G, ρ, λ) ≤ 2 were true, then e2 would have to pass through exactly one of
the two crosscaps oddly, say ⊗1. Since the ends of e4 and e5 alternate with the
ends of e2, both e4 and e5 must also pass through ⊗1 oddly. Since e4 and e5
are two-sided, they must then also pass through ⊗2 oddly. But then e4 and e5
would be parallel (in the sense that their ends do not alternate), contradicting
the fact that their ends alternate in the rotation. Hence, gcr(G, ρ, λ) = 3. The
embedding in Figure 1(b) shows that dcr(G, ρ, λ) ≤ 4, so we are left with the
proof that dcr(G, ρ, λ) ≥ 4. Suppose, for a contradiction, that G can be realized
on a surface with three crosscaps so that every edge passes through each crosscap
at most once, and the embedding scheme is (ρ, λ), as specified in Figure 1(a).
Then each edge in {e1, e3, e4, e5} passes through an even number of crosscaps.
Since none of these edges can be separating (since they would all separate ends
of other edges in the rotation), they each pass through two crosscaps. Edge e2
passes through an odd number of crosscaps. It cannot pass through all three
crosscaps, since then all other edges would be parallel to it (as each would share
two crosscaps with e2), but the ends of e2 alternate with the ends of e4 and e5.
Hence, e2 passes through exactly one crosscap, say ⊗1. Since e3 is parallel to e2,
it must then pass through ⊗2 and ⊗3. Now e4 and e5 alternate ends with both
e2 and e3, so one of them, say e4, by symmetry, passes through ⊗1 and ⊗2 and
e5 passes through ⊗1 and ⊗3.

Edge ⊗1 ⊗2 ⊗3

e2 1 0 0
e3 0 1 1
e4 1 1 0
e5 1 0 1
e1 0 1 1

Now e1 is parallel to e2 and e3 and passes through two crosscaps, which must
therefore be ⊗2 and ⊗3. Now suppose there were such a drawing. Since edges
pass through crosscaps at most once, we can think of crosscaps as vertices. But
then, there is a path from an end of e1 to an end of e3 which passes through ⊗2

and ⊗3 but not through ⊗1. That path now separates the two ends of e2, since
e2 may only pass through ⊗1.

Question 1. Can the construction in Theorem 4 be used to construct for every n
a single-vertex graph G with embedding scheme (ρ, λ) so that n ≤ dcr(G, ρ, λ) ≤
3/4 gcr(G, ρ, λ)?



e1 e2 e3 e4

e5

e1 e2 e3 e4

e5

Fig. 1. Graph G with rotation displayed as outer cycle. (a) G embedded in a surface
with three crosscaps, requiring e1 to pass through one crossscap twice. (b) G embedded
in a surface with four crosscaps, each edge passing through each crosscap at most once.

5 Nice Embeddings of Higher Genus Graphs

In this section we consider relaxing the restriction on how often each edge may
pass through each crosscap. It turns out that increasing the limit to two is
sufficient.

Theorem 5. If a graph is embeddable in a non-orientable surface S, then it can
be embedded in S so that every edge passes through each crosscap at most twice.

This means, G always has a nearly-degenerate drawing in the plane with at
most gcr(G) crossings, and in which each edge has at most gcr(G) self-crossings.

By Theorem 4 the theorem is tight if the graph is given with an embedding
scheme (which may not be changed), even if the graph consists of a single vertex.

We will concentrate the proof in a more technical lemma, which may be of
interest in its own right. For the proof, we need the Euler genus, eg(G, ρ, λ) of
an embedded graph, which is defined as 1 + |E| − |F |, where |E| is the number
of edges of G and |F | the number of faces in the embedding scheme (ρ, λ) of
G (note that this is a purely combinatorial notion). It’s tempting to assume
that gcr(G, ρ, λ) = eg(G, ρ, λ), but that is not actually true; take, for example,
a single vertex with two two-sided edges alternating at the vertex. The Euler
genus of this graph is 2, while it requires 3 crosscaps to realize. The following
lemma clarifies the relationship.

Recall that an embedded single-vertex graph (G, ρ, λ) is orientable, if λ(e) =
1 for all e ∈ E(G).

