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1. Introduction. Given a graph G whose edge-set has been partitioned into8

three sets E1, E2, E3, we say that a drawing D of G, is hierarchically partial planar9

(with respect to E1, E2, E3) if no edges of E1 are involved in any crossings, and edges10

of E2 do not cross each other. In other words, if two edges cross in D, one of them11

must both belong to E3 and the other to E2 or E3. We write G(E1, E2, E3) for G if12

we want to emphasize the edge-partition. Figure 1 shows a sample hierarchical partial13

planar drawing.14

Fig. 1. A hierchical partial planar drawing with E1-, E2- and E3-edges shown as solid, dashed
and dotted, respectively.

Angelini and Bekos [1] introduced the notion of hierarchical partial planarity as15

a model in which edges are ordered by “importance” and more important edges are16

involved in fewer crossings: E1-edges are crossing-free, and E2-edges may only cross17

E3-edges. They showed that it can be solved in time O(|V (G)|3) using SPQR-trees18

(and an intermediate problem which they call facial-constrained core planarity).19

We show that hierarchical partial planarity has a Hanani-Tutte style characteri-20

zation. A Hanani-Tutte style characterization weakens any requirement that a pair of21

independent edges may not cross to requiring them to cross an even number of times22

(including not at all). So Hanani-Tutte characterizations work with the crossing par-23

ity of two edges in a drawing, namely the parity of how often the two edges cross. An24

edge is called (independently) even if it crosses every other (independent) edge in the25

graph an even number of times. We refer to two (independent) edges crossing oddly26

as an (independent) odd pair.27

With this terminology, we can define the Hanani-Tutte version of hierarchical28

partial planarity: We say a drawing D of G(E1, E2, E3) is Z2-hpp if (i) all edges in E129

are independently even, and every two independent edges in E2 cross each other an30

even number of times. A drawing is (intersection)-simple if every two edges intersect31
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at most once, counting a shared endpoint.132

Theorem 1.1. A graph G(E1, E2, E3) has a simple, hierarchically partial planar33

drawing if and only if it has a Z2-hpp drawing.34

An immediate consequence—as with (nearly) all Hanani-Tutte style characteri-35

zations—is a very simple polynomial-time algorithm for testing hierarchical partial36

planarity. The reason is that these characterizations can be expressed as the solvability37

of a linear system of equations over GF(2). The running time is not competitive with38

the SPQR-algorithm by Angelini and Bekos.39

Corollary 1.2. Hierarchical partial planarity can be tested in polynomial time.40

We give some background on Hanani-Tutte in Section 1.1, including a proof of41

the corollary. The proof of Theorem 1.1 can be found in Section 2.42

Angelini and Bekos view hierarchical partial planarity as only one special case of43

a more general planarity notion. We try to formalize their point of view as partitioned44

partial planarity in Section 3. Section 1.2 establishes some graph drawing context.45

1.1. Hanani-Tutte Characterizations. Corollary 1.2 is a special case of a46

generic form of the Hanani-Tutte theorem suggested in [19]. Given a planarity no-47

tion, call it X-planarity, the corresponding Hanani-Tutte variant Z2-X-planarity is48

obtained by requiring that any pair of independent edges that are not allowed to49

cross in an X-planar drawing, cross each other evenly. By definition, X-planarity50

implies Z2-X-planarity. The program suggested in [19] is to study for which notions51

of planarity, X-planarity and Z2-X-planarity are equivalent.52

Examples for which equivalence can be shown include partially embedded pla-53

narity [19], level-planarity [10], radial planarity [9, 8], partial planarity [20], some54

forms of c-planarity [7] and several special cases of simultaneous planarity of two55

graphs [19].2 On the other hand, it is known that this generic Hanani-Tutte charac-56

terization fails for c-planarity [7] and, thereby, simultaneous planarity of two graphs57

in general [13].58

Given an edge e and a vertex v in a drawing D of a graph G, an (e, v)-move is59

performed as follows: we choose a curve γ connecting a point p on e to v so that γ60

has only finitely many intersections with the edges in the drawing, and does not pass61

through a vertex. We then erase e in a small neighborhood of p and reroute it along62

γ, around v, and back along γ, see Figure 2. An (e, v)-move changes the crossing63

parity between e and any edge incident to v and affects no other crossing parity; in64

particular, the effect of an (e, v)-move is independent of the choice of γ.65

An (e, v)-move may result in self-intersections of edges; self-intersections can al-66

ways be resolved locally, as shown in Figure 3, without changing the crossing parity67

of any pair of edges. From this point on, we will always assume that self-intersections68

are removed in this way, without mentioning this explicitly.69

At the root of the effectiveness of Hanani-Tutte characterizations is the following70

fact which was rediscovered many times: If we have two drawings D and D′ of the71

same graph, then we can apply a set of (e, v)-moves to D so that the resulting drawing72

has the same vector of crossing parities between pairs of independent edges as has D′73

(for a proof, see [18, Theorem 1.18] or [19, Lemma 3.3]; we assume that each drawing74

has only finitely many intersections).75

1The drawing in Figure 1 is not simple, two of the edges attached to the top node cross each
other. This crossing can be removed by rerouting the two edges involved.

2Table 1 in [19] summarizes the results known at the time. We should also mention [6] which
does not fit the X-planarity pattern, since it is about approximating embeddings.
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Fig. 2. Performing an (e, v)-move along γ.

