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We are taking the view that crossings of adjacent edges are trivial,
and easily got rid of. Bill Tutte

We interpret this sentence as a philosophical view and not a math-
ematical claim. László Székely

Abstract

We investigate under what conditions crossings of adjacent edges and
pairs of edges crossing an even number of times are unnecessary when
drawing graphs. This leads us to explore the Hanani-Tutte theorem and
its close relatives, emphasizing the intuitive geometric content of these
results.

1 The Hanani-Tutte Theorem in The Plane

In 1934, Hanani [15] published a paper which—in passing—established the fol-
lowing result:

Any drawing of a K5 or a K3,3 contains two independent edges
crossing each other oddly.1

Since by Kuratowski’s theorem every non-planar graph contains a subdivi-
sion of K5 or K3,3, Hanani’s observation implies that any drawing of a non-
planar graph contains two vertex-disjoint paths that cross an odd number of
times and therefore two independent edges that cross oddly—one in each path.
This consequence was first explicitly stated by Tutte [49].2

1The result can be hard to find even if one reads German. It is stated as (1) on page 137
of the article and mainly an application of methods developed by Flores [20, 62. Kolloqium].

2The theorem is generally known as the Hanani-Tutte theorem, though Levow [17] calls
it the “van Kampen-Shapiro-Wu characterization of planar graphs” emphasizing the parallel
history of the theorem in algebraic topology (ignoring Flores, however). In a recent paper [34]
we introduced the name “strong Hanani-Tutte theorem” to distinguish it from a weaker version
that is also often called the Hanani-Tutte theorem in the literature.
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Theorem 1.1 (The (Strong) Hanani-Tutte Theorem). Any drawing of a non-
planar graph contains two independent edges that cross oddly.

Equivalently, but more spectacularly, the theorem can be phrased as saying
that if we can draw a graph so that every two independent edges cross evenly,
then the graph is planar (we study the algorithmic content of this statement
in Section 1.4). Since the reverse direction is immediate, the Hanani-Tutte
theorem can be viewed as a characterization of planarity.

In this paper we bring together different versions and applications of the
Hanani-Tutte theorem to show that the result of Hanani-Tutte deserves the
epithets “remarkable” and “beautiful” [27, 29]. We acknowledge the roots of
Hanani-Tutte in the literature of algebraic topology, but this paper will take
an intuitive, geometric approach which proves sufficient as long as we restrict
ourselves to two-dimensional surfaces.

Some conventions used in this paper: When we speak of drawings of graphs
we do not distinguish between an abstract edge and the arc representing it in the
plane; or a vertex and the point it is located at. We will simply use “edge” and
“vertex” for both concepts; we use topological graph when we want to emphasize
that we are considering an abstract graph together with a drawing. We require
drawings of graphs to fulfill the standard properties: there are only finitely many
intersections, a vertex does not lie in the interior of an edge, no two vertices lie
in the same location, and at most two edges intersect at any interior intersection
point. Interior intersection points of edges come in two flavors: crossings, if the
edges cross at that point, or touching points if the edges touch. A common
endpoint of two edges is considered an intersection point, but it is neither a
crossing nor a touching point.

1.1 The Weak Hanani-Tutte Theorem, or,

Even Crossings Don’t Matter

The Hanani-Tutte theorem is often stated and used in a weak form. Call an
edge in a drawing even if it crosses every other edge an even number of times
(including 0 times). If a graph can be drawn so that all its edges are even, then
the graph is planar. This weak version of the Hanani-Tutte theorem is easier to
prove than the strong version, and yields a stronger conclusion: the graph can
be embedded in the plane without changing its rotation system. The rotation
at a vertex is the cyclic ordering of ends of edges at that vertex, the rotation
system is the collection of rotations of all vertices.

Theorem 1.2 (Weak Hanani-Tutte). If a graph can be drawn so that all its
edges are even, then the graph is planar and can be embedded without changing
the rotation system.

The assumption of the weak Hanani-Tutte theorem can be weakened: it is
enough to require that in the drawing every even subgraph of G, that is, a
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subgraph all of whose vertices have even degree, has an even number of self-
crossings. This form of the theorem was suggested and proved by Loebl and
Masbaum in their study of Norine’s conjecture [18].

Theorem 1.3 (Loebl, Masbaum). If a graph can be drawn so that every even
subgraph has an even number of self-crossings, then the graph can be embedded
in the plane without changing the rotation system.

Or, as Loebl and Masbaum phrase it: “Even drawings don’t help”. Theo-
rem 1.3 immediately implies Theorem 1.2. We include an easy proof of Theo-
rem 1.3 using geometric rather than homological methods.

Proof. Suppose we are given a drawing of the graph so that (∗) every even
subgraph has an even number of self-crossings.

We can assume that the graph is connected: Adding an edge between two
components of the graph does not affect (∗) since that edge cannot be part of any
even subgraph (it would, in each of the components, be incident to a subgraph of
odd total degree, which contradicts the handshake lemma). Repeating this, we
obtain a connected graph fulfilling (∗). If the new graph is embeddable without
changing its rotation system, then the original graph can be embedded with its
original rotation system (delete the additional edges). We prove the result for
connected graphs by induction on the number of vertices and edges. To make
the induction work, we allow multiple edges and loops.

If there is a non-loop edge e = uv contract it by moving v along e towards
u, eventually identifying u and v and merging the rotations of u and v as shown
in Figure 1. We presently argue that (∗) remains true, so by the inductive
assumption, the new graph can be embedded without changing its rotation; but
then we can split u = v into two vertices again and move them apart slightly,
recovering the original rotations of u and v and reinserting the edge e = uv
without introducing any crossings.

u

v

u = v

Figure 1: Geometrically contracting edge e = uv towards u.

The contraction of e does not affect (∗): let H be an arbitrary even subgraph
before the contraction. If e 6∈ E(H), then, since the degree of H at v is even,
an even number of edges of H is pulled along e, so any crossing of e leads to an
even number of crossing with H , so the number of self-crossings of H remains
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even. The same conclusion holds if e ∈ E(H). In this case we are pulling an odd
number of edges of H along e, but e itself belongs to H , so if v is pulled through
a crossing with some edge f ∈ E(H), the odd number of crossings added is
balanced by the single crossing between e and f that is removed, so that the
overall parity remains even.

Since we started with a connected graph, we are left with the case of a single
vertex with loops. Any loop by itself is an even subgraph, so it has an even
number of self-crossings. Since any two loops also form an even subgraph, any
two loops must cross each other an even number of times. Pick any loop e
whose ends are closest in the rotation; the ends of e must be consecutive (any
loop starting between the two ends of e would also have to end between the
two ends, but then we would have chosen it over e). Remove e and draw the
remaining graph by induction (with the same rotation). We can then reinsert
e at its original place in the rotation without introducing any crossings. This
completes the proof.

The Loebl-Masbaum result no longer holds if we only require that every cycle
has an even number of self-crossings: take two cycles sharing a single vertex so
that the ends of the cycle alternate at the vertex. While this graph is planar it
cannot be drawn without changing its rotation system. A simple modification
of the theorem is true, however.

Theorem 1.4. If a graph can be drawn so that every cycle has an even number
of self-crossings, then the graph can be embedded in the plane without changing
the rotation system of any 2-connected block of the graph. (Only the rotations
at cut-vertices need to be adjusted: make the ends of edges belonging to the
same 2-connected block consecutive in the rotation without otherwise changing
the ordering of ends belonging to the same block.)

Even though Theorem 1.4 leads to a change in rotation, it has the flavor of
the weak Hanani-Tutte theorem; we can ask whether it is sufficient to assume
that every cycle has an even number of independent crossings to guarantee
planarity. Theorem 1.16 in the next section answers that question.

In the proof of the theorem, we will contract edges only partially, namely,
up to a point where they are free of crossings.3

Proof of Theorem 1.4. We show that any 2-connected graph fulfilling the con-
ditions of the theorem can be embedded without changing its rotation system.
The general result then follows.

First note that contracting an edge, even partially, does not affect the parity
of the number of crossings along any cycle, since a cycle always has even degree
at every vertex. So we can pick a spanning tree T of the graph and partially
contract edges in a breadth-first (or depth-first) order towards the root of the
tree so that all edges of T are entirely free of crossings. This might introduce
self-crossings along edges in E(G) − E(T ), but since each such edge forms a

3Partial contractions were used by Černý [9] in his proof of the weak Hanani-Tutte theorem
in the plane.
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cycle with a path in T , it must have an even number of self-crossings, so we
can remove all self-crossings of edges without changing the parity of crossings
along any cycle. At this point the only crossings are between distinct edges in
E(G) − E(T ). We claim that any two such edges e, f ∈ E(G) − E(T ) cross
evenly: for a contradiction assume that e and f cross oddly. Let Pe and Pf

be the sub-paths of T connecting the endpoints of e and f and Ce = Pe ∪ {e},
Cf = Pf ∪ {f}. First consider the case that e and f are independent. Since e
and f cross oddly, but two closed curves in the plane always cross evenly, Ce

and Cf must have at least a vertex in common. If Ce and Cf share an edge,
we argue as follows: the symmetric difference C′ = Ce△Cf is a cycle consisting
of e, f and crossing-free edges from T . Since by assumption C′ has an even
number of self-crossings, e and f must cross evenly. If Ce and Cf share only a
vertex, say v, then Ce − v and Cf − v are disjoint, so since G is 2-connected,
there must be an edge g 6∈ E(T ) connecting them. Consider the following cycles
pictured in Figure 2:

Ce,g: start at the endpoint of g lying on Ce, follow Ce to e, traverse e, follow
Ce to v, follow Cf to the other endpoint of g, traverse g,

Cf,g: start at the endpoint of g lying on Cf , follow Cf to f , traverse f , follow
Cf to v, follow Ce to the other endpoint of g, traverse g,

C′: start at the endpoints of g lying on Ce and Cf , follow Ce to v traversing e
and follow Cf to v traversing f ; add g.

v

g

f

e

Ce,g

Cf,g

C′

Figure 2: Cycles Ce,g, Cf,g and C′ in case e and f are independent.

