1

no

HANANI-TUTTE AND HIERARCHICAL PARTIAL PLANARITY

MARCUS SCHAEFER*

Abstract. We establish a Hanani-Tutte style characterization for hierarchical partial planarity
and initiate the study of partitioned partial planarity.
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1. Introduction. Given a graph G whose edge-set has been partitioned into
three sets F1, Es, E3, we say that a drawing D of G, is hierarchically partial planar
(with respect to E1, Eo, E3)if no edges of E; are involved in any crossings, and edges
of E5 do not cross each other. In other words, if two edges cross in D, one of them
must both belong to E5 and the other to Es or E5. We write G(E1, Es, E3) for G if
we want to emphasize the edge-partition. Figure 1 shows a sample hierarchical partial
planar drawing.

Fic. 1. A hierchical partial planar drawing with E1-, Fo- and Es-edges shown as solid, dashed
and dotted, respectively.

Angelini and Bekos [1] introduced the notion of hierarchical partial planarity as
a model in which edges are ordered by “importance” and more important edges are
involved in fewer crossings: Fi-edges are crossing-free, and FEs-edges may only cross
FEs-edges. They showed that it can be solved in time O(|V(G)|?) using SPQR-trees
(and an intermediate problem which they call facial-constrained core planarity).

We show that hierarchical partial planarity has a Hanani-Tutte style characteri-
zation. A Hanani-Tutte style characterization weakens any requirement that a pair of
independent edges may not cross to requiring them to cross an even number of times
(including not at all). So Hanani-Tutte characterizations work with the crossing par-
ity of two edges in a drawing, namely the parity of how often the two edges cross. An
edge is called (independently) even if it crosses every other (independent) edge in the
graph an even number of times. We refer to two (independent) edges crossing oddly
as an (independent) odd pair.

With this terminology, we can define the Hanani-Tutte version of hierarchical
partial planarity: We say a drawing D of G(FE1, Es, Fs) is Za-hpp if (i) all edges in F;
are independently even, and every two independent edges in E5 cross each other an
even number of times. A drawing is (intersection)-simple if every two edges intersect
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at most once, counting a shared endpoint.’

THEOREM 1.1. A graph G(E1, Ey, E3) has a simple, hierarchically partial planar
drawing if and only if it has a Za-hpp drawing.

An immediate consequence—as with (nearly) all Hanani-Tutte style characteri-
zations—is a very simple polynomial-time algorithm for testing hierarchical partial
planarity. The reason is that these characterizations can be expressed as the solvability
of a linear system of equations over GF(2). The running time is not competitive with
the SPQR-algorithm by Angelini and Bekos.

COROLLARY 1.2. Hierarchical partial planarity can be tested in polynomial time.

We give some background on Hanani-Tutte in Section 1.1, including a proof of
the corollary. The proof of Theorem 1.1 can be found in Section 2.

Angelini and Bekos view hierarchical partial planarity as only one special case of
a more general planarity notion. We try to formalize their point of view as partitioned
partial planarity in Section 3. Section 1.2 establishes some graph drawing context.

1.1. Hanani-Tutte Characterizations. Corollary 1.2 is a special case of a
generic form of the Hanani-Tutte theorem suggested in [19]. Given a planarity no-
tion, call it X-planarity, the corresponding Hanani-Tutte variant Zs-X-planarity is
obtained by requiring that any pair of independent edges that are not allowed to
cross in an X-planar drawing, cross each other evenly. By definition, X-planarity
implies Zo-X-planarity. The program suggested in [19] is to study for which notions
of planarity, X-planarity and Z,- X-planarity are equivalent.

Examples for which equivalence can be shown include partially embedded pla-
narity [19], level-planarity [10], radial planarity [9, 8], partial planarity [20], some
forms of c-planarity [7] and several special cases of simultaneous planarity of two
graphs [19].2 On the other hand, it is known that this generic Hanani-Tutte charac-
terization fails for c-planarity [7] and, thereby, simultaneous planarity of two graphs
in general [13].

Given an edge e and a vertex v in a drawing D of a graph G, an (e,v)-move is
performed as follows: we choose a curve v connecting a point p on e to v so that ~
has only finitely many intersections with the edges in the drawing, and does not pass
through a vertex. We then erase e in a small neighborhood of p and reroute it along
7, around v, and back along ~, see Figure 2. An (e,v)-move changes the crossing
parity between e and any edge incident to v and affects no other crossing parity; in
particular, the effect of an (e, v)-move is independent of the choice of 7.

An (e,v)-move may result in self-intersections of edges; self-intersections can al-
ways be resolved locally, as shown in Figure 3, without changing the crossing parity
of any pair of edges. From this point on, we will always assume that self-intersections
are removed in this way, without mentioning this explicitly.

At the root of the effectiveness of Hanani-Tutte characterizations is the following
fact which was rediscovered many times: If we have two drawings D and D’ of the
same graph, then we can apply a set of (e, v)-moves to D so that the resulting drawing
has the same vector of crossing parities between pairs of independent edges as has D’
(for a proof, see [18, Theorem 1.18] or [19, Lemma 3.3]; we assume that each drawing
has only finitely many intersections).