Fig. 3. Removing self-intersections of a curve by rerouting the curve close to crossings.

This observation allows us to set up a system of linear equations over GF(2) for76

testing whether a graph G(E1, E2, E3) has a Z2-hpp drawing with respect to E1, E2,77

E3. Suppose D is a drawing of G(E1, E2, E3) (e.g. placing the vertices in convex78

position). Let iD(e, f) denote the crossing parity of (e, f) in D. Create 0-1 variable79

xe,v for every e ∈ E(G) and v ∈ V (G), and let HPP(D) be the following system of80

equations:81

iD(st, uv) + xst,u + xst,v + xuv,s + xuv,t = 0 mod 282

for every (st, uv) ∈ (E1 × E(G)) ∪ (E2 × E2). Then, by Theorem 1.1, hierarchical83

partial planarity is equivalent to the solvability of HPP(D): the set of (e, v)-moves84

required to turn D into a Z2-hpp drawing are those for which xe,v is one.85

It follows that hierarchical partial planarity can be tested in polynomial time86

by solving a system of linear equations over GF(2) with |V ||E| variables, and |E|287

equations, proving Corollary 1.2. This is not competitive with the SPQR-approach,88

though the implementation will be much simpler (and much more generic).89

1.2. Related Graph Drawing Problems. Given a graph G = (V,E) and90

a symmetric relation R ⊆ E2 on the edges of G we say that a drawing D of G91

is a weak realization of (G,R) if only pairs of edges in R cross in D (in a strong92

realization exactly the pairs of edges in R cross in D). Weak realizability is powerful93

enough to capture nearly every other (topological, i.e. non-geometric) graph drawing94

notion [22, 19]. Unsurprisingly then, it is NP-hard [14]. Somewhat surprisingly, it95

belongs to NP [21] in spite of a classical result by Kratochv́ıl and Matoušek [15] which96
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shows that a weak realization may require an exponential number of crossings. It is97

easy to construct a (G,R) for which no weak realization is simple.98

Since weak realizability is NP-hard, we want to identify relations R which lead to99

useful and tractable variants of the problem. For example, if R is a complete k-partite100

graph on E (considered as a vertex-set), we obtain a simultaneous planarity problem101

called SEFEk (simultaneous embeddability of k graphs with fixed edges). Given a102

family of k (not necessarily connected) graphs Gi = (V,Ei) on the same vertex set103

V , we say that the graphs have a simultaneous embedding (with fixed edges) if there104

is a drawing of G = (V,
⋃

iEi) in which no two edges belonging to the same graph105

cross each other. In other words, the induced drawing of Gi is plane for each of the106

graphs. “Fixed edges” refers to the fact that public edges, that is, edges belonging to107

more than one graph, are drawn the same for all graphs they belong to; private edges108

belong to only one graph.109

The SEFE3 problem, simultaneous planarity of three graphs, is known to be NP-110

complete [12], but the computational complexity of SEFE2 is open. The simultaneous111

planarity of two graphs is a particularly attractive problem to study. While not as112

universal as weak realizability, it does capture a fair number of other graph drawing113

problems [19, Figure 2]. A polynomial-time algorithm for SEFE2 would unify a large114

number of graph drawing algorithms; finding such an algorithm will be hard, however,115

since SEFE2 generalizes c-planarity, whose computational complexity had been open116

for twenty-five years before recently being shown polynomial-time solvable by Fulek117

and Tóth [11].3118

The SEFEk problem (for unbounded k) is equivalent to weak realizability [12],119

so it is not surprising that one can build families of graphs so that any simultaneous120

planar drawing of these graphs requires an exponential number of crossings (in the121

number of the graphs).122

For the SEFE2 problem it is known that if two graphs G1, G2 over the same vertex123

set have a simultaneous embedding, then any two edges cross at most a constant124

number of times [3, 5]. It is tempting to conjecture that a positive instance of SEFEk125

can always be realized with at most O(2k|G|) crossings between every pair of edges,126

but this question seems to be open. We prove a slightly weaker bound for the special127

case k = 3, since we need it for a later application.128

Theorem 1.3. If three graphs G1, G2, G3 over the same n-vertex set have a129

simultaneous embedding with fixed edges, then they have such an embedding in which130

any two edges cross at most O(n2) times.131

Proof. Let H be the subgraph of G1 ∪ G2 ∪ G3 consisting of all public edges,132

that is, edges that belong to at least two of the graphs G1, G2, and G3. Fix a133

simultaneous embedding D of G1, G2, G3, and let D[H] be the drawing of H in D.134

Any two edges of H belong to at least one common graph, so D[H] is plane (crossing-135

free). Using a homeomorphism of the plane, we can assume D[H] is a straight-line136

drawing. By Theorem 1 from [3], we can extend the straight-line drawing of D[H] to137

a plane drawing of Gi, for each i, so that each edge in E(Gi) − E(H) has at most138

72|V (H)| ≤ 72n bends. Combining the three drawings (possibly perturbing some of139

the private vertices to avoid overlap), we obtain a simultaneous embedding of G1, G2140

and G3. Since every edge consists of at most 72n line segments, any two edges cross141

at most (72n)2 times.142

It would be interesting to know whether Theorem 1.3 can be extended to O(n)143

3Bläsius, Fink, and Rutter [2] shortly afterwards improved the running time to O(n2).
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for SEFEk, or, even better, O(2kn) as suggested earlier.144