Now Ce,g and Cf,g are even, so both e and g as well as f and g cross evenly (all
other edges in these cycles are crossing-free). Since C′ is even, this means that
e and f also have to cross evenly.

In case e and f share an endpoint v, let Te and Tf be the components of
T − {v} containing the other endpoints of e and f . If Te = Tf , then T − {v}
contains a path P connecting the two endpoints of e and f which are different
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from v. Now the cycle P ∪ {e} ∪ {f} is even; since all edges of P are free of
crossings, this implies that e and f cross evenly.

So we can assume that Te 6= Tf . Since G is 2-connected, there must be an
edge g between Te and Tf . With g we can construct three cycles as shown in
Figure 3:

Ce,g: start at v, follow e, follow Te to g, follow g, follow Tf to v,

Cf,g: start at v, follow f , follow Tf to g, follow g, follow Te to v,

C′: start at v, follow e, follow Te to g, follow g, follow Tf to f , follow f back
to v.

v

g

e f

Ce,g

Cf,g

C′

Figure 3: Cycles Ce,g, Cf,g and C′ in case e and f are adjacent.

Since Ce,g is even, e and g cross evenly (by an argument similar to the one
above); by the same token, the evenness of Cf,g implies that f and g cross
evenly. Finally, since C′ is even, and, we assumed e and f cross oddly, e or f
must cross oddly with g, but we saw that this is not the case, so e and f cross
evenly.

In other words, all edges in the current drawing of G are even. By the weak
Hanani-Tutte theorem, we can then embed G in the plane without changing its
rotation system.

Theorem 1.4 suggests a more general family of Hanani-Tutte type results: if we
know that all subgraphs belonging to some family of graphs have an even number of
self-crossings, what does this tell us about the graph? To guarantee planarity we saw
that it is enough to look at pairs of edges (weak Hanani-Tutte), pairs of independent
edges (strong Hanani-Tutte), even subgraphs (Loebl-Masbaum), cycles (Theorem 1.4).
What other families of graphs guarantee planarity?

Paths furnish a trivial example: if all paths have an even number of self-crossings,
then all edges are even: consider two edges e and f , and let P be a shortest path
containing both e and f (so they must be the first and last edge of the path). Since
P −{e, f}, P −{e}, P −{f} as well as P are even, e and f have to cross evenly. Hence
all edges are even, and the graph is planar.
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Stars on the other hand, do not appear very promising at first: any drawing of
a graph which minimizes the number of crossings has no crossings between adjacent
edges, so for any graph all stars can be made free of self-crossings. Looking at pairs
of stars trivializes the problem: any two edges are a pair of stars, so by the weak
Hanani-Tutte theorem, the graph is planar. However, there is an interesting variant
hiding here: what happens if we consider pairs of maximal stars?

Question 1.5. If G is drawn so that every union of two maximal stars in G has an
even number of self-crossings, is G planar?

Note that this fails for the torus: take a toroidal grid Cn �Cn and add a pair
of diagonal edges to each square. Then the union of two maximal stars will always
contain 0 or 2 self-crossings.

Other families of graphs worth exploring might be triples of (independent) edges
and Θ-graphs, that is, graphs consisting of three internally disjoint paths connecting
the same pair of vertices.

Even if we do not get planarity, we can still ask whether requiring certain sub-
graphs in the drawing to have an even number of self-crossings allows us to draw any
conclusions about the graph. One might, for example, ask extremal questions. We
are not aware of any extremal results of this particular form, however, there are sev-
eral very similar extremal results we will discuss in Section 3.2. There is a result by
Pach and Tóth [31] worth mentioning in this context: a topological graph for which
any set of k ≥ 2 independent edges contains two edges that cross evenly has at most
O(n log4k−8 n) edges. For k = 2 this is a consequence of the strong Hanani-Tutte
theorem.4

On the structural side there is Norine’s fine characterization of Pfaffian graphs [22]:

he shows that a graph is Pfaffian if and only if it has a drawing in which every perfect

matching has an even number of self-crossings (edges are not allowed to self-intersect

in this characterization).

One might ask which natural properties of graphs are invariant under weak-
ening crossing-free to even or independently even, where an edge is independently
even if it crosses every non-adjacent edge an even number of times. Suppose,
for example, that we have a drawing of a graph in which all vertices lie on the
boundary of the same region, and all edges are independently even. Then the
graph is outerplanar. So outerplanarity survives the weakening of crossing-free
to independently even. (The proof is simple: to the region containing all ver-
tices on the boundary, add a new vertex and connect it to all other vertices by
crossing-free edges. All edges in the resulting drawing are independently even,
so by the strong Hanani-Tutte theorem the graph is planar. Removing the new
vertex from the planar drawing yields an outerplanar drawing of the graph.) On
the other hand, the notion of crossing number is not invariant under replacing
crossing-free with even or independently even as we will see in Section 3.4.

Another example is furnished by a result of Pach and Tóth’s on x-monotone
drawings; call a drawing x-monotone if all its edges are x-monotone, that is,
functions on an interval. It is known that every x-monotone embedding of a
graph can be turned into a straight-line embedding without changing the x-
coordinates of any vertex [11, 30].

4This result, with a slightly weaker bound, was rediscovered and used in [6].

7



Theorem 1.6 (Pach, Tóth [30]). If all edges in an x-monotone drawing of
a graph are even, then the graph has a straight-line embedding in which every
vertex keeps its x-coordinate.

Does the result remain true if we only require edges to be independently even
rather than even? Since x-monotone embeddings can be turned into straight-line
embeddings without changing x-coordinates, it would be sufficient to establish
the following conjecture.

Conjecture 1.7. If all edges in an x-monotone drawing of a graph are inde-
pendently even, then there is an x-monotone embedding of the graph in which
every vertex keeps its x-coordinate.

The proof of Theorem 1.6 uses the Cairns-Nikolayevsky proof of Theorem 1.2; it is

not immediately clear whether the redrawing techniques we have used in this section

can be adapted to establish Theorem 1.6 or the conjecture.

The weak version of Hanani-Tutte is a simple but popular form of the the-
orem. As such it has been discovered independently a couple of times. Cairns
and Nikolayevsky used homology theory and intersection forms to prove the
result for arbitrary surfaces [7]; an intuitive geometric proof, again for arbitrary
surfaces, can be found in [36]. The proof for the plane was independently found
by Černý [9]. It also follows from a redrawing result of Pach and Tóth [29]
which we discuss in Section 3.4.

1.2 Planarity Criteria and Weak Hanani-Tutte

In a way all versions of Hanani-Tutte are planarity criteria, but the two variants
we explore in this section are special in that they depend on the rotation system
of the graph only, and not on the particular drawing. The first criterion is due
to Cairns and Nikolayevsky [7] and is implicit in their proof of the weak Hanani-
Tutte theorem. To state the result we need to define a new notion of the number
of crossings between two cycles of a graph: Consider two cycles C1 and C2 and
let P be a maximal path in C1 ∩ C2; contract P to a single vertex. If the ends
of C1 and C2 alternate at that vertex, we say the cycles cross in P and count
this as one crossing; otherwise C1 and C2 touch in P and we do not count this
as a crossing. Let σ(C1, C2) be the total number of crossings—in this sense—
between C1 and C2. Note that we do not count crossings between edges from
C1 and C2, so σ(C1, C2) is completely determined by a rotation system of the
graph.

Theorem 1.8 (Cairns, Nikolayevsky [7]). If a graph can be drawn so that
σ(C1, C2) is even for every two cycles C1, C2 in the graph, then the graph
can be embedded in the plane without changing the rotation system.

Theorem 1.8 is easily seen to imply the weak Hanani-Tutte theorem. A proof
of the theorem can proceed along the same lines as the proof of Theorem 1.3:
The parity of σ(C1, C2) is not affected by contractions of edges, so we can
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contract the graph to a single vertex with loops; now by assumption any two
loops cross an even number of times (in the traditional sense of crossings); but
then we can embed the graph as we did in the proof of Theorem 1.3.

The second planarity criterion is due to Lovász, Pach and Szegedy [19] and,
like the Cairns-Nikolayevsky criterion, arose in the study of thrackles (of which
more in Section 3.3). Recall that a Θ-graph is a pair of vertices connected by
three internally disjoint paths. In a drawing of a Θ-graph the cyclic clockwise
ordering in which the three paths end at the two vertices is either the same
or reversed; if the order is reversed, we call the Θ-graph a converter. A plane
Θ-graph is always a converter.

Theorem 1.9 (Lovász, Pach, and Szegedy [19]). A graph is planar if and only
if it can be drawn so that every Θ-subgraph is a converter. In that case, the
graph can be embedded in the plane without changing the rotation system of
any 2-connected block of the graph (only the rotations at cut-vertices need to be
changed).

Rather than establishing the planarity criterion from scratch (which isn’t
very hard assuming Kuratowski’s theorem), we will show that it is really an
incarnation of Theorem 1.2. Indeed, this is how we obtain the conclusion about
the rotation system, which is not part of the original result of Lovász, Pach
and Szegedy (using Kuratowski’s theorem doesn’t allow any conclusions about
the rotation). In the proof we use a characterization of Θ-graphs in terms of
self-crossings.

Lemma 1.10. A Θ-graph is a converter if and only if it has an even number
of cycles with an odd number of self-crossings.

The lemma could be established using exhaustive case-analysis; instead we
opt to obtain it as a consequence of Theorem 1.4.