IThe drawing in Figure 1 is not simple, two of the edges attached to the top node cross each
other. This crossing can be removed by rerouting the two edges involved.

2Table 1 in [19] summarizes the results known at the time. We should also mention [6] which
does not fit the X-planarity pattern, since it is about approximating embeddings.
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FI1G. 2. Performing an (e,v)-move along ~.

Fic. 3. Removing self-intersections of a curve by rerouting the curve close to crossings.

This observation allows us to set up a system of linear equations over GF(2) for
testing whether a graph G(FE1, Es, E3) has a Zy-hpp drawing with respect to Fy, Es,
E5. Suppose D is a drawing of G(E1, Es, E3) (e.g. placing the vertices in convex
position). Let ip(e, f) denote the crossing parity of (e, f) in D. Create 0-1 variable
Ze,y for every e € E(G) and v € V(G), and let HPP(D) be the following system of
equations:

7;D(Sta U”U) + xst,u + zgt,y + xuv,s + xuv,t = 0 IIlOd 2

for every (st,uv) € (E; x E(G)) U (FEy x E3). Then, by Theorem 1.1, hierarchical
partial planarity is equivalent to the solvability of HPP(D): the set of (e,v)-moves
required to turn D into a Zsy-hpp drawing are those for which z. , is one.

It follows that hierarchical partial planarity can be tested in polynomial time
by solving a system of linear equations over GF(2) with |V||E| variables, and |E|?
equations, proving Corollary 1.2. This is not competitive with the SPQR-approach,
though the implementation will be much simpler (and much more generic).

1.2. Related Graph Drawing Problems. Given a graph G = (V, F) and
a symmetric relation R C E? on the edges of G we say that a drawing D of G
is a weak realization of (G, R) if only pairs of edges in R cross in D (in a strong
realization exactly the pairs of edges in R cross in D). Weak realizability is powerful
enough to capture nearly every other (topological, i.e. non-geometric) graph drawing
notion [22, 19]. Unsurprisingly then, it is NP-hard [14]. Somewhat surprisingly, it
belongs to NP [21] in spite of a classical result by Kratochvil and Matousek [15] which
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shows that a weak realization may require an exponential number of crossings. It is
easy to construct a (G, R) for which no weak realization is simple.

Since weak realizability is NP-hard, we want to identify relations R which lead to
useful and tractable variants of the problem. For example, if R is a complete k-partite
graph on E (considered as a vertex-set), we obtain a simultaneous planarity problem
called SEFEj (simultaneous embeddability of k graphs with fixed edges). Given a
family of k (not necessarily connected) graphs G; = (V, E;) on the same vertex set
V', we say that the graphs have a simultaneous embedding (with fized edges) if there
is a drawing of G = (V,|J,; E;) in which no two edges belonging to the same graph
cross each other. In other words, the induced drawing of G; is plane for each of the
graphs. “Fixed edges” refers to the fact that public edges, that is, edges belonging to
more than one graph, are drawn the same for all graphs they belong to; private edges
belong to only one graph.

The SEFE3 problem, simultaneous planarity of three graphs, is known to be NP-
complete [12], but the computational complexity of SEFE; is open. The simultaneous
planarity of two graphs is a particularly attractive problem to study. While not as
universal as weak realizability, it does capture a fair number of other graph drawing
problems [19, Figure 2]. A polynomial-time algorithm for SEFE; would unify a large
number of graph drawing algorithms; finding such an algorithm will be hard, however,
since SEFE; generalizes c-planarity, whose computational complexity had been open
for twenty-five years before recently being shown polynomial-time solvable by Fulek
and Téth [11].°

The SEFE) problem (for unbounded k) is equivalent to weak realizability [12],
S0 it is not surprising that one can build families of graphs so that any simultaneous
planar drawing of these graphs requires an exponential number of crossings (in the
number of the graphs).

For the SEFE; problem it is known that if two graphs G, G5 over the same vertex
set have a simultaneous embedding, then any two edges cross at most a constant
number of times [3, 5]. It is tempting to conjecture that a positive instance of SEFEy
can always be realized with at most O(2¥|G|) crossings between every pair of edges,
but this question seems to be open. We prove a slightly weaker bound for the special
case k = 3, since we need it for a later application.

THEOREM 1.3. If three graphs G1, G2, G3 over the same n-verter set have a
simultaneous embedding with fixed edges, then they have such an embedding in which
any two edges cross at most O(n?) times.

Proof. Let H be the subgraph of G; U Gy U G3 consisting of all public edges,
that is, edges that belong to at least two of the graphs Gi, G2, and G3. Fix a
simultaneous embedding D of Gy, G2, G3, and let D[H] be the drawing of H in D.
Any two edges of H belong to at least one common graph, so D[H] is plane (crossing-
free). Using a homeomorphism of the plane, we can assume D[H] is a straight-line
drawing. By Theorem 1 from [3], we can extend the straight-line drawing of D[H] to
a plane drawing of G;, for each 4, so that each edge in E(G;) — E(H) has at most
72|V (H)| < 72n bends. Combining the three drawings (possibly perturbing some of
the private vertices to avoid overlap), we obtain a simultaneous embedding of Gy, G5
and G3. Since every edge consists of at most 72n line segments, any two edges cross
at most (72n)? times. 0

It would be interesting to know whether Theorem 1.3 can be extended to O(n)

3Blisius, Fink, and Rutter [2] shortly afterwards improved the running time to O(n?).
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for SEFEy, or, even better, O(2¥n) as suggested earlier.

