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Abstract. We present an algorithm for the parameterized feedback ver-
tex set problem that runs in time O((2 lg k + 2 lg lg k + 18)kn2). This
improves the previous O(max{12k, (4 lg k)k}nω) algorithm by Raman et
al. by roughly a 2k factor (nw ∈ O(n2.376) is the time needed to mul-
tiply two n × n matrices). Our results are obtained by developing new
combinatorial tools and employing results from extremal graph theory.
We also show that for several special classes of graphs the feedback ver-
tex set problem can be solved in time cknO(1) for some constant c. This
includes, for example, graphs of genus O(lg n).

1 Introduction

Given an undirected graph G, a feedback vertex set in G is a subset of vertices F
in G such that G− F is acyclic. The size of a feedback vertex set F is |F |. The
feedback vertex set problem (FVS) is: given a graph G and a positive integer
k, decide if G has a feedback vertex set of size at most k. It is well-known that
the FVS problem is NP-complete on both directed and undirected graphs [17].
The minimization version of this problem has been studied intensively from the
approximability point of view [1, 2, 13, 16, 24] due to its important applications
in fields like circuit testing, deadlock resolution, and analyzing manufacturing
processes [13, 18, 21]. For example, in the field of circuit testing, a small set of
registers (vertices) needs to be identified in the circuit (graph) whose removal
makes the circuit testable (i.e., the circuit needs to be acyclic) [18].

The FVS problem has also received considerable attention from the parame-
terized complexity point of view [3, 4, 10, 11, 23]. A parameterized problem is said
to be fixed-parameter tractable if the problem can be solved in time f(k)nO(1)

for some function f which is independent of n [11]. The class FPT denotes the
class of all fixed-parameter tractable problems [11]. It was shown that the FVS
problem on undirected graphs is in FPT [4, 10, 11], whereas it remains an open
question whether the FVS problem on directed graphs is in FPT [11].
? The first author was supported in part by DePaul University Competitive Research

Grant.



Once a problem has been shown to be in FPT, the search for better algo-
rithms for the problem continues; that is, algorithms that remain practical for
larger values of the parameter k. Successful examples of such developments in-
clude the vertex cover and planar dominating set problems (see [7, 15]
and their references). The same holds true for the FVS problem on undirected
graphs. Bodlaender [4], and Downey and Fellows [10], were the first to show that
the problem is in FPT. In [11], Downey and Fellows presented an O((2k+1)kn2)
time algorithm for the problem. Becker et al. [3] gave a randomized algorithm
running in time O(4kkn) that finds a minimum feedback vertex set of size k with
probability at least 1 − (1 − 4−k)c4k

for an arbitrary constant c. By observing
that every undirected graph on n vertices with minimum degree at least 3 has a
cycle of length bounded by 2 lg n + 1, Raman presented a very simple algorithm
for the problem running in time O((6k lg k)k+1nω) [22], where nω ∈ O(n2.376) is
the running time of the best algorithm for multiplying two n × n matrices [8].
More recently, using some nice combinatorial techniques, Raman et al. [23] pre-
sented an algorithm for the problem running in time O(max{12k, (4 lg k)k}nω)
improving significantly the O((2k + 1)kn2) time algorithm given in [11] (when k
is sufficiently large).

In this paper we continue the efforts towards reducing the running time of
the algorithms for the FVS problem. We develop new combinatorial tools and
employ known results from extremal graph theory to show that the size of a
minimum feedback vertex set is Ω(n/ lg n) in a graph with no cycles of length
bounded by lg n. This allows us to obtain an O((2 lg k+2 lg lg k + 18)kn2) time al-
gorithm for the FVS problem, improving the previous O(max{12k, (4 lg k)k}nω)
time algorithm in [23] by roughly a 2k factor. Obviously, the running time of
this algorithm is still far from being practical, and the question of whether the
FVS problem can be solved in time cknO(1) remains open.

We also consider the FVS problem on special classes of graphs. We show
that the problem on graphs of genus O(lg n) and on Kr-minor free graphs is
solvable in time cknO(1) for some constant c. We also show that the problem
on bipartite graphs, graphs of genus O(nε) for any ε > 0, and constant average
degree graphs, can be solved in time cknO(1) for some constant c if and only if
the FVS problem on general graphs can.