Remark 1.4 (Linear Bound—SEFE2). In the case of two graphs G1, G2, we can145

start with a straight-line embedding of G so that the drawing of H is isomorphic to146

D[H]. Then extending D[H] to a plane embedding of G2 leads to at most 72|H|147

bends per edge for edges in E(G2) − E(H), so any two edges of G1 and G2 cross at148

most O(n) times. This same trick does not work for k = 3, since we have to add two149

graphs.150

Remark 1.5 (Quadratic Bound—Sunflower SEFEk). In the sunflower variant of151

SEFEk every public edge must belong to all k graphs. The construction described in152

the proof of Theorem 1.3 also works for the sunflower case of SEFEk, where k > 3.153

So there is an upper bound of O(n2) crossings for each pair of edges in that case. Can154

that be improved to O(n)?155

2. Removing Even More Independently Even Crossings. To prove The-156

orem 1.1 we would like to follow the usual strategy for Hanani-Tutte theorems: in-157

crementally clean edges of unwanted crossings. Since hierarchical partial planarity158

generalizes partial planarity we know that this direct approach will not work. The159

Hanani-Tutte theorem for partial planarity [20] is based on removing independently160

even crossings [16], which requires modification of the underlying graph. Not surpris-161

ingly, we also need to modify the underlying graph for hierarchical partial planarity,162

as described in Lemma 2.2. As a tool for this step, we need Lemma 2.1 which shows163

that it is possible to change the crossing parity between two edges (in certain cir-164

cumstances). Finally, Lemma 2.3 ensures that the final hierarchical partial planar165

drawing is simple (which is not typically a concern for other drawing notions).166

Call an edge e ∈ E1 clean in a drawing of G(E1, E2, E3) if e is free of crossings;167

an edge e ∈ E2 is clean if it only crosses edges not in E1 ∪ E2 and crosses each such168

edge at most once.169

Lemma 2.1. Let D be a drawing of G(E1, E2, E3) in which F ′ ⊆ E1 ∪ E2 is a170

set of clean edges that contains all cycle-edges of G[E1] and so that every edge of F ′171

belongs to a cycle in G[F ′]. Suppose g ∈ E1 − F ′ does not belong to a cycle in G[E1]172

and f 6∈ E1 ∪ E2. Then we can find a drawing D′ of G in which the edges of F ′173

are still clean, and the crossing parity between f and g has changed. The only other174

crossing parity changes may occur between f and edges of E2 ∪ E3.175

Proof. Let g = uv, and let U consist of all vertices in G[E1−g] that belong to the176

connected component containing u. Since g does not belong to a cycle in G[E1], we177

know that v 6∈ U . We now perform (f, u′)-moves for every u′ ∈ U . This only affects178

the crossing parity of f with other edges. Specifically, the crossing parity of f and179

g changes, since v 6∈ U , and the crossing parity of f with all E1-edges other than g180

remains the same; the reason is that every E1-edge other than g has either both or181

neither of its endpoints in U . The crossing parity of f with E2- and E3-edges may182

change, but only for those edges with an (exactly one) endpoint in U .183

After these moves, F ′ need no longer be clean, since we may have added crossings184

between f and edges in F ′, but we can fix this. Let e be an arbitrary edge in F ′. If185

f crosses e an even number of times (and at least once), we sever all crossings of f186

with e on both sides of e. If f crosses e an odd number of times (so e ∈ E2), we sever187

all but one crossing of f with e. We now have an even number of ends of f on each188

side of e, so we can pair them up (on each side) and reconnect them, see Figure 4.189

This makes e clean, but may result in f consisting of multiple components. One190

of the components, the arc, connects the endpoints of f , and there may be additional191
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e

f

e

f

Fig. 4. Severing crossings of f (gray) with e and reconnecting severed ends (introducing a
self-intersection of f which can be removed as in Figure 3).

components of f which are closed curves. We perform the cleaning process for all e in192

F ′. At the end, all edges in F ′ are clean, but f may consist of multiple components. If193

it is possible to reconnect any components without crossing any edges in F ′, we do so.194

At this point we want to drop all remaining closed-curve components of f . The only195

way this could lead to a problem is if after dropping the closed-curve components, the196

crossing parity of f and some edge h ∈ E1 ∪E2 becomes odd. For this to happen, the197

arc-component of f must cross h, as must (at least) one of the closed-curve components198

of f . If we cannot reconnect the closed-curve component to the arc-component, then199

they must be separated by a cycle in G[F ′]. Since h crosses both, it must cross some200

edge of the cycle oddly. But this can only happen if h ∈ E3, which is a contradiction.201

Hence, we can drop all remaining closed-curve components of f .202

We say that G′ results from splitting a vertex v in G if G′ contains an edge v1v2203

so that contracting that edge yields G with v = v1 = v2.4 With this definition of204

vertex split, we can naturally write E(G) ⊆ E(G′). Figure 8 shows two examples205

vertex splits.206

The following lemma is a refined version of Lemma 2.3 in [16]. The proof uses207

similar ideas.208

Lemma 2.2. Suppose that G(E1, E2, E3) has a drawing D in which all edges of209

E1 ⊆ E(G) are independently even, and every two independent edges in E2 cross each210

other an even number of times. Then there is a graph G′(E′1, E2, E3), which results211

from G by a sequence of vertex splits, and a drawing D′ of G′ so that212

(i) edges in E′1 are independently even, and every two independent edges in E2 cross213

each other evenly,214

(iia) edges in E′1 that are part of a cycle in G′[E′1 ∪ E2] are clean,215

(iib) edges in E2 that are part of a cycle in G′[E′1 ∪ E2] are clean,216

(iii) every vertex v that lies on a cycle C in G′[E1 ∪ E2] has degree at most three.217