Proof. If a Θ-graph is drawn so that it has an even number of cycles with an odd
number of self-crossings, there are either no or two cycles with an odd number
of self-crossings. In case there are two cycles with an odd number of crossings,
the two cycles share one of the three paths; introduce a self-crossing (within
one edge) along that path. Hence, we can assume that all cycles have an even
number of self-crossings. By Theorem 1.4, the graph can be embedded in the
plane with the same rotation system, so it must be a converter.

To establish the other direction, swap the ends of two edges at one of the two
vertices defining the Θ-graph; this changes the parity of the number of cycles
with an odd number of self-crossings, so it becomes even. Then by the argument
we made in the first paragraph, the modified graph is a converter, which means
that the original graph (before swapping the ends) is not.

Θ-graphs are not closed under contracting edges, leading to problems with
proofs centered around contraction. To address this issue, we introduce ϑ-graphs
as graphs resulting from completely contracting one of the paths of a Θ-graph;

9



in other words, a ϑ-graph is a vertex with two closed, internally disjoint paths
starting and ending at that vertex. We call a ϑ-graph a converter if the ends
of the two closed paths do not alternate at the shared vertex. (If we contract
one of the paths of a Θ-graph which is a converter, the resulting ϑ-graph is a
converter.) It is easy to see that a ϑ-graph is a converter if and only if its two
closed paths cross an even number of times (not counting the shared vertex v).

Lemma 1.11. If every Θ-subgraph in a drawing of a 2-connected graph (without
loops) is a converter, then every ϑ-subgraph in the drawing is a converter.

Proof. Fix a drawing of the graph and assume that every Θ-subgraph is a con-
verter. Pick a ϑ-subgraph at some vertex v formed by two closed paths P and
Q. Since the graph is 2-connected, there must be a path connecting P − v and
Q− v (each of these paths contains at least one vertex, since the graph contains
no loops). Let R be a shortest such path with endpoints p ∈ P and q ∈ Q. Now
P consists of two (proper) v, p-paths P1, P2 and Q of two v, q-paths Q1, Q2.
With these pieces we can build two Θ-graphs between v and p: P1, P2, R+Q1

and P1, P2, R+Q2. By assumption, both of the Θ-graphs are converters, so the
cyclic clockwise orderings of the three paths at v and p must be reversed. Let
us assume that paths P1, R, P2 occur in this clockwise, cyclic ordering at p (the
other case P2, R, P1 is analogous). But then the two continuations of R (Q1

and Q2) must each occur between P2 and P1 in the clockwise cyclic ordering at
v since the two Θ-graphs are converters. Hence, Q1 and Q2 are consecutive at
v, which implies that the ϑ-subgraph formed by P and Q is a converter.

With these results we are in a position to show that Theorem 1.9 is a variant
of the weak Hanani-Tutte theorem.

Proof of Equivalence of Theorem 1.9 and Theorem 1.2. In a drawing in which
every two edges cross an even number of times, every Θ-subgraph is a converter
by Lemma 1.10 (every cycle has an even number of self-crossings and we can
assume that edges are free of self-crossings). This shows that Theorem 1.9
implies Theorem 1.2.

To see the other direction, let the graph be drawn so that every Θ-subgraph
is a converter. It is sufficient to prove the result for 2-connected graphs, and
then recombine the drawings at the cut-vertices. As we did in the proof of
Theorem 1.4, we can partially contract the edges of a spanning tree T so that
all edges of T are free of crossings. Let e and f be any two edges of the graph.
We show that e and f cross an even number of times. This is obvious if either
one of them belongs to E(T ), so we can assume that e, f 6∈ E(T ) and there are
cycles Ce ⊆ T + e and Cf ⊆ T + f . If Ce and Cf do not share a vertex, they
must cross an even number of times in the plane, so e and f cross evenly; if
Ce and Cf share a vertex, but not an edge, then Ce ∪ Cf is a ϑ-graph, so by
Lemma 1.11 it is a converter, and e and f cross evenly. Finally, if Ce and Cf

share more than one vertex, they share a non-empty path, and Ce ∪ Cf is a
Θ-graph which, by assumption, is a converter. But then e and f cross evenly
by Lemma 1.10.
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1.3 Strong Hanani-Tutte and Cycles

Maybe the shortest and most elegant proof of the Hanani-Tutte theorem is
due to Kleitman [16]. He essentially establishes Hanani’s original result us-
ing an intuitive geometric approach by showing that all drawings of K2i+1 and
K2i+1,2j+1 have an odd number of independent crossings.5 Together with Kura-
towski’s theorem this yields the strong Hanani-Tutte theorem in the same way
that Hanani’s result did.

Archdeacon and Richter later showed that K2i+1 and K2i+1,2j+1 are the only

graphs for which the parity of independent crossings is the same in all drawings [2].

We do not include Kleitman’s proof since we will show how to obtain an
even stronger version of the Hanani-Tutte theorem using ideas similar to his.
The following lemma has been used and stated in many forms, but its core
ideas really go all the way back to van Kampen [54]. An (e, v)-move consists of
deforming a small part of e, moving it close to v and then pulling it over v. It
changes the parity of crossing of e with every edge incident to v, but with no
other edge, see Figure 4. A rotation swap consists of swapping the order of two
consecutive ends at a vertex.

v

e

v

e

Figure 4: Performing an (e, v)-move.

Lemma 1.12. Given two drawings D1 and D2 of the same graph, there is a set
of (e, v)-moves and rotation swaps that can be applied to D1 so that the resulting
drawing D′

1 has the same parity of crossing between every pair of edges as D2.

Proof. We follow Kleitman’s argument [16]: start with D1. By deforming the
plane, we can assume that each vertex has the same location in D1 and D2. Now
continuously deform each edge e from its drawing in D1 to its drawing in D2.
The only ways the parity of crossing between e and another edge f can change is
by e moving over an endpoint v of f—corresponding to an (e, v)-move, or by the
consecutive ends of e and f swapping order at a shared vertex—corresponding
to a rotation swap.

5The slightly weaker result that this result is true if one restricts oneself to drawings in
which adjacent edges do not cross, is already contained in Levow [17].
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Lemma 1.12 simplifies reasoning about drawings, by turning it into an al-
gebraic problem. Our first use of the lemma is to establish a strengthening of
Kleitman’s observation. Let a principal k-cycle of a subdivision of a graph G
be a cycle that contracts to a k-cycle of G.

Lemma 1.13. Given a drawing of a subdivision of K3,3, the number of principal
4-cycles with an odd number of independent self-crossings is odd.

Proof. The claim is true for the standard straight-line drawings of K3,3 and its
subdivisions, so we only have to show that the number of principal 4-cycles with
an odd number of independent self-crossings does not change under (e, v)-moves.

First observe that an edge and a vertex in a K3,3 always determine an even
number of 4-cycles (namely 2 or 4) that use the edge and the vertex; on the
other hand two disjoint edges determine a unique 4-cycle.

Fix a drawing of a K3,3-subdivision, and select any vertex v and edge e of
the graph. If v is a degree-2 vertex in a subdivided K3,3 edge f , and e occurs
in the subdivision of a K3,3-edge that is not adjacent to f , then the two edges
incident to v cannot be adjacent to e, so the (e, v)-move flips the parity of
crossing of e with both edges incident to v. Since either both or neither of those
two edges belong to a cycle, the number of independent self-crossings along any
cycle cannot change in this case.

Otherwise, v is a degree-2 vertex in the same subdivided edge that e belongs
to, or v is a vertex of the original K5. In either case, by the observation, an
(e, v)-move affects an even number of principal 4-cycles (by either changing the
parity of independent self-crossings of all of them or none of them), so the total
number of principal 4-cycles with an odd number of independent self-crossings
does not change parity.

As often, K5 turns out to be the harder case.

Lemma 1.14. Any drawing of a K5 contains a cycle with an odd number of
independent self-crossings.

Proof. Let an i-odd pair be a pair of independent edges that crosses an odd
number of times. First note that in any drawing of a K5 the number of i-odd
pairs is odd. This is true for the standard (convex) straight-line drawing of K5,
which contains five i-odd pairs; so it is sufficient to show that the parity of i-odd
pairs does not change under (e, v)-moves; but this is clear, since any (e, v)-move
either does not change the parity of crossings between independent edges at all
(if v is an endpoint of e), or changes the parity of crossing between e and each
of the two edges incident to v that are not adjacent to e. In either case, the
parity of i-odd pairs does not change.

Now assume, for a contradiction, that K5 can be drawn so that every cycle
has an even number of independent self-crossings. Every 4-cycle is made up
of two independent pairs of edges that, by assumption, must have the same
parity of crossing. But then the three pairs of independent edges that make up
a K4-subgraph must also all have the same parity of crossing. So each K4 has
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either three or no i-odd pairs. Since the number of i-odd pairs in the drawing
is odd, this implies that of the five K4s into which the independent pairs in K5

can be partitioned, an odd number of them will contain three i-odd pairs. Now
consider any C5; it shares exactly one i-odd pair with each of the five K4s so it
has an odd number of independent self-crossings, contradicting the assumption.

With Lemma 1.14 as the base case we are ready to deal with subdivisions of
K5.

Lemma 1.15. Any drawing of a subdivision of K5 contains a cycle with an odd
number of independent self-crossings.

Proof. For the purposes of this proof only, the parity of a cycle is the parity
of the number of pairs of independent edges that belong to the cycle and cross
oddly. Suppose then that there is a subdivision G of K5 which can be drawn so
that all cycles have even parity.