2 Preliminaries

Let G = (V, E) be an undirected graph. For a set of vertices S in G we denote by
G− S the subgraph of G that results from removing the vertices in S, together
with all edges incident to them. A minimum feedback vertex set is a feedback
vertex set of minimum size. We denote by γ(G) the size of a minimum feedback
vertex set in G. For a vertex v, we denote by deg(v) the degree of v in G.

Let v be a vertex in G such that deg(v) ≤ 2. We define the following opera-
tion, which is standard in the literature. If deg(v) = 1 then remove v (together
with its incident edge) from G; if deg(v) = 2 and the two neighbors x and y of v
are not adjacent, then remove v and add an edge between x and y. Let us denote



this operation by Short-Cut(v). We say that the operation Short-Cut() is ap-
plicable to a vertex v, if either deg(v) = 1, or deg(v) = 2 and the two neighbors
of v are non-adjacent. A variation of the following proposition appears in [23]
(see [2] for a proof).

Proposition 1. (Lemma 1, [23]) Let G be an undirected graph and let v be a
vertex in G to which the operation Short-Cut() is applicable. Let G′ be the
graph resulting from applying Short-Cut(v). Then γ(G′) = γ(G).

We assume that we have a subroutine Clean(G) which applies the opera-
tion Short-Cut() repeatedly to G until the operation is no longer applicable.
It is clear from Proposition 1 that if G′ is the resulting graph from applying
Clean(G), then γ(G′) = γ(G). The graph G is said to be clean, if Clean(G)
is not applicable. Note that any degree-2 vertex in a clean graph must be on a
cycle of length three.

An almost shortest cycle in G is a cycle whose length is at most the length
of a shortest cycle in G plus one. It is well-known that an almost shortest cycle
in an undirected graph with n vertices can be found in time O(n2) [19]. It is
also well-known that any undirected graph with minimum degree at least 3 has
a cycle of length at most 2 lg n + 1 [12].

3 The Algorithm

The basic idea behind most of the parameterized algorithms for the FVS problem
presented so far has been to branch on short cycles and use the search tree
method [11, 22, 23]. Suppose we are trying to determine if there exists a feedback
vertex set in G of size bounded by k. Let C be a cycle in G of length l. Then
every feedback vertex set of G must contain at least one vertex of C. For every
vertex v on C, we can include v in the feedback vertex set, and then recurse
to determine if G − v has a feedback vertex set of size k − 1. Let us call such
a process: branching on the cycle C. If we let T (k) be the number of nodes in
the search tree of such an algorithm that looks for a feedback vertex set of size
bounded by k, then when the algorithm branches on a cycle of length l, T (k) can
be expressed using the recurrence relation T (k) ≤ l ·T (k−1)+1. The number of
nodes in the search tree corresponding to the algorithm is O((lmax)k), where lmax

is the length of the longest cycle the algorithm branches on [11]. The running
time of the algorithm is now proportional to the number of nodes in the search
tree multiplied by the time we spend at every node of the search tree to find a
cycle and process the graph. Thus, to reduce the running time of the algorithm,
it is desirable to branch on short cycles. Most parameterized algorithms so far
hinge on this approach [11, 22, 23].

In this section we develop another algorithm that uses this approach (based
on the algorithm in [23]). We present the algorithm in Figure 1 below. We prove
its correctness and analyze its running time in the next section.



FVS-solver

Input: an instance (G, k) of FVS
Output: a feedback vertex set F of G of size bounded by k in case it exists

0. F = ∅;
1. if G is acyclic then return(F );
2. if k = 0 and G contains a cycle then return(’NO’);
3. apply Clean(G);
4. let C be an almost shortest cycle in G of length l;
5. if l > 13 and k ≤ 3

√
n then return(’NO’);

else if l > lg n + 1 and (lg n > lg k + lg lg k + 13) then return(’NO’);
else if l > max{2 lg k + 18, 2 lg n− 9} then return(’NO’);

else branch on C and update k, F , and G accordingly;

Fig. 1. The algorithm FVS-solver

4 Analysis of FVS-solver

The main idea behind the analysis of the algorithm presented in [23] is that
if the graph does not contain a cycle of constant length, then the size of the
feedback vertex set k must be large. In particular, the following structural result
immediately follows from [23].