In plain English: at the cost of splitting some vertices of G, we can clean those218

edges in E′1 and E2 which are cycle edges in G′[E′1 ∪ E2], by (iia) and (iib). We can219

ensure that vertices on cycles in G′[E′1 ∪ E2] are incident to at most one non-cycle220

edge, by (iii), and edges in E′1 are still independently even, and edges in E2 are221

not involved in independent odd crossings with each other, by (i). Any new edges222

resulting from vertex splits must belong to E′1, because E′1, E2 and E3 partition G′.223

The left illustration in Figure 5 shows the starting situation described by the lemma,224

4Vertex splits are also often defined as the opposite of merging two vertices which do not have
an edge between them.
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and the right illustration the modified G′ after cleaning the drawing.225

v v

Fig. 5. A drawing satisfying the assumptions of Lemma 2.2 on the left, with four, uncleaned,
cycles in G[E1 ∪ E2] meeting in a vertex v. The cleaned version of the same drawing is shown on
the right. As before, E1-, E2-, and E3-edges are solid, dashed, and dotted (respectively).

Proof. Letting E2 = E2 − E1 if necessary, we can assume that E1 and E2 are226

disjoint. Our first goal is to clean all cycle-edges in G[E1 ∪ E2]. We let F be the set227

of cycle-edges in G[E1 ∪ E2] which we have cleaned already. Initially, F = ∅, and F228

is trivially clean.229

We prove the result by induction on the sum of the cubes of the vertex degrees230

in G, and, that sum being the same, the number of edges not in F . This induction231

order allows us to split a vertex of degree d ≥ 4 into two vertices of degree d1 ≥ 3 and232

d2 ≥ 3, since d31 + d32 < d3 for d1 + d2 = d+ 2.233

Suppose that there is a cycle-edge in G[E1∪E2] which does not belong to F . Pick234

a cycle C in G[E1 ∪ E2] containing such an edge for which |C ∩ E2| is minimal.235

If two consecutive edges uv,vw of C cross oddly, we perform a (uv, v)-move, so236

the two edges cross evenly (and the crossing parity of no pair of independent edges is237

affected), see the left two illustrations in Figure 6. In this fashion, we can ensure that238

every two edges of C cross each other evenly (for pairs of independent edges this is239

part of the assumption). If there is an odd pair vw, vx with vw ∈ C and vx 6∈ C, we240

can move vx in the rotation at v so that vw and vx cross evenly (without affecting241

the crossing parity between vx and the other edge uv in C incident to v). The edges242

in C ∩ E1 are now even, and the edges in C ∩ E2 can only cross edges in E3 oddly.243

C

v

w

u

C

v

w

u

C

v

w

u

x

C

v

w

u

x

Fig. 6. An edge uv on the cycle C, and how to make them even with respect to the next edge vw
on C (left two illustrations), or with respect to another edge vx not on C (right two illustrations).

Let e be an edge of C. For every edge f crossing e evenly, we sever all crossings244

of e with f . For every edge f crossing e oddly, we sever all but one crossing of e with245

f . Each edge that used to cross e now has an even number of ends on both sides of246

e. We reconnect these ends pairwise (as we did in Figure 4). This does not change247

7

This manuscript is for review purposes only.



the crossing parity of any pair of edges, but some edges will now consist of multiple248

curves, one of them, the arc, connecting the endpoints of the edge. We perform this249

operation for all edges e ∈ C.250

At this point we drop all closed-curve components belonging to edges in C. Then251

all edges of C are clean (by construction), but other edges may still consist of multiple252

components. We process any remaining closed curves as follows: If we can reconnect253

a closed-curve component of an edge to the edge’s arc-component without crossing254

F or C, we do so (this may still leave some closed curves), and we do this for all255

closed-curve components for which it is possible.256

Let D+ be the resulting drawing, and let D− be D+ after erasing all remaining257

closed-curve components. In D− all edges in F ∪ C are clean, but dropping closed258

components may have created new independent odd pairs. Let f and g be such a259

pair, that is, f and g are independent edges which cross evenly in D+ but oddly in260

D−. See Figure 7.261

e
f

g

g

h

Fig. 7. After dropping the closed-curve component of g (gray), the arc-components of f and g
cross oddly; g was severed when processing edge e on C. Initially, we do not know the types of f ,
g, and h, but the proof will determine them to be as shown.

Since any two closed curves cross evenly, at least one of the closed-curve com-262

ponents, say one belonging to g must cross the arc belonging to f in D+. So the263

arc-component of g was severed from a closed component (to which it could not be264

reconnected) when processing some edge e ∈ C. Since both the arc of g and its265

closed-curve component cross f , we could have tried to reconnect the closed-curve266

component by following f closely. Since we did not, the crossings of g with f must267

be separated by a crossing with an edge h ∈ F ∪ C. The only way that is possible,268

is if h ∈ E2 and f ∈ E3. Moreover, the independent odd pair only matters (that269

is, potentially violates the Z2-hpp condition) if g ∈ E1. The types are as shown in270

Figure 7.271

We claim that g cannot belong to a cycle C ′ of E1-edges. If it did, then this cycle272

would have fewer E2-edges (namely none) than the cycle in F ∪C that contains h, so273