Remark 1.4 (Linear Bound—SEFEy). In the case of two graphs Gy, G2, we can
start with a straight-line embedding of G so that the drawing of H is isomorphic to
DI[H]. Then extending D[H] to a plane embedding of G5 leads to at most 72|H|
bends per edge for edges in F(G3) — E(H), so any two edges of Gy and G2 cross at
most O(n) times. This same trick does not work for k = 3, since we have to add two
graphs.

Remark 1.5 (Quadratic Bound—Sunflower SEFEy). In the sunflower variant of
SEFEj every public edge must belong to all k graphs. The construction described in
the proof of Theorem 1.3 also works for the sunflower case of SEFEy, where £ > 3.
So there is an upper bound of O(n?) crossings for each pair of edges in that case. Can
that be improved to O(n)?

2. Removing Even More Independently Even Crossings. To prove The-
orem 1.1 we would like to follow the usual strategy for Hanani-Tutte theorems: in-
crementally clean edges of unwanted crossings. Since hierarchical partial planarity
generalizes partial planarity we know that this direct approach will not work. The
Hanani-Tutte theorem for partial planarity [20] is based on removing independently
even crossings [16], which requires modification of the underlying graph. Not surpris-
ingly, we also need to modify the underlying graph for hierarchical partial planarity,
as described in Lemma 2.2. As a tool for this step, we need Lemma 2.1 which shows
that it is possible to change the crossing parity between two edges (in certain cir-
cumstances). Finally, Lemma 2.3 ensures that the final hierarchical partial planar
drawing is simple (which is not typically a concern for other drawing notions).

Call an edge e € E; clean in a drawing of G(E1, Es, E3) if e is free of crossings;
an edge e € F5 is clean if it only crosses edges not in E; U E5 and crosses each such
edge at most once.

LEMMA 2.1. Let D be a drawing of G(FE1, E2, E3) in which F' C E; U Ey is a
set of clean edges that contains all cycle-edges of G[E1] and so that every edge of F'
belongs to a cycle in G[F']. Suppose g € 1 — F' does not belong to a cycle in G[F1]
and f & E1U Ey. Then we can find a drawing D' of G in which the edges of F'
are still clean, and the crossing parity between f and g has changed. The only other
crossing parity changes may occur between f and edges of Fo U Es.

Proof. Let g = uv, and let U consist of all vertices in G[E; — g| that belong to the
connected component containing u. Since g does not belong to a cycle in G[E;], we
know that v &€ U. We now perform (f,u')-moves for every v’ € U. This only affects
the crossing parity of f with other edges. Specifically, the crossing parity of f and
g changes, since v € U, and the crossing parity of f with all Fj-edges other than g
remains the same; the reason is that every FEi-edge other than g has either both or
neither of its endpoints in U. The crossing parity of f with E3- and Fs-edges may
change, but only for those edges with an (exactly one) endpoint in U.

After these moves, F’ need no longer be clean, since we may have added crossings
between f and edges in F’, but we can fix this. Let e be an arbitrary edge in F’. If
f crosses e an even number of times (and at least once), we sever all crossings of f
with e on both sides of e. If f crosses e an odd number of times (so e € E3), we sever
all but one crossing of f with e. We now have an even number of ends of f on each
side of e, so we can pair them up (on each side) and reconnect them, see Figure 4.

This makes e clean, but may result in f consisting of multiple components. One
of the components, the arc, connects the endpoints of f, and there may be additional
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Fic. 4. Severing crossings of f (gray) with e and reconnecting severed ends (introducing a
self-intersection of f which can be removed as in Figure 3).

components of f which are closed curves. We perform the cleaning process for all e in
F’. At the end, all edges in F” are clean, but f may consist of multiple components. If
it is possible to reconnect any components without crossing any edges in F’, we do so.
At this point we want to drop all remaining closed-curve components of f. The only
way this could lead to a problem is if after dropping the closed-curve components, the
crossing parity of f and some edge h € Ey U E5 becomes odd. For this to happen, the
arc-component of f must cross h, as must (at least) one of the closed-curve components
of f. If we cannot reconnect the closed-curve component to the arc-component, then
they must be separated by a cycle in G[F']. Since h crosses both, it must cross some
edge of the cycle oddly. But this can only happen if h € E3, which is a contradiction.
Hence, we can drop all remaining closed-curve components of f. ]

We say that G’ results from splitting a vertex v in G if G’ contains an edge v1vo
so that contracting that edge yields G with v = v; = vy.* With this definition of
vertex split, we can naturally write E(G) C E(G’). Figure 8 shows two examples
vertex splits.

The following lemma is a refined version of Lemma 2.3 in [16]. The proof uses
similar ideas.