Lemma 1. (Theorem 2, [23]) Let G be a graph on n vertices with minimum
degree at least 3. If there is no cycle in G of length at most 12 then γ(G) > 3

√
n.

The above result shows that when a clean graph has no cycle of length
bounded by 12 (note that no degree-2 vertex exists in G at this point since G
does not contain a cycle of length 3), k > 3

√
n, and hence, lg n < 2 lg k − 3.

Since every undirected graph with minimum degree at least 3 must have a cycle
of length bounded by 2 lg n + 1, G has a cycle of length bounded by 4 lg k. An
algorithm that branches on a shortest cycle will then either branch on a cycle
of length at most 12, or of length at most 4 lg k. According to the discussion in
the previous section, this gives a search tree of size O((max{12, 4 lg k})k).

In this section we develop new combinatorial techniques and employ results
from extremal graph theory to improve this analysis. The structural results ob-
tained in this section will allow us to prove an upper bound of O((2 lg k+2 lg lg k+
18)k) on the size of the search tree of the algorithm FVS-solver presented in
the previous section.

Let T be a tree. For a vertex v in T we denote by dT (v) the degree of v in T .
A vertex v ∈ T is said to be good if dT (v) ≤ 2. The statement of the following
lemma can be easily proved.3

Lemma 2. There are at least bq/2 + 1c good vertices in a tree on q vertices.

3 An easy way to see why the statement is true is to note that the average degree of
a tree is bounded by 2.



For a good vertex u in T , {u} is said to be a nice set if dT (u) ≤ 1, and for
two good vertices u and v in T , the set {u, v} is said to be a nice set if (u, v) is
an edge in T .

Lemma 3. Let T be a tree, and let ng be the number of good vertices in T . Then
there exists at least b(ng + 1)/2c nice sets in T that are pairwise disjoint.

Proof. Without loss of generality, we assume that T is rooted at a vertex r. We
define the natural parent-child, and ancestor-descendent relationships, between
the vertices in T . Note that each vertex in T is either the root vertex or has
exactly one parent in T . For every vertex v in T , let Tv denote the subtree of T
rooted at v and containing all its descendents. We will prove the following state-
ment: if Tv contains q good vertices of T , then the number of pairwise disjoint
nice sets in Tv is at least b(q + 1)/2c. It is clear that the previous statement will
imply the statement of the lemma because T = Tr. (Observe that a good vertex
in Tv might not be a good vertex in T , and this is why we require the q vertices
to be good in T .) To prove the statement, let Tv be a rooted subtree of T , and
proceed by induction on q. Tv must contain at least one leaf of T , so q > 0. If
q ≤ 2, then Tv must contain a leaf u in T , and {u} is a nice set. Therefore the
number of (pairwise disjoint) nice sets in this case is at least 1 ≥ b(q + 1)/2c.
Suppose now that the number of pairwise disjoint nice sets in any rooted tree
containing p good vertices from T , for 2 ≤ p < q, is at least b(p + 1)/2c. We
distinguish two cases.

Case 1. v has at least two children. Let v1, . . . , vd, be the children of v in Tv.
Let qi be the number of good vertices in T that are in Tvi , i = 1 . . . d, and note
that 1 ≤ qi < q, and that q ≤ q1 + . . . qd +1 (v might be good, in which case it is
the root of the tree and d = 2). By the inductive hypothesis, each Tvi contains
at least b(qi +1)/2c pairwise disjoint nice sets in T . Since every nice set in Tvi is
disjoint from every nice set in Tvj for 1 ≤ i 6= j ≤ d, it follows that Tv contains
at least b(q1 + . . . + qd + d)/2c = b(q1 + . . . qd + 1 + d − 1)/2c ≥ b(q + 1)/2c
pairwise disjoint nice sets in T (note that d ≥ 2).