C ′ would have been picked for processing before that cycle. So C ′ would already be274

free of crossings, but we know that g crossed e, which is a contradiction. So g does275

not belong to a cycle of E1-edges.276

Apply Lemma 2.1 to g ∈ E1 − F and f with F ′ = F ∪ C. This keeps the edges277

in F ∪ C clean, and the parity of g and f changes, so they cross evenly, as they did278

in D−. We do this for all such pairs (g, h), resulting in a drawing in which F ∪ C is279
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clean, and all edges in E1 are independently even, and pairs of independent edges in280

E2 cross each other evenly. We can now update F to be F ∪ C, and we have made281

progress.282

We are therefore in the situation that F is clean and contains all cycle-edges of283

G[E1 ∪E2]. Suppose there is a cycle C in G[E1 ∪E2] and a vertex v ∈ V (C) so that284

v has degree larger than 3. If all the edges incident to v lie on the same side of C, we285

split v into two vertices v1 and v2, connected by a crossing-free edge v1v2 and with v2286

incident to the edges v was incident on (other than the edges of C). The vertex split287

decreases the sum of the degrees cubed, so we can apply induction to G′(E′1, E2, E3),288

where E′1 = E ∪ {v1v2}, to obtain the result, see the left half of Figure 8.289

C

v

C

v1 v2

C

v

C

v1

v2

Fig. 8. Splitting v on C.

We can therefore assume that v is incident to edges on both sides of C. We want290

to split v into two vertices v1, v2 connected by a new edge v1v2, with v1 taking the291

edges incident to C from the outside, and v2 the edges attaching to C from the inside,292

see the right half of Figure 8.293

This move decreases the sum of the degrees cubed, but it may introduce a new294

independent odd pair. This happens if v is incident, on opposite sides of C, to two295

edges f and g that cross oddly. At least one of these edges, say f , has to cross C296

(so f and g can cross). This implies that f 6∈ E1 ∪ E2. For the crossing parity of297

f and g to matter then, we must have g ∈ E1. Now g cannot be a cycle-edge of298

G[E1 ∪ E2], otherwise it would be free of crossings. Hence, we can apply Lemma 2.1299

with g ∈ E1 − F , f and F ′ = F to change the crossing parity of f and g. We do this300

for all such pairs of edges at v. At the end, we have a drawing in which splitting v as301

described above does not result in a new independent pair of edges that matters, and302

we are done by applying induction to G′(E′1, E2, E3), where E′1 = E ∪ {v1v2}.303

One final lemma allows us to make a hierarchical partial planar drawing simple.304

We will generalize this result in Lemma 3.6.305

Lemma 2.3. If G(E1, E2, E3) has a hierarchically partial planar drawing, then it306

has a simple, hierarchically partial planar drawing.307

Proof. Fix a hierarchical partial planar drawing of G(E1, E2, E3). Suppose an308

edge f ∈ E3 intersects an edge e ∈ E2 more than once. We sever all crossings of e309

with f . If e and f are independent, we remove all pieces of e except the two half-arcs310

containing its endpoints. We then reconnect the severed ends of the two half-arcs by311

following f closely, see the left half of Figure 9. If e and f share a common endpoint312

v, we remove all pieces of e except the half-arc not containing v. We then reconnect313

the severed end of the other half-arc to v by following f closely, see the right half of314

Figure 9.315
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e

f

e

f

e

f

v e
f

v

Fig. 9. Reducing the number of crossings between e and f .

In either case, we reduce the number of intersections between e and f by at least316

one (since they end up crossing at most once, and this only happens if they crossed317

more than once before). As a result, the total number of crossings between edges in318

E2 and E3 decreased strictly. Hence, if we repeat this process, we will eventually end319

up with all edges of E2 being clean. Two edges e, f ∈ E3 may still intersect each320

other more than once. Then there must be subarcs γe ⊆ e and γf ⊆ f that have the321

same endpoints (two crossings, or a crossing and a shared endpoint of e and f); to322

see this, let γe be a shortest subarc of e connecting two intersections of e with f , and323

let γf be the subarc of f connecting the same two intersections. Then γe and γf do324

not intersect except for at their shared endpoints. We can now flip γe and γf , that325

is, we route e along γf and e along γe, see Figure 10; the left half illustrates the case326

of two crossings, the right half the case of a crossing and a shared endpoint.327

e

f

γf

γe

e

f

γe

γf
v

e

f

γe

γf
v

f

e

γf

γe

Fig. 10. Rerouting arcs γe and γf .

This rerouting strictly reduces the number of crossings between E3-edges (and328

does not increase the number of crossings with E2-edges). We conclude that after a329

finite number of steps, any two E3-edges intersect at most once.330

With these three lemmas we can complete the proof of our main result.331

Proof of Theorem 1.1. In a hierarchical partial planar drawing, edges in E1 are332

even, and edges in E2 cross each other evenly (namely not at all), so we only have to333

prove that the Hanani-Tutte condition is sufficient.334

Suppose we are given a drawing D of G in which all edges of E1 are independently335

even, and independent edges in E2 cross each other evenly. By Lemma 2.2 we can336

perform a sequence of vertex splits on G to obtain a graph G′(E′1, E2, E3), and a337

drawing D′ of G′ satisfying the conditions (i) − (iii) stated in the lemma. Let F be338

the set of cycle-edges in G′[E′1∪E2]. By condition (ii), all edges in F are clean in D′.339