Lemma 5. If (G, ρ, λ) is a single-vertex graph with embedding scheme, then it
has an embedding in a surface with eg(G, ρ, λ) crosscaps in which every edge uses
every crosscap at most twice, unless (G, ρ, λ) is orientable, in which case such
an embedding exists in a surface with eg(G, ρ, λ) + 1 crosscaps.

We leave the proof of Lemma 5 to the journal version of the paper. The proof
can be viewed as a (more sophisticated) extension of the proof of Theorem 3.
Since we allow edges to cross through a crosscap twice, the construction becomes
simpler, in that we can process one-sided loops, even if they are not closest.



The new ingredient needed is a technique for dealing with separating loops. For
example, consider the embedding scheme described by ρ(v) = (abbacdcd), and
λ(b) = −1, and λ(a) = λ(c) = λ(d) = 1, as illustrated in Figure 2(a). The Euler
genus of this graph is 3, and a is a separating loop, splitting the graph into two
pieces, one of Euler genus 1, and the other of Euler genus 2. The problem now
is that the piece of Euler genus 2 is orientable, and hence needs 3 crosscaps to
realize by itself. Hence, some care is needed when merging drawings in this case;
the solution in this case is shown in Figure 2(b). Details will be found in the
journal version.

a

b

cd

v

1

−1

1 1

a

b

c d

v

(a) (b)

Fig. 2. (a) Embedding scheme with Euler genus 3; edges are a (red/dashed), b (black),
and c, d (blue/dotted). (b) Actual embedding of same scheme on surface with three
crosscaps, in which every edge passes through every crosscap at most twice.

Proof (of Theorem 5). Fix an embedding of a graphG on a surface with k = γ̃(G)
crosscaps (without loss of generality, we can assume that it is a minimum genus
embedding). By Lemma 2 there is a single-vertex graph G′ with embedding
scheme (ρ, λ) so that gcr(G) = gcr(G′, ρ, λ). It is sufficient to prove the result
for G′, since an embedding of G′ with embedding scheme (ρ, λ) can be turned
back into an embedding of G by uncontracting and deleting edges (in case G
was not connected). Since these operations can be done close to the single vertex
of G′, this does not affect how often edges pass through any crosscap. Hence,
we can assume that G is given as a graph on a single vertex v with embedding
scheme (ρ, λ).

Since (G, ρ, λ) is an embedding on the surface with k crosscaps, eg(G, ρ, λ) ≤
k. If (G, ρ, λ) is not orientable, then the result follows immediately from Lemma 5.
If (G, ρ, λ) is orientable, we apply Corollary 1 to extend (G, ρ, λ) to an embed-
ding scheme (G′, ρ′, λ′) which still embeds in the same surface, and is no longer
orientable. Since eg(G, ρ, λ) ≤ eg(G′, ρ′, λ′) ≤ k, and (G′, ρ′, λ′) is not orientable,
Lemma 5 gives us an embedding of (G′, ρ′, λ′), and thereby (G, ρ, λ) in a sur-
face with k crosscaps, in which every edge passes through each crosscap at most
twice, completing the proof.



The proof of Theorem 5 is entirely combinatorial, so it can be made algo-
rithmic.

Corollary 2. Determining the degenerate crossing number is NP-complete, even
if the graph is cubic.

Proof. The problem lies in NP (since every edge passes through each crosscap
at most once we can guess the embedding). On the other hand, Thomassen [13,
9] showed that the non-orientable genus problem is NP-complete, even for cubic
graphs. For a given cubic graph G, let G′ be the result of replacing each edge
of G with a path of length 2|E(G)|, and attaching a (local, planar) gadget to
each vertex of degree 2, to ensure that G′ is cubic. If G has orientable genus
at most k, then, by Theorem 5, there is an embedding in which every edge
passes through each of the crosscaps at most twice. Since we can assume that
k ≤ |E(G)| (e.g. [10]), this implies that G′ can be embedded so that every
edge passes through each crosscap at most once. In other words, the degenerate
crossing number of G′ equals the non-orientable genus of G, showing that dcr is
NP-complete.

6 Open Questions

The main open question which remains is whether dcr(G) = gcr(G); one could
weaken this question in various ways, and, for example ask whether dcr(G) ≤
gcr(G) + c for some constant c? Another approach would be to ask whether
dcr(G) = gcr(G) if we allow a limited number of self-crossings along each edge.
Theorem 5 implies that gcr(G) self-crossings along each edge are sufficient, but
can a constant bound be achieved?
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