Case 2. v has exactly one child v′. In this case v must be a good vertex in T . If
v′ is good, let v′′ be the child of v′ in Tv (note that v′′ must exist since q > 2).
Now Tv′′ contains q−2 good vertices in T . By induction, the number of pairwise
disjoint nice sets in Tv′′ is at least b(q − 1)/2c. Since {v, v′} is a nice set which
is disjoint from all the nice sets in Tv′′ , it follows that the number of pairwise
disjoint nice sets in Tv is at least b(q + 1)/2c. If v′ is bad, then v′ must have
at least two children in Tv′ . The proof now is identical to that of Case 1 by
applying induction on the trees rooted at the children of v′.

This completes the induction and the proof. ut
This lemma follows directly from Lemma 2 and Lemma 3.

Lemma 4. Let T be a tree on q vertices. There are at least q/4 pairwise disjoint
nice sets in T .



Let (G, k) be an instance of FVS, where G is clean and has n vertices, and
assume that G does not have a cycle of length bounded by 12. Since G is clean
and has no cycles of length 3, G has minimum degree at least 3. Let F be a
minimum feedback set of G, let f = |F |, and F = G−F . Applying Lemma 4 to
every tree in F , we get that F (i.e., the trees in F) contains at least (n− f)/4
pairwise disjoint nice sets. So if we let S be the set of pairwise disjoint nice sets in
F , then |S| ≥ (n−f)/4. We construct a graph GF as follows. The set of vertices
of GF is F . The edges of GF are defined as follows. Let {a, b} be a nice set in S.
Since a and b are good in F (i.e., in the tree of F that they belong to) and both
have degree greater or equal to 3 in G, a must have at least one neighbor in F ,
and b must have at least one neighbor F . Pick exactly one neighbor a1 of a in
F , and exactly one neighbor b1 of b in F . Note that a1 and b1 must be distinct
since G has no cycles of length 3. Add the edge (a1, b1) to GF . Now let {a} be
a nice set in S, then a must have at least two neighbors in F . We pick exactly
two neighbors a1 and a2 of a in F , and we add the edge (a1, a2) in GF . This
completes the construction of GF . Since G has no cycles of length bounded by
6, for any two distinct nice sets in S, the edges associated with them in GF are
distinct. This means that GF is a simple graph with at least (n − f)/4 edges.
We have the following lemma.

Lemma 5. If GF has a cycle of length l then G has a cycle of length bounded
by 3l.

Proof. Let (v1, . . . , vl, v1) be a cycle in GF . Since each (vi, vi+1) (the index arith-
metic is taken modulo l) is an edge in GF , (vi, vi+1) is associated with a nice set
Si in S. If Si = {a}, let Pi be the path (vi, a, vi+1) in G; if Si = {a, b}, let Pi

be the path (vi, a, b, vi+1) in G. Since the nice sets in S are disjoint, the paths
Pi, i = 1, . . . , l, are internally vertex-disjoint in G, and they determine a cycle
of length bounded by 3l. ut

The following result is known in extremal graph theory (see [5, 6, 14]).

Lemma 6. Let G be a graph with n vertices where n ≥ 3. If G does not contain a
cycle of length at most 2l, then the number of edges in G is bounded by 90ln1+1/l.

Theorem 1. Let G be a graph with n ≥ 3 vertices and with no cycles of length
bounded by max{12, lg n}. Then γ(G) ≥ (n/(61 lg n))1−6/(lg n+6).

Proof. Suppose that G does not have a cycle of length bounded by max{12, lg n}.
Let F be a minimum feedback vertex set of G, and let f = |F | = γ(G). Since
G has no cycles of length bounded by 12, if we let F and GF be as defined
in the above discussion, then it follows from above that the number of edges
in GF is at least (n − f)/4. Since G does not have a cycle of length bounded
by lg n, by Lemma 5, GF has no cycle of length bounded by (lg n)/3. Applying
Lemma 6 with l = (lg n)/6, we get that the number of edges in GF is bounded
by 15(lg n)f1+6/ lg n. Thus



(n− f)/4 ≤ 15(lg n)f1+6/ lg n

n ≤ 60(lg n)f1+6/ lg n + f ≤ 60(lg n)f1+6/ lg n + f1+6/ lg n

n ≤ 61(lg n)f1+6/ lg n (1)

Manipulating (1) we get f ≥ (n/(61 lg n))1−6/(lg n+6) completing the proof.
ut

Theorem 1 implies that the size of a minimum feedback vertex set in a graph
with minimum degree at least 3 and no cycles of length bounded by lg n must
be Ω(n/ lg n).