In particular, edges in F ∩ E′1 are free of crossings, and edges in F ∩ E2 only cross340
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edges in E3.341

We start with the plane embedding of G′[F ]. Let e be an edge in E′1 ∪ E2 − F .342

The endpoints of e belong to the same face boundary of G′[F ], since e connects its343

endpoints in D′ without crossing edges in F . We can therefore add e to the embedding344

without creating any crossings, and without changing which vertices belong to a face345

boundary (since e does not belong to a cycle in E′1 ∪E2). Repeating this for all edges346

in E′1 ∪ E2 − F gives us a plane embedding of G′[E′1 ∪ E2] in which any two vertices347

that belonged to the same face boundary in the plane embedding of G′[F ] still do so.348

Let e ∈ E3. We have a drawing of e in D′ in which it connects its endpoints349

without intersecting any edge in E′1 ∩ F . Hence, the endpoints of e lie on the same350

face boundary of the plane embedding of G′[E′1 ∩ F ], and, therefore G′[E′1], since351

adding edges in E′1 − F did not change which vertices lie on the boundary of a face.352

We can therefore add e to the drawing, so that it does not cross any edge in E′1,353

though it may cross edges in E2 (any number of times). We do this for all edges e not354

in E′1∩E2. In the resulting drawing, there may be multiple crossings among edges not355

in E′1 ∪ E2 and between edges in E′1 ∪ E2 and E2. Lemma 2.3 now gives us a simple356

drawing of G′(E′1, E2, E3) in which edges of E′1 and E2 are clean. Specifically, edges357

in E′1 − E1 are free of crossings, and we can contract them, to obtain the required358

simple, hierarchical partial planar drawing of G(E1, E2, E3).359

3. Partitioned Partial Planarities. Angelini and Bekos [1] suggest that hier-360

archical partial planarity is just one of several planarity variants that can be obtained361

by partitioning the edge set of a graph into types and specifying which types of edges362

may intersect. We try to capture their idea a bit more formally by introducing the363

notion of partitioned partial planarity.364

For a graph G(E1, . . . , Ek) a notion of (k-)partitioned partial planarity is defined365

by specifying a symmetric relation R over {1, . . . , k}, where R(i, j) = 1 means that366

edges in Ei may cross edges in Ej , and 0 that they may not. Partitioned partial367

planarity refines weak realizability (which is the special case where each edge-set368

contains a single edge).369

Since R is symmetric, we can write R as the upper triangle of the matrix repre-370

senting R. E.g. the relation R for hierarchical partial planarity is371

0 0 0
0 1

1
.372

For inline display we abbreviate this to |000|01|1. We say two edge types i and j373

are equivalent if R(i, k) = R(j, k) for all k and R(i, i) = R(j, j). If we have two374

equivalent edge types, we can merge them into a single edge-type without changing375

the underlying problem. We therefore define two partitioned partial planarity variants376

as equivalent if they are the same up to merging equivalent edge types and relabeling377

edge types. A variant is monotone if it is equivalent to a monotone matrix, that is,378

a matrix in which the entries in each row and column are non-decreasing. An edge379

type i is trivial if R(i, j) = 1 for all j, and a hierarchical planarity variant is trivial if380

it contains a trivial edge type. We can always eliminate a trivial edge type without381

affecting the complexity of the planarity problem.382

3.1. The Case of Small k. To get a sense of the descriptive power of partitioned383

partial planarity we have a closer look at the variants we obtain for k up to 3. Our384

list eliminates equivalent variants, so, for example, we will not see |00|0 because it385
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is equivalent to |0. Also, we do not include any variants which contain trivial edge-386

types, so we will not include |1, which is trivial. In some of these cases, the crossing387

minimization problem may be of independent interest. For example, the crossing388

minimization problem for |1 amounts to the standard crossing number, and while389

|01|1 just expresses the planarity of G[E1], the corresponding crossing minimization390

problem has not been studied as far as I know; it asks for a drawing of G with the391

smallest number of crossings for which G[E1], by itself, is planar. (In comparison, the392

variant in which the plane embedding ofG[E1] is given and fixed, is widely investigated393

in the crossing minimization literature.)394

For k = 1 there is only one variant, |0, which is standard planarity.395

For k = 2, we have |00|1, which is partial planarity, the special case of hierarchical396

partial planarity in which E2 = ∅. There is a Hanani-Tutte characterization [20] and397

a linear-time algorithm [4].398

There are two non-monotone variants for k = 2. The first is |01|0; this captures399

the SEFE2 problem for two edge-disjoint graphs, which is equivalent to both G[E1]400

and G[E2] being planar, so linear-time testable. The Hanani-Tutte characterization401

consists of two separate planarity problems.402

The second non-monotone variant is |10|1, which is trivial (embed all vertices403

along a line, and draw edges of E1 above, and edges of E2 below the line).404

For k = 3, there is one monotone variant, |000|01|1, which we already identified405

as hierarchical partial planarity. We established a Hanani-Tutte characterization in406

this case, and there is a cubic-time algorithm by Angelini and Bekos [1].407

Our first non-monotone variant is |011|01|0, which is the simultaneous planarity408

of three disjoint graphs G[E1], G[E2], G[E3], and is equivalent to each of these graphs409

being planar.410

Next, |000|01|0 is the variant that asks whether G[E1 ∪E3] and G[E1 ∪E2] have411

plane embeddings which are isomorphic on G[E1]. This is just the simultaneous412

planarity problem for two graphs. We know that there is no Hanani-Tutte characteri-413

zation in this case [13], and the computational complexity of the problem is famously414

open.415

There are several variants extending the trivial |10|1. Variant |011|10|1 is still416

trivial using a similar construction as in the k = 2 case: start with a plane embedding417

of G[E1] with all vertices of V on a line; edges of G[E2] go above the line, edges of418