LEMMA 2.2. Suppose that G(E1, Es, E3) has a drawing D in which all edges of
E;, C E(G) are independently even, and every two independent edges in Eo cross each
other an even number of times. Then there is a graph G'(E1, E, E3), which results
from G by a sequence of vertex splits, and a drawing D’ of G' so that
(i) edges in EY are independently even, and every two independent edges in Ea cross

each other evenly,

(iia) edges in E{ that are part of a cycle in G'[E] U Es] are clean,
(73b) edges in Es that are part of a cycle in G'[Ef U E3] are clean,
(i7i) every vertex v that lies on a cycle C in G'[E1 U Es] has degree at most three.

In plain English: at the cost of splitting some vertices of GG, we can clean those
edges in Ff and E which are cycle edges in G'[E] U Es], by (iia) and (iib). We can
ensure that vertices on cycles in G'[E] U Es] are incident to at most one non-cycle
edge, by (iii), and edges in Ff{ are still independently even, and edges in Fy are
not involved in independent odd crossings with each other, by (¢). Any new edges
resulting from vertex splits must belong to E1, because E{, Es and Ej5 partition G’.
The left illustration in Figure 5 shows the starting situation described by the lemma,

4Vertex splits are also often defined as the opposite of merging two vertices which do not have
an edge between them.
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and the right illustration the modified G’ after cleaning the drawing.

Fic. 5. A drawing satisfying the assumptions of Lemma 2.2 on the left, with four, uncleaned,
cycles in G[E1 U E3] meeting in a vertex v. The cleaned version of the same drawing is shown on
the right. As before, E1-, Ea-, and E3-edges are solid, dashed, and dotted (respectively).

Proof. Letting Fs = E5 — F, if necessary, we can assume that F; and FE, are
disjoint. Our first goal is to clean all cycle-edges in G[E;, U Es]. We let F' be the set
of cycle-edges in G[F; U E5] which we have cleaned already. Initially, F = ), and F’
is trivially clean.

We prove the result by induction on the sum of the cubes of the vertex degrees
in G, and, that sum being the same, the number of edges not in F'. This induction
order allows us to split a vertex of degree d > 4 into two vertices of degree d; > 3 and
dy >3, since d} +ds < d® for dy +dy = d + 2.

Suppose that there is a cycle-edge in G[Ey U Es] which does not belong to F. Pick
a cycle C' in G[E; U Es] containing such an edge for which |C' N Es| is minimal.

If two consecutive edges uv,vw of C cross oddly, we perform a (uv,v)-move, so
the two edges cross evenly (and the crossing parity of no pair of independent edges is
affected), see the left two illustrations in Figure 6. In this fashion, we can ensure that
every two edges of C' cross each other evenly (for pairs of independent edges this is
part of the assumption). If there is an odd pair vw, va with vw € C and va & C, we
can move vz in the rotation at v so that vw and vz cross evenly (without affecting
the crossing parity between vz and the other edge wv in C incident to v). The edges
in C' N E; are now even, and the edges in C'N F5 can only cross edges in E5 oddly.

v v v v
F1c. 6. An edge uv on the cycle C, and how to make them even with respect to the next edge vw
on C (left two illustrations), or with respect to another edge vz not on C' (right two illustrations).

Let e be an edge of C. For every edge f crossing e evenly, we sever all crossings
of e with f. For every edge f crossing e oddly, we sever all but one crossing of e with
f. Each edge that used to cross e now has an even number of ends on both sides of
e. We reconnect these ends pairwise (as we did in Figure 4). This does not change
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the crossing parity of any pair of edges, but some edges will now consist of multiple
curves, one of them, the arc, connecting the endpoints of the edge. We perform this
operation for all edges e € C.

At this point we drop all closed-curve components belonging to edges in C. Then
all edges of C' are clean (by construction), but other edges may still consist of multiple
components. We process any remaining closed curves as follows: If we can reconnect
a closed-curve component of an edge to the edge’s arc-component without crossing
F or C, we do so (this may still leave some closed curves), and we do this for all
closed-curve components for which it is possible.

Let DT be the resulting drawing, and let D~ be DT after erasing all remaining
closed-curve components. In D~ all edges in F U C are clean, but dropping closed
components may have created new independent odd pairs. Let f and g be such a
pair, that is, f and g are independent edges which cross evenly in DT but oddly in
D~. See Figure 7.

Fic. 7. After dropping the closed-curve component of g (gray), the arc-components of f and g
cross oddly; g was severed when processing edge e on C. Initially, we do not know the types of f,
g, and h, but the proof will determine them to be as shown.

Since any two closed curves cross evenly, at least one of the closed-curve com-
ponents, say one belonging to g must cross the arc belonging to f in DT. So the
arc-component of g was severed from a closed component (to which it could not be
reconnected) when processing some edge e € C. Since both the arc of g and its
closed-curve component cross f, we could have tried to reconnect the closed-curve
component by following f closely. Since we did not, the crossings of g with f must
be separated by a crossing with an edge h € F'U C. The only way that is possible,
isif h € By and f € E5. Moreover, the independent odd pair only matters (that
is, potentially violates the Zs-hpp condition) if ¢ € E;. The types are as shown in
Figure 7.