By Lemma 1.14, G cannot be K5, so G must contain a degree-2 vertex v.
We show that in that case we can redraw G so that v can be contracted away
without changing the parity of any cycle. This gives us an inductive proof of
the lemma. For the redrawing it will be useful to understand the effects of
(e, v)-moves on the parity of cycles: if v is one of the endpoints of e, then an
(e, v)-move has no effect on the parity of any pairs of edges crossing, and so it
does not affect the parity of any cycles. If, on the other hand, v is not a neighbor
of either endpoint of e, then an (e, v)-move also has no effect on the parity of any
cycle: each cycle has even degree at v, so an (e, v)-move will change the parity
of crossing between e and the two cycle edges incident to v, so the parity of the
cycle does not change. Finally, we are in the case that there is an edge f which
shares one endpoint with e and has v as its other endpoint. Then an (e, v)-move
will change the parity of every cycle that contains both e and f excepting, if it
exists, a C3 containing both e and f ; a C3 always has even parity.

First suppose that G contains a path uvwx where v and w have degree 2 (so
uvwx is part of a subdivided edge). There are two possible obstacles to merging
vw and wx into a single edge vx without changing the parity of any cycle: some
edge incident to x crosses vw oddly or uv crosses wx oddly. If uv crosses wx
oddly, then perform an (uv, x)-move; since there cannot be an edge between u
and x, this does not change the parity of any cycle, and makes uv cross wx
evenly. If there is an edge f incident to x that crosses vw oddly, perform an
(f, v)-move. As above, f cannot have u as an endpoint, so no cycle changes
parity, and f crosses vw evenly. Hence, all edges incident to v and x (excepting
vw and wx) cross both vw and wx evenly, so we can replace vw and wx by a
single edge vx without changing the parity of any cycle.

If G does not contain a path uvwx as above and is not a K5, it must contain
a path uvw so that both u and w have degree 4 and v has degree 2. If all edges
(other than uv and vw) incident to u or w cross both uv and vw evenly, then we
can merge uv and vw into a single edge uw without changing the parity of any
cycle in G. Hence, there must be some edge e incident to u or w that crosses
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uv or vw oddly. Without loss of generality, e is incident to u. If e crosses uv
oddly, then we can perform an (e, u)-move. This makes e cross uv evenly, and it
does not change the parity of any cycle (since e is incident to u). Hence, we can
assume that e crosses vw oddly. Let x be the other endpoint of e. If xw is not
an edge in G, then we can perform an (e, w)-move without changing the parity
of any cycle, and making e cross vw evenly. Hence f = xw must be an edge
of G. But now uv, vw, f, e form a 4-cycle in G which, by assumption, has an
even number of independent crossings. However, there are only two independent
pairs: e, vw and f , uv. Since e and vw cross oddly, so must f and uv. Now
perform both an (e, w)- and a (f, u)-move. This reduces the number of odd
crossings along uvw and does not change the parity of any cycle (each move
by itself changes the parity of all cycles containing both e and f ; performed
together, the parity of each cycle is unaffected). In summary, we can ensure
that all edges incident to u or w cross both uv and vw evenly, so uv and vw can
be merged into a single edge uw.

Since by Kuratowski’s theorem every non-planar graph contains a subdivi-
sion of K5 or K3,3, Lemmas 1.13 and 1.15 imply the following theorem. The
traditional strong Hanani-Tutte theorem is an immediate consequence.

Theorem 1.16. If a graph can be drawn so that all its cycles have an even
number of independent self-crossings, then the graph is planar.

One might ask, whether it is possible to prove the strong Hanani-Tutte theorem

or even Theorem 1.16 without taking recourse to Kuratowski’s theorem? This is not

an idle question as we will see in Section 1.4. For Theorem 1.16 we have to leave

the question open, but there is an elementary proof of the Hanani-Tutte theorem—in

the style of the proof of Theorem 1.3—that does not use Kuratowski’s theorem [34].6

This, in turn, leads to the question of whether Kuratowski’s theorem can be obtained

from the Hanani-Tutte theorem. The answer is yes, as shown by van der Holst [51].7

1.4 Algorithmic and Algebraic Aspects

While Kuratowski’s theorem gives us a characterization of planar graphs, it does
not directly lead to either an efficient planarity test or an efficient embedding
technique for planar graphs. These problems were first addressed in the sixties,
culminating in the linear-time algorithm by Hopcroft and Tarjan. The Hanani-
Tutte theorem offers an alternative algorithmic approach to planarity testing
along two separate routes: one practical, the tree approach, based on work of

6Sarkaria [41] in 1991 claimed the same result. His proof contains several flaws: The
redrawing suggested in his Figure 4 (page 82) introduces odd crossings between β and edges
that end between α and β. This not only changes the parity of crossings between two edges,
but it may also introduce crossings with edges that have previously been cleared of crossings.
Both problems can be dealt with, but, as far as we know, not by locally working with a single
vertex. This is why we believe that Sarkaria’s proof cannot be fixed along the lines described
in his paper.

7Sarkaria [41] also claims this result, however we were not able to verify it.
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de Fraysseix and Rosenstiehl [10] and the more theoretical algebraic approach,
first suggested by Wu [56, 57].8

1.4.1 Trémaux Orders

A Trémaux tree is a (rooted) depth-first search tree of a graph; it defines a
partial order on the vertices of the tree, a Trémaux order, with the root as
the smallest element. In a Trémaux order any non-tree edge of a graph has
two endpoints that are comparable. Given a spanning tree T of a graph G, a
T -embedding of G is a drawing of G in which the edges of T are crossing-free;
let T [e] denote the unique path in T that connects the endpoints of e. Liu
established the following characterization of planarity [10].

Theorem 1.17 (Trémaux Crossing Theorem (Liu)). If T is a Trémaux tree of
a non-planar graph G, then any T -embedding of G contains two edges e and f
that cross oddly, and so that T [e] and T [f ] have an edge in common.

The Trémaux Crossing Theorem follows from the strong Hanani-Tutte theorem: in

a T -embedding there are two independent edges e and f that cross oddly by Hanani-

Tutte; but then T [e] and T [f ] must share an edge: if they only shared a vertex, the

endpoints of e and f together with the shared vertex do not form a Trémaux order.

The Trémaux Crossing Theorem is at the root of de Fraysseix-Rosenstiehl’s
planarity criterion which has been used to justify the correctness of linear time
planarity algorithms including Hopcroft-Tarjan and the Left-Right algorithm of
de Fraysseix-Rosenstiehl [10].

1.4.2 Algebraic Characterizations of Planarity

Call a drawing of a graph i-even if all pairs of independent edges cross evenly. To
find a planar embedding of a graph, it is enough to, (i), find an i-even drawing
of the graph (if this fails, the graph is not planar), and, (ii), convert the i-even
drawing into a planar drawing.

For step (i) we can exploit the algebraic characterization of planarity sug-
gested by the Hanani-Tutte theorem. For a given graph G, let U(G) be the
GF(2)-vector space over the basis [e, f ], where e and f range over all indepen-
dent pairs of edges of G and e < f in some ordering of the edges; to simplify
notation, we allow [f, e] for [e, f ] and let [e, f ] = 0 if e and f are not independent.

Consider a drawing D of G = (V,E). With D we associate the vector

xD :=
∑

e<f

(crD(e, f) mod 2)[e, f ],

where crD(e, f) is the number of crossings between e and f in D. Let X(G) :=
{xD : D is a drawing of G}. Also, we define we,v :=

∑

f=(u,v)[e, f ] (this vector

corresponds to the effect of an (e, v)-move). Let W (G) be the GF(2)-vector
space in U(G) spanned by the we,v, e ∈ E, v ∈ V .

8Wu’s 1985 papers are translations of work originally published in the 1970s in Chinese.
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Theorem 1.18 (Van Kampen, Tutte, Wu, Levow). The difference between any
two vectors in X(G) lies in W (G) and if x ∈ X(G) and w ∈ W (G), then
v +w ∈ X(G). In other words, X(G) is a coset of W (G) in U(G).

Who proved this result? Van Kampen [54] proved one direction, X(G)−X(G) ⊆

W (G), but could only prove the other direction for higher dimensions; the first explicit

statements are in Wu [56] and Levow [17]. Tutte essentially proved the same result

over a different vector space, as we will see below; Levow was aware of Tutte’s work,

Wu was not.

By Theorem 1.18 planarity is equivalent to 0 ∈ X(G), which means that pla-
narity can be phrased as system of linear equations over the field GF(2) which
can be solved by Gaussian elimination in cubic time (even less). Unfortunately,
the number of variables and equations is Θ(|E|2), which yields a planarity algo-
rithm running in worst-case time O(|E|6); it is not clear whether the structure
of the problem can be used to obtain a practical algorithm.

Let ||x||1 denote the 1-norm of x, that is, the sum of the absolute values
of the entries of x. Then min

x∈X(G) ||x||1 is known as the independent odd
crossing number of G written as iocr(G) (see Section 3.4 for more on crossing
numbers). Thus, computing iocr(G) can be expressed as a minimization problem
over a vector space. More precisely, let s ∈ X(G) be an arbitrary vector (for
example, position the vertices of G on the boundary of a disk in arbitrary
order and consider the resulting straight-line drawing). Then iocr(G) is the
minimum of ||s + x||1 over all x ∈ W (G). In other words, we are looking for
x ∈ W (G) that is closest, in the 1-norm, to s. This is a special case of the nearest
vector problem, which is NP-hard to approximate to within any constant [3].
Hence, the algebraic approach does not seem to offer any help in the efficient
computation or approximation of crossing numbers.