G[E3] below.419

Variants |010|10|1, |000|10|1 and |010|00|01 also extend |00|1, so they are not420

trivial, but we have not been able to determine what their complexity is, whether421

they express some natural planarity notion, and whether there is a Hanani-Tutte422

theorem for these variants.423

Similarly, |100|10|1 extends |10|1 (without extending partial planarity), and is424

non-trivial; for example K3,3 with each of the Ei being a K1,3, is not realizable in this425

variant, since every drawing of a K3,3 must contain a crossing between two indepen-426

dent edges, by the strong Hanani-Tutte theorem for planarity, see, for example, [18,427

Theorem 1.1]. This variant is a very natural (anti)-planarity notion, but it appears428

to be unstudied, and its complexity is open.429

Finally, |011|00|1 is equivalent to G[E1] being planar, and G[E2∪E3] being partial430

planar, with G[E2] being crossing-free. We simply fix a partial planar drawing of431

G[E2 ∪E3] in which G[E2] is free of crossings, and add a planar drawing of G[E1] on432

the same vertex set.433

We leave the small cases with an enumerative question.434
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Question 3.1. How many non-equivalent, non-trivial partitioned partial planarity435

variants are there for each k? We saw that the first three values in this list are (1, 3, 9),436

and a computer simulation suggests the next values for k = 4 and k = 5 are (43, 285).437

The sequence (1, 3, 9, 43, 285) does not occur in OEIS [23].438

3.2. Observations and Questions. As we saw in the previous section, parti-439

tioned partial planarity is already hard to handle for k = 3. Nevertheless, we wonder440

whether there is a dichotomy theorem.441

Question 3.2. Is it true that partitioned partial planarity is always either polyno-442

mial time solvable or NP-complete for a fixed R? If so, can we effectively tell which443

based on R?444

We collect some further observations and questions suggested by our short survey445

in the previous section.446

3.2.1. The Monotone Case. The cases up to k = 3 suggest that there is only447

one monotone variant for each k (unless we allow trivial types, in which case there448

are two), and this is true.449

Theorem 3.3. There is only one non-trivial, monotone k-partitioned partial pla-450

narity variant for each k (up to equivalence).451

Based on this it makes sense to apply the term hierarchical partial planarity452

introduced by Angelini and Bekos for k = 3 for arbitrary k > 3. We also write453

k-hierarchical partial planarity.454

Proof. Let R be a monotone partitioned partial planarity variant over k edge-455

types, so we can assume that R is monotone. The first row cannot contain a 1,456

since this would lead to a trivial edge-type, hence the first row (and column) consists457

entirely of zeroes. Every row can contain the pattern 01 at most once, and two458

rows cannot both contain the pattern 01 in the same consecutive columns (otherwise459

they’d be equivalent). This implies that each row must contain at least one additional460

1 compared to the previous row, and, since the matrix is symmetric, that it contains461

exactly one additional 1, leading to an R in which all entries on or above the anti-462

diagonal are 0 and all other entries 1.463

The monotone variants were also isolated by Angelini and Bekos as worthy of464

further study; they suggested that they may form a tractable special case of weak465

realizability.466

Question 3.4. Is k-hierarchical partial planarity polynomial-time recognizable for467

each fixed k? What about unbounded k?468

Question 3.5. Is there a Hanani-Tutte theorem for k-hierarchical partial planarity469

for k > 3?470

We showed, in Lemma 2.3, that a k-hierarchically partial planar graph always471

has a simple realization for k = 3. This turns out to be true for arbitrary k.472

Lemma 3.6. If a graph is k-hierarchically partial planar (for arbitrary k), then it473

has a simple hierarchically partial planar realization.474

Without monotonicity we cannot guarantee simple realizations, as we will see in475

the next section.476

Proof. Suppose G(E1, . . . , Ek) has a hierarchically partial planar drawing D; let477

R be the corresponding relation.478
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Let cD(i, j) be the total number of crossings between edges of Ei and Ej . We can479

choose D such that the sequence (cD(i, j))1≤i≤j≤k is minimal, where indices (i, j) are480

arranged in lexicographic order.481

Pick a smallest (i, j) in that order so that R(i, j) and there are edges e ∈ Ei and482

f ∈ Ej that intersect more than once in D. As we saw in the proof of Lemma 2.3483

there are subarcs γe ⊆ e and γf ⊆ f that have the same endpoints (two crossings, or484

a crossing and a shared endpoint of e and f).485

Suppose i = j. We can detour e along γf and f along γe (as in Figure 10). This486

decreases cD(i, i) by at least one. Since i = j, no other value of the sequence changes,487

so this contradicts the choice of D. (Note that the detour may introduce self-crossings488

of arcs, but those can be removed locally as before, see Figure 3.)489

We therefore have i < j. Let me and mf be the smallest ` such that there490

is an edge g ∈ E` intersecting γe and γf , respectively. By the case we are in, we491

have mf ≤ i. If mf < me, we detour γf along γe (without moving γe). This492

decreases cD(mf , j), contradicting the choice of D. Hence me ≤ mf ≤ i. Since R493

is monotone, this means we can detour γe along γf . We can also detour γf along494