We claim that g cannot belong to a cycle C’ of Ej-edges. If it did, then this cycle
would have fewer Es-edges (namely none) than the cycle in F'UC that contains h, so
C’ would have been picked for processing before that cycle. So €’ would already be
free of crossings, but we know that g crossed e, which is a contradiction. So g does
not belong to a cycle of Fj-edges.

Apply Lemma 2.1 to g € F1 — F and f with F' = FUC. This keeps the edges
in F'U C clean, and the parity of g and f changes, so they cross evenly, as they did
in D~. We do this for all such pairs (g, k), resulting in a drawing in which F U C is
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clean, and all edges in F; are independently even, and pairs of independent edges in
E5 cross each other evenly. We can now update F' to be F'U C, and we have made
progress.

We are therefore in the situation that F' is clean and contains all cycle-edges of
G[E1 U Es]. Suppose there is a cycle C in G[E; U E3] and a vertex v € V(C) so that
v has degree larger than 3. If all the edges incident to v lie on the same side of C, we
split v into two vertices v; and vs, connected by a crossing-free edge vyve and with ve
incident to the edges v was incident on (other than the edges of C'). The vertex split
decreases the sum of the degrees cubed, so we can apply induction to G'(E}, Fa, E3),
where E{ = E U {vjv3}, to obtain the result, see the left half of Figure 8.

Fic. 8. Splitting v on C.

We can therefore assume that v is incident to edges on both sides of C. We want
to split v into two vertices vy, v connected by a new edge vyve, with vy taking the
edges incident to C from the outside, and v, the edges attaching to C' from the inside,
see the right half of Figure 8.

This move decreases the sum of the degrees cubed, but it may introduce a new
independent odd pair. This happens if v is incident, on opposite sides of C, to two
edges f and g that cross oddly. At least one of these edges, say f, has to cross C
(so f and g can cross). This implies that f ¢ E; U Ey. For the crossing parity of
f and g to matter then, we must have g € E;. Now ¢ cannot be a cycle-edge of
G[Ey U Es], otherwise it would be free of crossings. Hence, we can apply Lemma 2.1
with g € By — F, f and F’ = F to change the crossing parity of f and g. We do this
for all such pairs of edges at v. At the end, we have a drawing in which splitting v as
described above does not result in a new independent pair of edges that matters, and
we are done by applying induction to G'(E}, Es, E3), where E] = E U {vv2}. |

One final lemma allows us to make a hierarchical partial planar drawing simple.
We will generalize this result in Lemma 3.6.

LEMMA 2.3. If G(E1, Es, E3) has a hierarchically partial planar drawing, then it
has a simple, hierarchically partial planar drawing.

Proof. Fix a hierarchical partial planar drawing of G(E1, E2, E3). Suppose an
edge f € FEj3 intersects an edge e € Ey more than once. We sever all crossings of e
with f. If e and f are independent, we remove all pieces of e except the two half-arcs
containing its endpoints. We then reconnect the severed ends of the two half-arcs by
following f closely, see the left half of Figure 9. If e and f share a common endpoint
v, we remove all pieces of e except the half-arc not containing v. We then reconnect
the severed end of the other half-arc to v by following f closely, see the right half of
Figure 9.

This manuscript is for review purposes only.
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Fic. 9. Reducing the number of crossings between e and f.

In either case, we reduce the number of intersections between e and f by at least
one (since they end up crossing at most once, and this only happens if they crossed
more than once before). As a result, the total number of crossings between edges in
FE5 and F3 decreased strictly. Hence, if we repeat this process, we will eventually end
up with all edges of Fs being clean. Two edges e, f € E3 may still intersect each
other more than once. Then there must be subarcs 7. C e and ¢ C f that have the
same endpoints (two crossings, or a crossing and a shared endpoint of e and f); to
see this, let . be a shortest subarc of e connecting two intersections of e with f, and
let vy be the subarc of f connecting the same two intersections. Then ~. and v, do
not intersect except for at their shared endpoints. We can now flip . and ¢, that
is, we route e along ¢ and e along ., see Figure 10; the left half illustrates the case
of two crossings, the right half the case of a crossing and a shared endpoint.

FiG. 10. Rerouting arcs ve and 7.

This rerouting strictly reduces the number of crossings between Fs-edges (and
does not increase the number of crossings with Fs-edges). We conclude that after a
finite number of steps, any two E3-edges intersect at most once. 0

With these three lemmas we can complete the proof of our main result.

Proof of Theorem 1.1. In a hierarchical partial planar drawing, edges in E; are
even, and edges in Fy cross each other evenly (namely not at all), so we only have to
prove that the Hanani-Tutte condition is sufficient.

Suppose we are given a drawing D of G in which all edges of E; are independently
even, and independent edges in Fs cross each other evenly. By Lemma 2.2 we can
perform a sequence of vertex splits on G to obtain a graph G'(Ej, Es, E3), and a
drawing D’ of G’ satisfying the conditions (i) — (iii) stated in the lemma. Let F be
the set of cycle-edges in G'[E}] U Es]. By condition (i7), all edges in F' are clean in D’.
In particular, edges in F'N E] are free of crossings, and edges in F'N Ey only cross

10
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edges in Ej3.