We have counted crossings along edges modulo 2, corresponding to the tradi-
tional Hanani-Tutte theorem; however, there is another way to count crossings
that might be worth exploring, and that goes back at least as far as Whit-
ney’s 1944 paper [55], though Flores already hints at the possibility [20, 62.
Kolloquium §12]; it’s first explicitly worked out by Tutte. Form UZ(G) like
U(G), but as a Z-vector space. If we orient all the edges in G, we can as-
sign +1 and −1 to each crossing between two edges depending on the direction
of the crossing; let acrD(e, f) be the sum of these values along e and f , and
aD :=

∑

e<f acrD(e, f)[e, f ], and A(G) := {aD : D is a drawing of G}. For an
(e, v)-move we now have two vectors we,v depending on the direction in which
we pull e over v (and the entries are +1 and −1 depending on the direction of
crossing). Without spelling out the details, let WZ(G) be the Z-vector space
generated by all these vectors.

Theorem 1.19 (Tutte). A(G) is a coset of WZ(G) in UZ(G).

As above, planarity is equivalent to 0 ∈ A(G). Tutte also showed that if
x ∈ A(G), then 2x ∈ WZ(G).9

9In his terminology: “A crossing chain is half a cross-coboundary.”
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As with X(G), we can make A(G) the basis of a crossing number definition:
min

x∈A(G) ||x||1 is the independent algebraic crossing number of G, or iacr(G),
for short. On the question of whether iacr = cr, where cr is the traditional
crossing number (see Section 3.4), Levow [17] writes “it seems reasonable to
hope that equality holds for all graphs”; as we will see in Section 3.4 this is
not the case, the two notions of crossing numbers differ. Interestingly, Whitney
came close to asking the same question 30 years earlier [55]. Levow continues
“whether or not equality holds, the algebraic setting may be useful in helping to
compute crossing numbers, for it leads to a lower bound for the crossing number
given in terms of the solution to an integer or Boolean minimization problem.”

Step (ii) requires an effective version of the strong Hanani-Tutte theorem.
From that perspective all the proofs based on Kuratowski’s theorem fail. The
first proof of strong Hanani-Tutte that does not appeal to Kuratowski’s theorem
and constructs an embedding starting with an i-even drawing is from [34] (a
straightforward implementation of the algorithm will run in quadratic time,
better bounds might be possible). The approach has a flavor similar to the proof
shown in Theorem 1.3. For a variant see Theorem 3.14, for a strengthening,
Theorem 3.17 in Section 3.4.10

As an immediate consequence of steps (i) and (ii) we get that planarity test-
ing can be performed, and the planar graph embedded, in time O(|E|6), so the
algebraic approach, at least at this point, does not seem to offer any algorithmic
advantages over the graph-theoretical approach. However, on the theoretical
side, the algebraic point of view has led to interesting research, including sev-
eral recent papers by van der Holst giving purely algebraic characterizations of
planarity, outerplanarity, and linkless embeddability [51, 52].

2 Surfaces

Different frommany other planarity criteria—such as Kuratowski or MacLane’s—
Hanani-Tutte can easily be restated for arbitrary surfaces.11 Take the weak
Hanani-Tutte theorem:

Theorem 2.1 (Weak Hanani-Tutte for Surfaces [7, 36]). If a graph can be drawn
in a surface S so that every pair of edges crosses an even number of times, then
the graph can be embedded in S without changing the embedding scheme.12

10We note that there were two previous claims for algorithms solving (ii). Wu extends
the system of linear equations by a set of quadratic equations whose solution will describe
an embedding. However, solving quadratic systems of equations is NP-complete, so Wu’s
approach does not lead to an efficient solution. Sarkaria [41] claims that there is a “one-
dimensional version of Whitney’s trick by means of which any graph [G which has an i-even
drawing] can be, step by step embedded in R

2.” Unfortunately, his version of the Whitney
trick for n = 1 is fatally flawed as explained in an earlier footnote.

11Both Kuratowski and MacLane can be restated for arbitrary surfaces, but in the case of
Kuratowski we do not know the list of excluded topological minors except for the plane and
the projective plane [21], and in the case of MacLane’s criterion the generalization is far from
obvious [5].

12Embedding schemes generalize the notion of rotation system to arbitrary surfaces, includ-
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For orientable surfaces this was established by Cairns and Nikolayevsky [7]
using homology theory; the result can also be established using a geometric proof
which also works for non-orientable surfaces as shown by Pelsmajer, Schaefer,
and Štefankovič [36]. Cairns and Nikolayevsky established the slightly stronger
Theorem 1.8 for orientable surfaces. The parity of crossing between two closed
curves in a surface depends only on their isotopy classes (we assume the two
curves have a finite number of crossings and don’t touch at any point); for exam-
ple, in the plane any two closed curves cross an even number of times, and any
two generators of the torus will cross an odd number of times. Given two cycles
C1 and C2 in a graph drawn in surface S, let c1 and c2 be two curves isotopic to
the drawings of C1 and C2 that cross finitely and don’t touch. Let ΩS(C1, C2)
denote the parity of crossing between c1 and c2. We use σS(C1, C2) for the
notion of crossing number defined at the beginning of Section 1.2 generalized to
surface S.

Theorem 2.2 (Cairns, Nikolayevsky [7]). If a graph can be drawn in a surface
S so that σS(C1, C2) ≡ ΩS(C1, C2) mod 2 for every two cycles in the graph,
then the graph can be embedded in S without changing the embedding scheme.

In the plane, Ω(C1, C2) = 0 for all pairs of cycles and so the planar version,

Theorem 1.8, is a special case. The proof we sketched of Theorem 1.8 generalizes to

arbitrary surfaces, including non-orientable surfaces: The parity of σ(C1, C2) is not

affected by contractions of edges, so we can contract the graph to a single vertex

with loops; now the number of crossing between two loops e and f equals σS(e, f) +

ΩS(e, f) ≡ 0 mod 2, so e and f cross an even number of times. By Theorem 2.1 that

graph can be embedded without changing its embedding scheme.

The Loebl-Masbaum result, Theorem 1.3 also generalizes to arbitrary sur-
faces.

Theorem 2.3. If a graph can be drawn in surface S so that every even subgraph
has an even number of self-crossings, then G can be embedded in S without
changing the embedding scheme.

Proof. The proof of Theorem 1.3 does not use the fact that the ambient surface
is a plane until it deals with the one-vertex case. However, in the case of a single
vertex the assumption of the theorem implies that any two loops cross evenly.
This allows us to apply Theorem 2.1 (which, by its proof, is true for graphs with
loops) to redraw the one-vertex graph without crossings and without changing
the embedding scheme.

Similarly, a closer look at the proof of Theorem 1.4 shows that for 2-connected
graphs it does not use planarity at all, but only relied on the weak Hanani-Tutte
theorem for the plane. Since we just saw that that theorem can be lifted to ar-
bitrary surfaces, the cycle version of weak Hanani-Tutte is true for arbitrary
surfaces:

ing non-orientable ones. We do not include a formal definition, but refer the reader to [21]
or [36] for details.
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Theorem 2.4. If a 2-connected graph can be drawn in surface S so that every
cycle has an even number of self-crossings, then the graph can be embedded in
S without changing the embedding scheme.

The result fails if the graph is not 2-connected; on the torus, for example,
we can take two K7 and overlap them in one vertex. Each K7 by itself can be
embedded on the torus without self-crossings, so all cycles in the drawing are
free of self-crossings.

The planarity criterion by Lovász, Pach, and Szegedy , Theorem 1.9, does not seem

to generalize in a straight-forward manner. The notion of converters seems too closely

bound to the plane, but a careful analysis of the proof might yield an equivalent form

for higher-order surfaces, at least for orientable surfaces.

The story of strong versions of Hanani-Tutte is, unfortunately, much shorter.
We currently only know that strong Hanani-Tutte is true on the projective plane.

Theorem 2.5 (Pelsmajer, Schaefer, Stasi [32]). If a graph can be drawn in the
projective plane so that every pair of independent edges crosses an even number
of times, then the graph can be embedded in the projective plane.

The proof of Theorem 2.5 relies on the excluded minors for embeddability in
the projective plane, so while some of ideas of the proof might be useful, it will
not guide the way to establishing the Hanani-Tutte theorem for other surfaces,
like the Klein bottle or the torus (for which the list of excluded minors is not
known). It also means, that, at least with its present proof, Theorem 2.5 does
not lead to an algorithm for embeddability in the projective plane.13

We know that in the plane every graph which can be drawn so that all its cy-
cles have an even number of independent self-crossings is planar (Theorem 1.16).
The example after Theorem 2.4 shows that on surfaces other than the plane we
need to require 2-connectedness.

Conjecture 2.6. If a 2-connected graph can be drawn in the projective plane
so that all its cycles have an even number of independent self-crossings, then
the graph can be embedded in the projective plane.

If all edges in a graph are independently even, all cycles in the graph have an even

number of independent self-crossings. Therefore Conjecture 2.6 implies the strong

Hanani-Tutte theorem on the projective plane; analogously, a version of Conjecture 2.6

for surface S implies strong Hanani-Tutte of surface S. The reverse implication is not

clear.

13In the terminology of Section 1.4, step (ii) fails. However, step (i) also seems to fail for
the projective plane: the natural way of adding the cross-cap into the system of equations
will lead to a quadratic system which, in general, is NP-complete to solve. Levow [17] shows
how to extend Tutte’s algebraic characterization of planarity to arbitrary surfaces.
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3 Applications of Hanani-Tutte

We survey some of the applications of Hanani-Tutte, both weak and strong;
we do not claim completeness; for example, we do not pursue the alternative
history of Hanani-Tutte in the literature of algebraic topology.

3.1 Arrangements of Geometric Objects

A collection of pseudo-disks is a collection of simply connected regions (bounded
by simple, closed curves) so that the boundary curves of any two regions intersect
at most twice. In their extension of a point-selection result from disks to pseudo-
disks, Smorodinsky and Sharir established the following theorem:

Theorem 3.1 (Smorodinsky, Sharir [45]). Let P be a collection of n points
and C a collection of m pseudo-disks in the plane so that the boundary of every
pseudo-disk passes through a distinct pair of points in P and so that no pseudo-
disk contains a point of P in its interior. Then m ≤ 3n− 6.