Corollary 1. Let G be a graph with n ≥ 3 vertices and with no cycles of length
bounded by max{12, lg n}. Then lg n ≤ lg γ(G) + lg lg γ(G) + 13.

Proof. Applying the lg () function on both sides of (1) in Theorem 1 we get

lg n ≤ lg 61 + lg lg n + lg f + 6 lg f/ lg n (2)

Since G has no cycles of length bounded by 12, from Lemma 1 we get lg n <
2 lg f , and hence lg lg n < 1 + lg lg f . Now noting that lg 61 ≤ 6 and lg f ≤ lg n,
it follows from (2) that lg n ≤ lg f + lg lg f + 13. ut
Lemma 7. Let G be a graph with n vertices and minimum degree at least
3. For any integer constant d > 0, there is a cycle in G of length at most
max{2 lg γ(G) + 2 lg (d− 1) + 3, 2 lg n− 2 lg (d + 1) + 4}.
Proof. Let d > 0 be given, and let ∆ be the maximum degree of G. By Lemma 4
in [23], γ(G) > (δ−2)n/(2(∆−1)), where δ is the minimum degree of the graph.
Since δ ≥ 3, we get n < 2(∆− 1)γ(G), and hence

lg n < lg γ(G) + lg (∆− 1) + 1
2 lg n + 1 < 2 lg γ(G) + 2 lg (∆− 1) + 3 (3)

Let r be a vertex in G of degree ∆. Perform a breadth-first search starting at
r until a shortest cycle is first encountered in the graph. Let l be the length of the
shortest cycle first encountered in this process. Since r has degree ∆ and every
other vertex has degree at least 3, it is not difficult to show, using a counting
argument, that the number of vertices in the graph is at least ∆(2(l−2)/2−1)+1
if l is even, and ∆(2(l−1)/2 − 1) + 1 if l is odd.

Suppose that l ≥ 4. We have
n ≥ ∆(2(l−2)/2 − 1) + 1
n > ∆(2(l−2)/2 − 1)

lg n > lg ∆ + lg (2(l−2)/2 − 1) (4)



Also l ≥ 4 implies that 2(l−2)/2 ≥ 2. Using the inequality lg (x− 1) ≥ lg x−1
for x ≥ 2 in (4), and manipulating (4), we get

l ≤ 2 lg n− 2 lg ∆ + 4 (5)

If l < 4, then l = 3 and since n > ∆, (5) is still true.

Now if ∆ ≤ d, then from the fact that G has a cycle of length bounded
by 2 lg n + 1, and from (3), we conclude that there is a cycle in G of length
at most 2 lg γ(G) + 2 lg (∆− 1) + 3 ≤ 2 lg γ(G) + 2 lg (d− 1) + 3. Otherwise,
∆ ≥ d + 1, and by (5), there is a cycle in G of length at most 2 lg n − 2 lg ∆ +
4 ≤ 2 lg n − 2 lg (d + 1) + 4. It follows that G has a cycle of length at most
max{2 lg γ(G) + 2 lg (d− 1) + 3, 2 lg n − 2 lg (d + 1) + 4}. This completes the
proof. ut

Corollary 2. Let G be a graph with minimum degree at least 3. There exists a
cycle in G of length at most max{2 lg γ(G) + 17, 2 lg n− 10}

Proof. Apply Lemma 7 with d = 127. ut

Theorem 2. Let G be a graph with n vertices. In time O((2 lg k+2 lg lg k + 18)kn2)
we can decide if G has a feedback vertex set of size bounded by k.

Proof. It is not difficult to see that the algorithm FVS-solver solves the FVS
problem. In particular, if FVS-solver returns a NO answer in step 5, then either
(i) l > 13 and k ≤ 3

√
n, or (ii) l > lg n + 1 and lg n > lg k + lg lg k + 13, or (iii)

l > max{2 lg k + 18, 2 lg n− 9}. Since l is the length of an almost shortest cycle,
if (i) holds then G does not have a cycle of length bounded by 12, and hence no
feedback vertex set of size bounded by k by Lemma 1. If (ii) holds, then G does
not have a cycle of length bounded by max{12, lg n}, and hence no feedback
vertex set of size bounded by k by Corollary 1 (note that in this case n ≥ 3, and
l must also be greater than 13 since lg n > 13). Finally if (iii) holds, then G has
no cycle of length bounded by {2 lg k + 17, 2 lg n− 10}. From Corollary 2 (note
that G has minimum degree at least three at this point since G is clean and has
no cycles of length three) we conclude that k must be smaller than γ(G), and
hence G has no feedback vertex set of size bounded by k.