γe. Let cD(γ, `) denote the number of crossings in D between an arc γ and edges495

of type `. If cD(γe, `) and cD(γf , `) differ for some ` with me ≤ ` ≤ i, we pick the496

smallest ` for which they differ, and detour the arc with the larger value along the arc497

with the smaller value. This strictly decreases cD(`, j) without increasing any values498

that precede (`, j) lexicographically, contradicting the choice of D. We conclude that499

cD(γe, `) = cD(γf , `) for all ` with me ≤ ` ≤ i. We can then detour γf along γe500

strictly decreasing cD(i, j) by at least one, without changing any values that precede501

(i, j). Again this contradicts the choice of D.502

3.2.2. Non-Monotone Variants. We turn to the richer world of non-monotone503

partitioned partial planarity. The descriptive richness leads to an increased complexity504

of the resulting problems. It is known that a weak realization of a graph may require505

an exponential number of crossings [15], which implies that edges may have to cross506

more than once. And we can force dependent edges to cross, even for |001|00|0, using507

a standard construction.5508

While we do not yet know whether k-hierarchical partial planarity is always509

polynomial-time solvable, we do know that non-monotone variants are not (unless510

P = NP).511

Lemma 3.7. SEFEk can be expressed as a (2k − 1)-partitioned partial planarity512

problem.513

Proof. For a SEFEk problem we are given k graphs G1, . . . , Gk over the same514

vertex set V . With that let G = (V,E), where E = E(G1) ∪ · · · ∪ E(Gk). We515

partition E into edge-sets EI =
⋂

i∈I E(Gi) ∩
⋂

i/∈I E(Gi), where the index I ranges516

over all 2k − 1 non-empty subsets of {1, . . . , k}. Edges in EI and EJ belong to a517

common graph if and only if I ∩ J 6= ∅. We can therefore let R(I, J) = 0 if I ∩ J 6= ∅518

and 1 otherwise. Then G1, . . . , Gk have a simultaneous embedding with fixed edges519

if and only if G can be realized with the given R.520

Since SEFE3 is NP-complete [12], it follows that k-partitioned partial planarity521

is NP-complete for k ≥ 7.522

5An example can be based on the marginal illustration for the entry “local crossing number”
in [17].
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Question 3.8. What is the smallest k for which k-partitioned partial planarity is523

NP-complete?524

This may be a tricky question, since showing that k > 3 would require showing525

that SEFE2 is polynomial-time solvable.526

The variant |100|10|1 generalizes naturally by letting R be the identity matrix.527

This leads to an NP-complete problem.528

Lemma 3.9 (The Identity Variant). Partitioned partial planarity for R = I is529

NP-complete (for unbounded k).530

The proof translates weak realizability into the R = I variant. For this we531

need an NP-complete special case of weak realizability which can be realized with a532

polynomial number of crossings. By Theorem 1.3 we can work with SEFE3.533

Proof. We reduce from SEFE3 which we know to be NP-complete [12]. Let G1,534

G2, G3 be three graphs on the same n-vertex set V ; also, let G = G1 ∪G2 ∪G3. By535

Theorem 1.3 if G1, G2 and G3 have a simultaneous embedding with fixed edges, then536

they have such an embedding with at most cn2 crossings between any pair of edges,537

for some integer c > 0.538

We need to build an edge-partitioned graph H. To simplify the presentation we539

will describe the partition of the edges of H as a coloring (rather than a numerical540

labeling). We work with the set of colors Σ = {σ(e, f) : e, f ∈ E(G)}, where σ(e, f) =541

σ(f, e) is a unique color assigned to the pair of edges (e, f). Then |Σ| =
(
m
2

)
where542

m = |E(G)|.543

We start with V (H) = V , and no edges. For any edge e ∈ G let (f1, . . . , f`) be544

the list of all edges that e may cross in a simultaneous embedding of G. We create545

a path Pe of length cn2` between the endpoints of e and color its edges according546

to the colors in the list (σ(e, f1), . . . , σ(e, f`))
cn2

. Two paths Pe and Pf can only547

cross if they share a color, which must be σ(e, f), so this only happens if e and f548

are allowed to cross in G. Moreover, since we can assume that G has a simultaneous549

embedding in which every two edges cross at most cn2 times and there are at most550

` ≤ m edges crossing any edge, the path Pe between endpoints e is sufficiently long551

to accommodate all possible crossings (in any order that they may occur in).552

Strictly speaking, Lemma 3.9 is not about a single partitioned partial planarity553

variant, but about a family of them. We believe that the proof can be adapted to554

show that the problem remains NP-complete for a fixed k. To that end, the paths Pe555

need to be replaced by (narrow) grids which are colored by a finite set of repeating556

colors in such a way that only grids that belong to edges that may cross, cross each557

other, and some care needs to go into attaching the grids to a vertex. We leave it to558

a more adventurous reader to work out the details. We estimate that the resulting k559

will be less than a hundred.560

Question 3.10. What is the smallest k for which the identity variant is NP-561

complete? What is the computational complexity of |100|10|1?562
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drawings, and level-planarity, in Thirty essays on geometric graph theory, Springer, New592
York, 2013, pp. 263–287, https://doi.org/10.1007/978-1-4614-0110-0 14.593
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