We start with the plane embedding of G’[F]. Let e be an edge in ] U Ey — F.
The endpoints of e belong to the same face boundary of G'[F], since e connects its
endpoints in D’ without crossing edges in F'. We can therefore add e to the embedding
without creating any crossings, and without changing which vertices belong to a face
boundary (since e does not belong to a cycle in Ej U Es). Repeating this for all edges
in Ef U Ey — F gives us a plane embedding of G'[E} U E3] in which any two vertices
that belonged to the same face boundary in the plane embedding of G’[F] still do so.

Let e € F3. We have a drawing of e in D’ in which it connects its endpoints
without intersecting any edge in E{ N F. Hence, the endpoints of e lie on the same
face boundary of the plane embedding of G'[E] N F], and, therefore G’'[Ej], since
adding edges in F{ — F' did not change which vertices lie on the boundary of a face.
We can therefore add e to the drawing, so that it does not cross any edge in Ff,
though it may cross edges in Es (any number of times). We do this for all edges e not
in E{NE5. In the resulting drawing, there may be multiple crossings among edges not
in F{ U E5 and between edges in Ej U Ey and E5. Lemma 2.3 now gives us a simple
drawing of G'(E], E2, F3) in which edges of F{ and FEj are clean. Specifically, edges
in E{ — E; are free of crossings, and we can contract them, to obtain the required
simple, hierarchical partial planar drawing of G(E1, Es, E3). d

3. Partitioned Partial Planarities. Angelini and Bekos [1] suggest that hier-
archical partial planarity is just one of several planarity variants that can be obtained
by partitioning the edge set of a graph into types and specifying which types of edges
may intersect. We try to capture their idea a bit more formally by introducing the
notion of partitioned partial planarity.

For a graph G(FE1, ..., E) a notion of (k-)partitioned partial planarity is defined
by specifying a symmetric relation R over {1,...,k}, where R(4,j) = 1 means that
edges in F; may cross edges in E;, and 0 that they may not. Partitioned partial
planarity refines weak realizability (which is the special case where each edge-set
contains a single edge).

Since R is symmetric, we can write R as the upper triangle of the matrix repre-
senting R. E.g. the relation R for hierarchical partial planarity is

0 0
0

— = O

For inline display we abbreviate this to |000|01|1. We say two edge types i and j
are equivalent if R(i,k) = R(j, k) for all k and R(4,7) = R(j,7). If we have two
equivalent edge types, we can merge them into a single edge-type without changing
the underlying problem. We therefore define two partitioned partial planarity variants
as equivalent if they are the same up to merging equivalent edge types and relabeling
edge types. A variant is monotone if it is equivalent to a monotone matrix, that is,
a matrix in which the entries in each row and column are non-decreasing. An edge
type i is trivial if R(i,7) =1 for all j, and a hierarchical planarity variant is ¢rivial if
it contains a trivial edge type. We can always eliminate a trivial edge type without
affecting the complexity of the planarity problem.

3.1. The Case of Small k. To get a sense of the descriptive power of partitioned
partial planarity we have a closer look at the variants we obtain for k up to 3. Our
list eliminates equivalent variants, so, for example, we will not see |00|0 because it
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is equivalent to |0. Also, we do not include any variants which contain trivial edge-
types, so we will not include |1, which is trivial. In some of these cases, the crossing
minimization problem may be of independent interest. For example, the crossing
minimization problem for |1 amounts to the standard crossing number, and while
|01]1 just expresses the planarity of G[E4], the corresponding crossing minimization
problem has not been studied as far as I know; it asks for a drawing of G with the
smallest number of crossings for which G[FE1], by itself, is planar. (In comparison, the
variant in which the plane embedding of G[E1] is given and fixed, is widely investigated
in the crossing minimization literature.)

For k = 1 there is only one variant, |0, which is standard planarity.

For k = 2, we have |00|1, which is partial planarity, the special case of hierarchical
partial planarity in which Fy = @. There is a Hanani-Tutte characterization [20] and
a linear-time algorithm [4].

There are two non-monotone variants for k& = 2. The first is |01]0; this captures
the SEFE; problem for two edge-disjoint graphs, which is equivalent to both G[F1]
and G[E>] being planar, so linear-time testable. The Hanani-Tutte characterization
consists of two separate planarity problems.

The second non-monotone variant is |10[1, which is trivial (embed all vertices
along a line, and draw edges of E; above, and edges of Ey below the line).

For k = 3, there is one monotone variant, |[000|01|1, which we already identified
as hierarchical partial planarity. We established a Hanani-Tutte characterization in
this case, and there is a cubic-time algorithm by Angelini and Bekos [1].

Our first non-monotone variant is [011|01]0, which is the simultaneous planarity
of three disjoint graphs G[E1], G|E2|, G[Es], and is equivalent to each of these graphs
being planar.