To analyze the running time of the algorithm, let l be the length of a cycle
C that the algorithm branches on. By looking at step 5 in the algorithm, we see
that if the algorithm branches on C then one of the following cases must hold:
(a) l ≤ 13, or (b) l > 13, k > 3

√
n, and l ≤ lg n+1, or (c) lg n ≤ lg k+lg lg k+13

and l ≤ max{2 lg k + 18, 2 lg n− 9}.
If (b) holds, then the conditions in (b) give that l < 2 lg k. If (c) holds,

then combining the two inequalities in (c) we get l ≤ max{2 lg k + 18, 2 lg k +
2 lg lg k + 17} ≤ 2 lg k + 2 lg lg k + 18. It follows that in all cases (a), (b), and
(c), the algorithm branches on a cycle of length at most 2 lg k + 2 lg lg k + 18.



Thus, according to the discussion at the beginning of this section, the size of
the search tree corresponding to the algorithm is O((2 lg k + 2 lg lg k + 18)k).
Now at each node of the search tree the algorithm might need to find an almost
shortest cycle, call Clean(), check if the graph is acyclic, and process the graph.
Finding an almost shortest cycle takes O(n2) time. When Clean() is applied,
since every vertex that Clean() removes has degree bounded by 2, Clean() can
be implemented to run in linear time in the number of vertices it removes, and
hence, in O(n) time. Checking if the graph is acyclic and processing the graph
takes no more than O(n2) time. It follows that the running time of the algorithm
is O((2 lg k + 2 lg lg k + 18)kn2). ut

According to the above theorem, the algorithm FVS-solver improves the
algorithm in [23] by roughly a 2k factor.

5 FVS On Special Classes of Graphs

In this section we consider the FVS problem on special classes of graphs. We look
at the following classes: bipartite graphs, bounded genus graphs, and Kr-minor
free graphs for fixed r.

Bipartite Graphs

Let G be a graph with n vertices and m edges. Consider the operation of subdi-
viding an edge e in G by introducing a degree-2 vertex v. Then this operation
is precisely the inverse operation of Short-Cut(v). Therefore, if we let G′ be
the graph obtained from G by subdividing an edge e ∈ G, then it follows from
Proposition 1 that γ(G′) = γ(G). Subdividing each edge in G yields a bipartite
graph G′, which according to the previous statement satisfies γ(G′) = γ(G). The
graph G′ has n+m vertices and 2m edges. This shows that the FVS problem on
general graphs can be solved in time f(k)nO(1) if and only if the FVS problem
on bipartite graphs can be solved in f(k)nO(1) time. In particular, an algorithm
of running time cknO(1) (for some constant c) for the FVS problem on bipartite
graph implies an algorithm of running time cknO(1) for the FVS problem on
general graphs.

Bounded Genus Graphs

The following lemma follows from a standard Euler-formula argument.

Lemma 8. Let G be a graph with n vertices, minimum degree at least 3, and
genus g. If n ≥ 8g then there is a cycle in G of length at most 12.

Let G be a graph with n0 vertices and genus g0 satisfying g0 ≤ c lg n0 for some
constant c. Note that if we branch on a cycle in G or process G as in the algorithm
FVS-solver, the number of vertices and genus of G change, and the relationship
g ≤ c lg n, where n and g are the number of vertices and genus, respectively, in the



resulting graph may not hold. However, since the operations in FVS-solver do
not increase the genus of the graph, the genus g of the resulting graph satisfies
g ≤ g0 ≤ c lg n0. Consider the algorithm BGFVS-solver given in Figure 2,
which is a modification of the algorithm FVS-solver presented in Section 1,
that will solve the FVS problem on graphs of genus bounded by c lg n.