To see that the theorem is true, construct a multi-graph on the vertices of P
with edges formed by the two boundary arcs of each pseudo-disk (formed by the
two points of P on the boundary). We argue that any two independent edges e
and f of the graph cross an even number of times; suppose, for a contradiction,
that e and f cross oddly. Since e and f are independent, they belong to two
different pseudo-disks bounded by e, e′ and f, f ′. Since e and f cross oddly,
they must cross once (being part of the boundaries of two pseudo-disks, they
can cross at most twice). If e′ also crosses f , then neither can cross f or f ′,
so the two endpoints of e are on different sides of the pseudo-circle formed by
f, f ′, which is a contradiction, so we conclude that e′ does not cross f . But then
the endpoints of f are on opposite sides of e, e′, again a contradiction. Hence,
any two independent edges cross evenly, and, thus, by Hanani-Tutte, the multi-
graph is planar. By construction, each edge in the multi-graph is doubled, so
we conclude that m ≤ 3n− 6.14

The proof needs the strong Hanani-Tutte theorem, since adjacent edges might
very well cross oddly in the setting of Theorem 3.1. This makes generalizations of
Theorem 3.1 to other surfaces hard, since we do not have strong Hanani-Tutte for
arbitrary surfaces; however, we can extend Theorem 3.1 to the projective plane: Note
that apart from the application of Hanani-Tutte, the proof of Theorem 3.1 works for
arbitrary surfaces, since the union of two pseudo-disks (even in surfaces other than
the plane) is a planar region, so the argument can proceed as is; the only difference
is that we need to replace the Euler bound on m by the corresponding bound for the
given surface; in the case of the projective plane, the proof outline above, combined
with Theorem 2.5 establishes the following result:

Theorem 3.2. Let P be a collection of n points and C a collection of m pseudo-

disks in the projective plane so that the boundary of every pseudo-disk passes through

a distinct pair of points in P and so that no pseudo-disk contains a point of P in its

interior. Then m ≤ 3n− 3.

14The argument closely follows the proof given in [45].
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To generalize Theorem 3.1 to arbitrary surfaces we do not actually need the full
strong Hanani-Tutte theorem, since we can assume that any pair of edges crosses
at most twice. This suggests the following parameterized form of the Hanani-Tutte
theorem for arbitrary surfaces:

Conjecture 3.3. If a graph can be drawn in a surface S so that any pair of inde-

pendent edges crosses evenly and every pair of edges crosses at most t times, then the

graph can be embedded in the surface.

To establish Theorem 3.1 for surface S (with adjusted Euler bound), it would be

sufficient to prove the conjecture for t = 2, but even t = 1 does not appear to be

obvious.

The idea of using Hanani-Tutte with unions of objects seems to have been
first used by Pach and Sharir [25] in a new proof of an earlier result of Whitesides
and Zhao. Call a collection of simply connected regions k-admissible if no region
disconnects another, the boundaries of regions don’t touch and they cross at
most k times (for example, collections of pseudo-disks that don’t touch are
2-admissible).

Theorem 3.4 (Whitesides, Zhao). The boundary of the union of a k-admissible
family of size n ≥ 3 contains at most k(3n− 6) arcs.

As in the case of Theorem 3.1, the proof does not rely on properties of
the plane other than the application of the Hanani-Tutte theorem (establishing
Conjecture 3.3 for t = 2k would be sufficient), so the theorem can be established
for the projective plane with a bound of k(3n− 3); other surfaces remain open,
as does the question of whether results based on Theorems 3.1 and 3.4 can be
extended to surfaces other than the plane.

It appears that the Hanani-Tutte theorem can play a role in extending results
about geometric disks to pseudo-disks; indeed, another example due to Buzaglo,
Pinchasi, and Rote [6] concerns the Vapnik-Červonenkis-dimension of pseudo-
disks. The Vapnik-Červonenkis-dimension of a collection C of sets is the largest
number of points such that every subset of the points can be obtained as an
intersection of the set of points with a set in C. It is well-known that the Vapnik-
Červonenkis-dimension of disks is 3 (for any set of four points, there always is
some subset of the points that cannot be obtained by intersecting the four points
with a disk).

Theorem 3.5 (Buzaglo, Pinchasi, and Rote [6]). The Vapnik-Červonenkis-
dimension of any collection of pseudo-disks is at most 3.

The proof does not require the Hanani-Tutte theorem, but it is based on
studying drawings of K4 in which edges are allowed to cross evenly.

A collection of pseudo-parabolas is a collection of functions from R 7→ R so
that any two functions cross twice or share one point of tangency (and no point
lies on more than two pseudo-parabolas). Then the tangency graph in which each
pseudo-parabola is represented by a vertex, and an edge represents tangency
between two pseudo-parabolas is a biparite, planar graph and thus has at most

21



2n− 4 edges, if n ≥ 3 is the number of pseudo-parabolas. This result from [1]
is based on strong Hanani-Tutte and it has several interesting consequences, for
example, that the number of empty bigons (or lenses) in a collection of pairwise
intersecting pseudo-circles is linear in the number of pseudo-circles [1], also see
the exposition in [26, Section 5.2]. Ezra and Sharir [12] use the same approach to
bound the complexity of the lower envelope of n functions in R

3 (under certain
conditions), a much more complicated situation.

3.2 Excluded Subgraphs

Traditionally, ex(n,G) is the largest number of edges of a (simple) graph on n
vertices without a subgraph isomorphic to G; in topological graph theory the
corresponding notion is excr(n,G), asking for the largest number of edges in a
topological graph that contains no self-intersecting G (equivalently: all copies
of G are crossing free). Pinchasi and Radoičić introduced a parity version of
this they called exocr(n,G) which is the largest number of edges of a topological
graph on n vertices for which every two edges in the same copy of G cross
evenly [40]. In the same spirit we can define exiocr(n,G) in which we only
require independent edges of G to cross evenly (the reasons for the names will
become clear in Section 3.4 on crossing numbers). By the definition we have
ex(n,G) ≤ excr(n,G) ≤ exocr(n,G) ≤ exiocr(n,G).

Let us consider two trivial cases. If G = P3, the path of length 3, then ex(n, P3) =

⌊n/2⌋, the size of a largest matching on n vertices. On the other hand, in a convex

straight-line drawing of Kn no two adjacent edges cross, so excr(n, P3) = exocr(n, P3) =

exiocr(n, P3) =
(

n

2

)

; for the same reason, excr(n,K1,m) = exocr(n,K1,m) = exiocr(n,K1,m) =
(

n

2

)

so stars are not of interest. If G = 2K2, two independent edges, then ex(n, 2K2) =

n − 1, for n ≥ 4, and excr(n, 2K2) ≤ exocr(n, 2K2) ≤ exiocr(n, 2K2) = 3n − 6, using

the strong Hanani-Tutte theorem. From these examples, it is clear that ex differs from

all the other variants, but we do not know of any examples separating excr, exocr and

exiocr.

As Pach, Pinchasi, Tardos and Tóth [23] point out any of these notions
are only interesting for planar bipartite graphs G; if G is non-planar, then
ex(n,G) = excr(n,G) = exocr(n,G) = exiocr(n,G) (using the Hanani-Tutte
theorem), and if G is not bipartite, ex(n,G) is already Ω(n2) so there are no
interesting asymptotic results.

So the smallest interesting cases to consider are P4 and C4 and there are
bounds for both. Pach, Pinchasi, Tardos and Tóth show that both excr(n, P4)
and exiocr(n, P4) are of order Θ(n3/2) [23] compared to the traditional ex(n, P4) =
n. Pinchasi and Radoičić show that exocr(n,C4) = O(n8/5) [40], while ex(n,C4) =
Θ(n3/2) which also is the best current lower bound on exocr(n,C4). The C4 prob-
lem is particularly interesting, since it has implications for the number of cuts
needed to turn an arrangement of pseudo-parabolas into pseudo-segments [40].

Other variants of these problems are possible; for example, Pach, Pinchasi,
Tardos and Tóth study the geometric version exrcr(n, P4) of excr(n, P4) (in which
all edges are line segments). For geometric versions, the excr, exocr and exiocr
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versions collapse. One can also consider excr(2)(n,G) (excr
−
(2)(n,G)) in which

we require that every copy of G in the topological graph has an even number
of (independent) self-crossings. This has the flavor of Theorem 1.4 and the
problems suggested in the subsequent remark. As far as we know, nothing is
known about excr(2) and excr

−
(2) or how they relate to exocr or exiocr.

3.3 Thrackles

John Conway has a penchant for asking simple questions that are hard to answer.
His Devil and Angel problem had to wait more than 20 years for a solution, and
his even older thrackle conjecture is still unsettled. It forcefully drives home the
point how little we really know about drawings of graphs.

Conway defined a thrackle as a graph that can be drawn so that every pair
of edges intersects exactly once. A common endpoint of two edges counts as
an intersection, so if we rephrase this condition in terms of crossings it requires
that the graph can be drawn so that every pair of independent edges crosses
exactly once and adjacent edges do not cross.

Conway conjectured that the number of edges of a thrackle is at most the
number of its vertices [4, Section 9.5]. While this conjecture is open, we do
know that |E(G)| = O(|V (G)|) for thrackles G; this was first shown by Lovász,
Pach and Szegedy [19].15 Their proof uses the notion of a generalized thrackle,
a graph which can be drawn so that every two edges cross an odd number of
times.