Next, |000]01|0 is the variant that asks whether G[Ey U E3] and G[E; U E5] have
plane embeddings which are isomorphic on G[E;]. This is just the simultaneous
planarity problem for two graphs. We know that there is no Hanani-Tutte characteri-
zation in this case [13], and the computational complexity of the problem is famously
open.

There are several variants extending the trivial [10|1. Variant |011[10|1 is still
trivial using a similar construction as in the k = 2 case: start with a plane embedding
of G[E;] with all vertices of V on a line; edges of G[FEs] go above the line, edges of
G[E3] below.

Variants |010/10/1, |000|/10|1 and |010[00|01 also extend |00|1, so they are not
trivial, but we have not been able to determine what their complexity is, whether
they express some natural planarity notion, and whether there is a Hanani-Tutte
theorem for these variants.

Similarly, [100]10|1 extends |10|1 (without extending partial planarity), and is
non-trivial; for example K3 3 with each of the E; being a K 3, is not realizable in this
variant, since every drawing of a K3 3 must contain a crossing between two indepen-
dent edges, by the strong Hanani-Tutte theorem for planarity, see, for example, [18,
Theorem 1.1]. This variant is a very natural (anti)-planarity notion, but it appears
to be unstudied, and its complexity is open.

Finally, |011|00|1 is equivalent to G[E;] being planar, and G[E;U E3] being partial
planar, with G[FEs] being crossing-free. We simply fix a partial planar drawing of
G[F2 U Es] in which G[Es] is free of crossings, and add a planar drawing of G[F1] on
the same vertex set.

We leave the small cases with an enumerative question.
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445
446
447
148
449

Question 3.1. How many non-equivalent, non-trivial partitioned partial planarity
variants are there for each k? We saw that the first three values in this list are (1, 3, 9),
and a computer simulation suggests the next values for k = 4 and k = 5 are (43, 285).
The sequence (1,3,9,43,285) does not occur in OEIS [23].

3.2. Observations and Questions. As we saw in the previous section, parti-
tioned partial planarity is already hard to handle for £ = 3. Nevertheless, we wonder
whether there is a dichotomy theorem.

Question 3.2. Is it true that partitioned partial planarity is always either polyno-
mial time solvable or NP-complete for a fixed R? If so, can we effectively tell which
based on R?

We collect some further observations and questions suggested by our short survey
in the previous section.

3.2.1. The Monotone Case. The cases up to k = 3 suggest that there is only
one monotone variant for each k (unless we allow trivial types, in which case there
are two), and this is true.

THEOREM 3.3. There is only one non-trivial, monotone k-partitioned partial pla-
narity variant for each k (up to equivalence).

Based on this it makes sense to apply the term hierarchical partial planarity
introduced by Angelini and Bekos for £ = 3 for arbitrary k£ > 3. We also write
k-hierarchical partial planarity.

Proof. Let R be a monotone partitioned partial planarity variant over k edge-
types, so we can assume that R is monotone. The first row cannot contain a 1,
since this would lead to a trivial edge-type, hence the first row (and column) consists
entirely of zeroes. Every row can contain the pattern 01 at most once, and two
rows cannot both contain the pattern 01 in the same consecutive columns (otherwise
they’d be equivalent). This implies that each row must contain at least one additional
1 compared to the previous row, and, since the matrix is symmetric, that it contains
exactly one additional 1, leading to an R in which all entries on or above the anti-
diagonal are 0 and all other entries 1. O

The monotone variants were also isolated by Angelini and Bekos as worthy of
further study; they suggested that they may form a tractable special case of weak
realizability.

Question 3.4. Is k-hierarchical partial planarity polynomial-time recognizable for
each fixed k7 What about unbounded k?

Question 3.5. Is there a Hanani-Tutte theorem for k-hierarchical partial planarity
for k > 37

We showed, in Lemma 2.3, that a k-hierarchically partial planar graph always
has a simple realization for k = 3. This turns out to be true for arbitrary k.

LEMMA 3.6. If a graph is k-hierarchically partial planar (for arbitrary k), then it
has a simple hierarchically partial planar realization.

Without monotonicity we cannot guarantee simple realizations, as we will see in
the next section.

Proof. Suppose G(Fj, ..., Ey) has a hierarchically partial planar drawing D; let
R be the corresponding relation.
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Let ¢p (i, ) be the total number of crossings between edges of E; and E;. We can
choose D such that the sequence (¢p(i,5))1<i<j<k is minimal, where indices (4, j) are
arranged in lexicographic order.

Pick a smallest (4, j) in that order so that R(i,j) and there are edges e € E; and
f € E; that intersect more than once in D. As we saw in the proof of Lemma 2.3
there are subarcs 7. C e and vy C f that have the same endpoints (two crossings, or
a crossing and a shared endpoint of e and f).

Suppose ¢ = j. We can detour e along v; and f along 7. (as in Figure 10). This
decreases cp(i,1) by at least one. Since ¢ = j, no other value of the sequence changes,
so this contradicts the choice of D. (Note that the detour may introduce self-crossings
of arcs, but those can be removed locally as before, see Figure 3.)