BGFVS-solver

Input: an instance (G, k) of FVS where G has n0 vertices and genus g0

Output: a feedback vertex set F of G of size bounded by k in case it exists
and g0 satisfies g0 ≤ c lg n0

0. F = ∅;
1. if G is acyclic then return(F );
2. if k = 0 and G contains a cycle then return (’NO’);
3. apply Clean(G);
4. if the number of vertices n of G is bounded by 8c lg n0 then

solve the problem by brute force and STOP;
5. let C be an almost shortest cycle in G of length l;
6. if l > 13 then return(’Invalid Instance’);

else branch on C and update k, F , and G accordingly;

Fig. 2. The algorithm BGFVS-solver

It is not difficult to see the correctness of the algorithm BGFVS-solver.
The only step that needs clarification is when the algorithm returns in step 6
that the instance is invalid. If this happens, then the number of vertices n in
the resulting graph G must satisfy n > 8c lg n0, where n0 is the number of
vertices in the original graph, and G does not have a cycle of length bounded
by 12 (note that the algorithm finds an almost shortest cycle). Since the genus
of the resulting graph g is bounded by the genus g0 of the original graph, if g0

satisfies the condition g0 ≤ c lg n0 then we would have 8g ≤ 8g0 ≤ 8c lg n0 ≤ n,
which according to Lemma 8, would imply the existence of a cycle of length at
most 12 in G (since G has minimum degree at least 3 at this point). Since no
such cycle exists in G, the genus g0 in the original graph does not satisfy the
condition g0 ≤ c lg n0, and hence the input instance does not satisfy the genus
bound requirement. Therefore the algorithm rejects the instance in this case.
This shows actually that BGFVS-solver does not need to know in advance if
the input instance satisfies the genus bound requirement or not. As long as the
input instance satisfies the genus bound requirement, the algorithm solves the
problem.

Now to analyze the running time of the algorithm, we note that step 4 can
be carried out in time O(n8c+1

0 ) by enumerating every subset of vertices in the
graph and checking whether it is a feedback vertex set of size bounded by k. The
algorithm never branches on a cycle of length greater than 13. It follows that
the running time of the algorithm is O(13kn8c+ω+1

0 ).



Theorem 3. The FVS problem on graphs of genus O(lg n) can be solved in
time 13knO(1).

Let G be a graph with n0 vertices and genus g0, and let ε > 0 be given. We
construct a graph G′ as follows. Let W be a wheel on n

2/ε
0 vertices. Add W to

G by linking a vertex in W other than the center to any vertex in G. It is easy
to verify that γ(G′) = γ(G) + 2, and that a feedback vertex set of G can be
constructed from a feedback vertex set of G′ easily. Since a wheel is planar, it
follows that the genus g′ of G is equal to g. The number of vertices n′ of G′ is
n′ = n0 + n

2/ε
0 . Therefore g′ = g ≤ n2

0 ≤ n′ε. This shows that we can reduce the
FVS problem on general graphs to the FVS problem on graphs of genus O(nε)
(for any ε > 0) in polynomial time such that if the FVS problem on graphs of
genus O(nε) can be solved in f(k)nO(1) time, then so can the FVS problem on
general graphs. In particular, if the FVS problem on graphs of genus O(nε) can
be solved in time cknO(1) then so can the FVS problem on general graphs.4

Kr-Minor Free Graphs

Let r be a constant, and let Gr be the class of graphs with minimum degree at
least 3 and no Kr-minor. Combining theorems from [20, 25] and [26] as described
in [9, p180], we have the following: There exists a constant c such that, for all r,
each G ∈ Gr has a cycle of length less than cr

√
lg r.

Let G be a Kr-minor free graph with minimum degree at least 3. According
to the result described above, there is a cycle in G of length bounded by c1 =
cr
√

lg r, which is a constant. Therefore, if we modify the algorithm FVS-solver
so that it branches on an almost shortest cycle after applying Clean(G), then
the algorithm always branches on a cycle of length at most c′ = 1+max{3, c1}.5
This shows that the running time of the modified algorithm is O(c′kn2).

Theorem 4. For any constant r, the FVS problem on Kr-minor free graphs
can be solved in time O(c′kn2), where c′ is a constant.
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