The traditional definition of a generalized thrackle requires that every two edges

intersect an odd number of times. The two definitions are equivalent [36, Remark 4.2]:

one can flip the rotation at each vertex changing the parity of crossing between any

pair of adjacent edges to move back and forth between the two variants. For traditional

thrackles this implies that an intersection-thrackle is always a crossing-thrackle, but

the reverse is not true: C4 is known not to have a (intersection)-thrackle drawing, but

it can easily be drawn so that every pair of edges crosses exactly once. We are not

aware of any research specifically on crossing-thrackles.

Theorem 3.6 (Lovász, Pach and Szegedy [19]). A bipartite graph is a gener-
alized thrackle if and only if it is planar.

Let G be a thrackle; split V (G) into V1 and V2 so as to maximize the number
of edges between V1 and V2. Then every vertex has at least as many neighbors
in the other partition as it has in its own partition (otherwise we would move it
to the other partition), so we can remove at most half the edges of G to turn it
into a bipartite graph G′. By Theorem 1.9, G′ is planar and thus has at most
2|V (G′)| − 4 edges (using Euler); but then |E(G)| ≤ 4|V (G′)| − 8 ≤ 4|V (G)|,
so |E(G)| = O(|V (G)|) for thrackles G. In fact, this bound can be improved by
sharpening the reasoning:

15The best current upper bound of, approximately, |E| < 1.428|V | is due to Fulek and
Pach [13] using computational methods.
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Corollary 3.7 (Lovász, Pach and Szegedy [19]). If G is a thrackle, then |E(G)| ≤
2|V (G)| − 3.

We include a very simple proof of Theorem 3.6 based on a proof from [36].
Recall that an (e, v)-move pulls e over v changing the parity of crossing between
e and every edge incident to v as shown in Figure 4.

Proof of Theorem 3.6. Let G be a bipartite graph and U one of its partitions.
Fix an order of the vertices in U and say that e precedes v, if e’s endpoint in
U precedes v in the ordering of U . Now, for any pair e ∈ E(G) and u ∈ U
such that e precedes u perform an (e, u)-move. The result of these moves is
that the parity of any pair of independent edges changes, whereas the parity of
any pair of adjacent edges remains unaffected. Reversing the rotation of every
vertex in U and redrawing the edges incident to it in a small neighborhood of
the vertex changes the parity of every pair of adjacent edges. In summary, the
parity of every pair of edges changed. This means that for a bipartite graph a
drawing in which every pair of edges crosses oddly can be turned into a drawing
in which every pair of edges crosses evenly and vice versa. This immediately
implies that a planar bipartite graph is a generalized thrackle, and, in the reverse
direction, that a generalized bipartite thrackle is planar by the weak Hanani-
Tutte theorem.

Cairns and Nikolayevsky showed that Theorem 1.9 remains true on any
orientable surface. Indeed, the proof of Theorem 3.6 we just gave works for ar-
bitrary surfaces if we replace the application of the weak Hanani-Tutte theorem
for the plane with the version for an arbitrary surface.

Corollary 3.8 (Cairns, Nikolayevsky [7]). A bipartite graph is a generalized
thrackle in a surface if and only if it can be embedded in that surface.

Cairns and Nikolayevsky managed to find a pleasant generalization of this
result to non-bipartite graphs using the notion of a parity embedding which is
is an embedding of a graph on a non-orientable surface so that even cycles are
two-sided curves and odd cycles are one-sided curves.

Theorem 3.9 (Cairns, Nikolayevsky [8]). G is a generalized thrackle on an ori-
entable surface S if and only if G has a parity embedding on the (nonorientable)
surface obtained by adding a crosscap to S.

A short proof-sketch of the easy direction: Given G in S push each edge across
the new crosscap as shown in Figure 5. Every pair of edges will then cross evenly, and
thus, by Theorem 2.1 be embeddable in the new surface.

This result can be extended to non-orientable surfaces using the notion of
an X-parity embedding. For a non-orientable surface, let X be a particular
crosscap of the surface; an X-parity embedding is an embedding in which a
cycle is odd if and only if it passes through X an odd number of times. (If S
is orientable, then a parity embedding on S + X is the same as an X-parity
embedding, so Theorem 3.9 is subsumed.)
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Figure 5: Pushing edges over the crosscap.

Theorem 3.10 (Pelsmajer, Schaefer, Štefankovič [36]). G is a generalized
thrackle on a surface S if and only if G has an X-parity embedding on the
surface obtained by adding a crosscap X to S, with the same embedding scheme.
In that case, we can assume that every edge passes through X an odd number
of times.

As a consequence, we can recover a result shown by Perlstein and Pinchasi
in their study of Vázsonyi’s conjecture [39]. A centrally symmetric S2-lifting of
a graph G is a bipartite graph G′ embedded on the sphere so that G′ is centrally
symmetric and every vertex of G corresponds to two antipodal points of G′ that
belong to different partitions of G′ and every edge of G corresponds to two edges
of G′ so that the endpoints of each edge belong to different partitions.

Theorem 3.11 (Perlstein, Pinchasi [39]). A graph is a generalized thrackle if
and only if it has a centrally symmetric S2-lifting.

Proof sketch: A centrally symmetric S2-lifting is really a double-cover of an em-

bedding of G in the projective plane, so one direction is obvious. In the other direction,

Theorem 3.10 tells us that a generalized thrackle can be embedded in the projective

plane so that every edge crosses through the crosscap an odd number of times. If we

think of the projective plane as a disk with the crosscap as its boundary, then the

natural S2-double-cover of this embedding is a centrally symmetric S2-lifting.

A geometric graph is a graph with a straight-line embedding. With Theo-
rem 3.11 Perlstein and Pinchasi are able to show that every geometric graph in
R

3 in which every two edges are strongly avoiding—they can be projected onto
some 2-dimensional plane so that they belong to two distinct rays that form a
non-acute angle between them—is a generalized thrackle (in the plane).

3.4 Crossing Numbers

The crossing number, cr(G), of a graph G is the smallest number of crossings
necessary to draw the graph in the plane. We do not allow edges to pass through
vertices or more than two edges to cross in a point.

The Hanani-Tutte theorem has been closely linked to the study of the crossing

number and many of its variants. Kleitman’s parity result, for example, was part of

his proof that Zarankiewicz’s conjecture holds for the crossing numbers of K5,n and
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K6,n. Tutte’s paper tried to establish an algebraic theory of crossing numbers, see

Section 1.4 for details on Tutte’s approach.

Do we really need to count all the crossings? The (weak) Hanani-Tutte
theorem seems to suggest that it should be sufficient to count crossings only
modulo 2: let ocr(G), the odd crossing number of G be the smallest number of
pairs of edges that cross oddly in a drawing of G [29]. The odd crossing number
in many ways behaves like the standard crossing number, for example, the
famous crossing lemma, cr(G) ≥ 1/64|E(G)|3/|V (G)|2, remains true for the odd
crossing number, with the original proof, though some recent strengthening of
the constant factor apparently do not carry over to the odd crossing number [24].

The weak Hanani-Tutte theorem can now be stated as saying that ocr(G) = 0
implies that cr(G) = 0. This might suggest that ocr(G) = cr(G) for all G, but
equality does not hold between the two crossing numbers: One can construct
a graph for which ocr(G) < cr(G) ≤ 10 [35, 47]16. However, it is true that
ocr(G) = cr(G) as long as ocr(G) ≤ 3 [34], that is, if a graph can be drawn so
that at most k ≤ 3 edges cross oddly, then the graph can be drawn with at most
k crossings. To establish a result like this, one must be able to remove crossings
along edges that are not involved in odd crossings. The first such “removing
crossings” result is due to Pach and Tóth.

Lemma 3.12 (Pach, Tóth [29]). If D is a drawing of G in the plane, and E0

is the set of even edges in D, then G can be drawn in the plane so that no edge
in E0 is involved in any crossings.

Lemma 3.12 implies that cr cannot be arbitrary larger than ocr (clear all
even edges of crossings using the lemma and then draw the remaining edges
in their faces so they cross each other at most once), resulting in the pairwise
crossing of at most 2 ocr(G) edges. This was observed by Pach and Tóth.

Corollary 3.13 (Pach, Tóth [29]). cr(G) ≤
(

2 ocr(G)
2

)

.

Lemma 3.12 has the disadvantage that it may introduce new odd pairs, that
is, pairs of edges that cross oddly, so it cannot be used to show, for example,
that ocr(G) = cr(G) for small values. This issue is addressed in the following
variant.

Lemma 3.14 (Pelsmajer, Schaefer, Štefankovič [34]). If D is a drawing of G
in the plane, and E0 is the set of even edges in D, then G can be drawn in the
plane so that no edge in E0 is involved in any crossings and there are no new
pairs of edges that cross an odd number of times.

Lemma 3.14 can be used to prove the strong Hanani-Tutte theorem without ap-

pealing to Kuratowski’s theorem: Pick a cycle in the graph, make its edges even (since

there are no odd independent crossings this can be done by locally modifying rota-

tions of vertices on the cycle), use Lemma 3.14 to remove crossings with the cycle, and

16The original separation is from [35]; Tóth’s approach leads to a separation of ocr(G) and
cr(G) with cr(G) ≤ 10 [48].
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induct. The induction has to be set up carefully. This approach yields an effective

procedure for constructing the embedding from the original drawing.

Lemma 3.14 should be useful as a first step in improving the upper bound
of Corollary 3.13. The general feeling is that cr(G) ≤ O(ocr(G)), but there is
no hard evidence for this. Lemma 3.14 unfortunately fails on surfaces other
than the plane (there are counterexamples for projective plane and torus that
show that the pairs of edges that cross oddly may have to change [36]). It is
possible that a surface version of the lemma can be proved which only concludes
that the odd crossing number of the drawing does not increase. Meanwhile, the
following weaker version (which in the plane is the same as Pach-Tóth’s result,
Lemma 3.12) is true:

Lemma 3.15 (Pelsmajer, Schaefer, Štefankovič [36]). If D is a drawing of a
graph G on some surface S, and E0 is the set of even edges in D, then G can
be drawn in S so that no edge in E0 is involved in any crossings.