We therefore have ¢ < j. Let m. and my; be the smallest £ such that there
is an edge g € Ey intersecting <. and vy, respectively. By the case we are in, we
have my < i. If my < me, we detour ¢ along . (without moving 7.). This
decreases cD(mf,j), contradicting the choice of D. Hence m. < my < 4. Since R
is monotone, this means we can detour <. along ys. We can also detour ~; along
Ye. Let ¢p(v,£) denote the number of crossings in D between an arc v and edges
of type £. If cp(ve,?) and cp(vy,¥¢) differ for some ¢ with m, < £ < i, we pick the
smallest ¢ for which they differ, and detour the arc with the larger value along the arc
with the smaller value. This strictly decreases c¢p (¥, j) without increasing any values
that precede (¢, j) lexicographically, contradicting the choice of D. We conclude that
ep(Ye, £) = ep(vyy,£) for all ¢ with m. < ¢ < 3. We can then detour 7, along -,
strictly decreasing cp(i,7) by at least one, without changing any values that precede
(,7). Again this contradicts the choice of D. d

3.2.2. Non-Monotone Variants. We turn to the richer world of non-monotone
partitioned partial planarity. The descriptive richness leads to an increased complexity
of the resulting problems. It is known that a weak realization of a graph may require
an exponential number of crossings [15], which implies that edges may have to cross
more than once. And we can force dependent edges to cross, even for |001|00|0, using
a standard construction.®

While we do not yet know whether k-hierarchical partial planarity is always
polynomial-time solvable, we do know that non-monotone variants are not (unless
P =NP).

LEMMA 3.7. SEFE}, can be expressed as a (2% — 1)-partitioned partial planarity
problem.

Proof. For a SEFEj problem we are given k graphs Gy,..., Gy over the same
vertex set V. With that let G = (V, E), where E = E(G1) U---U E(Gy). We
partition E into edge-sets Ey = (;c; £(G;) N[, E(Gi), where the index I ranges
over all 28 — 1 non-empty subsets of {1,...,k}. Edges in E; and E; belong to a
common graph if and only if I N J # (. We can therefore let R(I,J) =0if INJ # 0
and 1 otherwise. Then Gi,..., Gy have a simultaneous embedding with fixed edges
if and only if G can be realized with the given R. ]

Since SEFE; is NP-complete [12], it follows that k-partitioned partial planarity
is NP-complete for k > 7.

5An example can be based on the marginal illustration for the entry “local crossing number”
in [17].
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Question 3.8. What is the smallest k£ for which k-partitioned partial planarity is
NP-complete?

This may be a tricky question, since showing that & > 3 would require showing
that SEFEs is polynomial-time solvable.

The variant |100|10|1 generalizes naturally by letting R be the identity matrix.
This leads to an NP-complete problem.

LEMMA 3.9 (The Identity Variant). Partitioned partial planarity for R = I is
NP-complete (for unbounded k).

The proof translates weak realizability into the R = [ variant. For this we
need an NP-complete special case of weak realizability which can be realized with a
polynomial number of crossings. By Theorem 1.3 we can work with SEFE;.

Proof. We reduce from SEFE3 which we know to be NP-complete [12]. Let Gy,
G2, G3 be three graphs on the same n-vertex set V; also, let G = G; U G2 U G3. By
Theorem 1.3 if G1, G2 and G3 have a simultaneous embedding with fixed edges, then
they have such an embedding with at most c¢n? crossings between any pair of edges,
for some integer ¢ > 0.

We need to build an edge-partitioned graph H. To simplify the presentation we
will describe the partition of the edges of H as a coloring (rather than a numerical
labeling). We work with the set of colors X = {o (e, f) : e, f € E(G)}, where o(e, f) =
o(f,e) is a unique color assigned to the pair of edges (e, f). Then |X| = (7;’) where
m = |E(G)].

We start with V(H) = V, and no edges. For any edge e € G let (fi,..., f¢) be
the list of all edges that e may cross in a simultaneous embedding of G. We create
a path P. of length cn?¢ between the endpoints of e and color its edges according
to the colors in the list (o(e, f1),...,0(e, fg))5"2. Two paths P. and Py can only
cross if they share a color, which must be o(e, f), so this only happens if e and f
are allowed to cross in GG. Moreover, since we can assume that G has a simultaneous
embedding in which every two edges cross at most cn? times and there are at most
¢ < m edges crossing any edge, the path P, between endpoints e is sufficiently long
to accommodate all possible crossings (in any order that they may occur in). 0

Strictly speaking, Lemma 3.9 is not about a single partitioned partial planarity
variant, but about a family of them. We believe that the proof can be adapted to
show that the problem remains NP-complete for a fixed k. To that end, the paths P,
need to be replaced by (narrow) grids which are colored by a finite set of repeating
colors in such a way that only grids that belong to edges that may cross, cross each
other, and some care needs to go into attaching the grids to a vertex. We leave it to
a more adventurous reader to work out the details. We estimate that the resulting k
will be less than a hundred.

Question 3.10. What is the smallest k£ for which the identity variant is NP-
complete? What is the computational complexity of |100{10[17?

Acknowledgments. I would like to thank the referees for many suggestions
that improved the presentation of the paper.
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