One concludes, as in the planar case, that crS , the crossing number on surface
S is bounded in terms of ocrS , the odd crossing number on S:

Corollary 3.16 (Pelsmajer, Schaefer, Štefankovič [36]). crS(G) ≤
(

2 ocrS(G)
2

)

for any surface S, orientable or non-orientable.

The independent odd crossing number, iocr(G), is the smallest number of
independent pairs of edges that cross in a drawing of G. The (strong) Hanani-
Tutte theorem translates into “iocr(G) = 0 implies cr(G) = 0”. Since, by
definition, iocr(G) ≤ ocr(G) ≤ cr(G), we already know that equality does not
hold between iocr(G) and cr(G) (as ocr and cr can be separated), however,
it is entirely open whether iocr(G) = ocr(G). One might again ask, whether
iocr(G) = cr(G) for small values and whether cr can be bounded in terms of
iocr. The situation is more difficult than cr versus ocr, since the number of odd
crossings in a drawing can be arbitrarily large even if iocr is bounded. However,
we could recently establish the following redrawing result:

Lemma 3.17 (Pelsmajer, Schaefer, Štefankovič [37]). If D is a drawing of a
graph G in the plane and E0 is the set of independently even edges in D, then
G can be redrawn so that no edge in E0 is involved in any crossings and every
pair of edges crosses at most once.

As an immediate consequence one obtains, as earlier:

Corollary 3.18 (Pelsmajer, Schaefer, Štefankovič [37]). cr(G) ≤
(

2 iocr(G)
2

)

.

It is open whether the conclusion of Lemma 3.17 can be strengthened to say
that there are no new pairs of independent edges crossing oddly. The following
result is another consequence of Lemma 3.17; the proof in this case is rather
intricate though.

Corollary 3.19 (Pelsmajer, Schaefer, Štefankovič [37]). iocr(G) = cr(G) for
graphs G with iocr(G) ≤ 2.
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We do not know whether any of the last three results hold for surfaces other
than the plane.

We started with the odd and independent odd crossing numbers, since they
are most closely related to the Hanani-Tutte results, however, there are two
other crossing number variants worth mentioning in this context: pair and al-
gebraic crossing number (the latter we saw before in Section 1.4). With this,
our—still incomplete—list of basic crossing number variants becomes:

crossing number: cr(G), the smallest number of crossings in a drawing of G,

pair crossing number: pcr(G), the smallest number of pairs of edges crossing
in a drawing of G,

algebraic crossing number: acr(G), orient all the edges in a drawing and
distinguish between positive and negative crossings along an edge, count-
ing them as +1 and −1; minimize the sum of the absolute values of these
counts for each edge,

odd crossing number: ocr(G), the smallest number of pairs of edges crossing
oddly in a drawing of G.

We can modify each of these notions by two rules, suggested by Pach and
Tóth [28]:

“Rule +”: restrict the drawings to drawings in which adjacent edges are not
allowed to cross.

“Rule −”: allow crossings of adjacent edges, but does not count them towards
the crossing

We add + and − as a subscript to the crossing number to denote that we
are following that particular rule. Rule + is inspired by the observation that
crossing-number minimal drawings fulfill it, that is, cr = cr+, but it is not clear
whether this holds for any other crossing number variant. Of the twelve possible
combinations of Rule + and Rule − with the four crossing numbers, these are
the only two that are known to coincide. Rule − is what turns ocr into iocr,
namely, ocr− = iocr.

This leaves us with eleven, potentially different, notions of crossing number:

Rule + ocr+ acr+ pcr+ cr
ocr acr pcr

Rule − iocr = ocr− iacr = acr− pcr
−

cr−

Little is known about the relationship between these crossing numbers. The
variants are monotone in the sense that going from bottom to top in the table
does not decrease the value and neither does going from left to right as long
as we drop either the acr-column or the pcr-column. So iocr(G) is the smallest
and cr(G) the largest value, but we do not know whether acr(G) ≤ pcr(G). We
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are aware of only two separations among all these variants: one can construct
families of graphs for which ocr(G) < λ cr(G) for some λ < 1 (originally [35],
improved λ in [47]). The original examples realize ocr(G) < acr(G) = pcr(G) =
cr(G) [35] and the new examples ocr(G) = acr(G) < pcr(G) = cr(G) [47].
Combining these two types of examples, one can build a graph G for which
ocr(G) < acr(G) < pcr(G). We are not aware of any other separations. Corol-
lary 3.18 shows that all the crossing number variants listed here are within a
square of each other; for cr versus pcr this bound can be improved: Valtr [50]
showed that cr(G) = O(pcr2(G)/ log pcr(G)), which Tóth [47] improved to
cr(G) = O(pcr2(G)/ log2 pcr(G)). Using a separator theorem for string graphs
due to Pach and Fox, Tóth has recently been able to lower this bound to
cr(G) = O(pcr7/4(G)/ log3/2 pcr(G)) [46]. These are the only non-quadratic
upper bounds between crossing numbers we are aware of.

We conjecture that pcr = cr and cr− = cr. Evidence for the first conjecture
is purely computational: for two vertex multi-graphs with rotations it appears
to be true, according to computer searches performed in connection with [35]. A
first step towards the second conjecture is the proof that crossings with adjacent
edges can be removed if they are the only crossings along an edge:

Theorem 3.20 (Schaefer [42]). If D is a drawing of G in the plane, and E0 is
the set of edges in D that have no independent crossings, then G can be drawn
in the plane so that no edge in E0 is involved in any crossings and there are no
new independent crossings.

This brings us only slightly closer to proving cr− = cr, but it is a first,
necessary, step to showing even cr = O(cr−). The extent of our ignorance
about cr− is captured in the following conjecture.

Conjecture 3.21. If a graph can be drawn on a surface S so that no two
independent edges cross, then the graph can be embedded in S.

By the strong Hanani-Tutte theorem we know that the conjecture is true for
the plane and the projective plane. Beyond that we know nothing. So we can
only agree with the first half of Tutte’s sentiment that “crossings of adjacent
edges are trivial, and easily got rid of” [49].

What about the computational complexity of all of these crossing numbers? Obvi-
ously, they are all NP-complete? Well, yes, and no. Most of them are NP-complete,
but not always for obvious reasons. Garey and Johnson showed that the crossing num-
ber problem is NP-complete [14]. This proof also shows that pcr is NP-hard, but it
does not imply that the problem lies in NP; that was established later in connection
with the string graph problem [43]. The variant ocr is NP-complete as shown by
Pach and Tóth [29]; NP-hardness is a modification of the Garey-Johnson proof and
containment in NP relies on a refinement of Theorem 1.18 which takes into account
the rotation system. For acr, Pach and Tóth’s hardness proof for ocr still works and
acr ∈ NP, since acr(G) ≤ k can be rephrased as an integer linear program (along the
lines of Theorem 1.19). (This means that drawings of G with acr(G) ≤ k may require
an exponential number of crossings, since this is the best bound known for integer
linear programming. We leave it open whether this bound can be improved for acr.)

29



For the Rule − variants, we know that iocr, pcr
−
and cr− are NP-complete [38]. In

all three cases, NP-hardness follows from showing that the underlying crossing number
concept ocr, pcr and cr remains NP-hard if the graph is given with a rotation system.
(This turns out to be highly non-trivial in the case of ocr.) All three problems lie in
NP; for iocr this follows directly from Theorem 1.18, for pcr

−
and cr− the situation

is more complicated, since there is no immediate bound on the number of crossings
that do not count; using techniques from [43] and [44] the problems can be placed in
NP (the upper bounds on the uncounted crossings are exponential). We do not know
the complexity of iacr, though it is quite possible that the iocr-hardness proof can be
adapted.

Finally, ocr+ and pcr+ are NP-hard; we know that ocr and pcr remain hard if
the rotation system of the graph is specified. So let (G,R) be a graph with rotation
system; from it construct G′ by replacing each vertex v of degree d with a wheel Wd

and attach edges originally connected to v to the d outer vertices of Wd. Finally,
replace edges of Wd with multiple, parallel P3s to ensure that the Wd are embedded.
Then the pair or odd crossing number of G with rotation R is at most k if and only
if pcr+ or ocr+ of G′ is at most k. Showing that ocr+ and pcr+ lie in NP can be
done using the approach from [43] and [44]. Again we leave open the complexity of
the algebraic variant, acr+.

There are also results on the parameterized complexity of pcr and ocr [33].

4 In Place of a Conclusion

We have sprinkled open problems and conjectures liberally throughout the sur-
vey and there are many obvious questions one can ask (is there a Hanani-Tutte
theorem for hypergraphs? For matroids?), so instead of reiterating this material,
let us mention one more tempting direction that one can take the Hanani-Tutte
theorem. We restricted ourselves to surfaces following the graph-theoretical
tradition; the algebraic topology literature went a different route. The Hanani-
Tutte theorem is there known as a version of the Flores-van Kampen theorem,
which has many generalizations and variants, typically in higher-dimensional
spaces. Closer to our versions of the Hanani-Tutte theorem is a recent result
of van der Holst and Pendavingh [53]: imagine a graph embedded in R

3. An
embedding is called flat if one can attach an open disk to each cycle of the
graph so that the boundary of the disk is the cycle and the disk is disjoint from
the graph. If a graph can be embedded in R

3 so that each disk crosses each
non-incident edge of the graph an even number of times, then the graph has
a flat embedding. The proof uses methods from algebraic topology; can it be
shown using an intuitive geometric argument?
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