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Abstract

A coloring of a graph is nonrepetitive if the graph contains no path
that has a color pattern of the form xx (where x is a sequence of
colors). We show that determining whether a particular coloring of a
graph is nonrepetitive is coNP-hard, even if the number of colors is
limited to four. The problem becomes fixed-parameter tractable, if we
only exclude colorings xx up to a fixed length k of x.

1 Squares and Nonrepetitive Colorings

In 1906 Axel Thue published his paper “Über unendliche Zeichenreihen”
which showed the remarkable result that there is an infinite word over the
alphabet Σ = {0, 1, 2} that does not contain a square, namely a subword of
the form xx:

01021012010212021012010210120212 . . . 1

Remarkable, because over a binary alphabet there are only six square-
free words: 0, 1, 01, 10, 010, 101. Remarkable also, because it is a rare

∗Research partially supported by the Magyary Zoltán Felsőoktatási Közalaṕıtvány and
the Hungarian National Research Fund (Grant Number OTKA 67651).

1For the construction see, for example, Lothaire’s book [11].
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instance of a pattern avoidance theorem: a counter-example to Ramsey the-
ory published when Ramsey was three years old. Thue’s result points in two
directions: the study of patterns in words and the study of repetition. Com-
binatorics on words has become an active research field, not least through
its importance to computer science [11, 12, 13]. In this paper we want to
follow the second direction studying repetition in structures more general
than words. There are recent surveys by Grytczuk [8] and Currie [5] on
avoiding repetition in various areas of mathematics including graph theory,
geometry, and number theory.

One natural variant of words is circular words, that is, words whose last
letter is adjacent to its first letter. Currie [5] showed that there are square-
free circular words of every length n ≥ 18 on the alphabet {0, 1, 2}. Currie’s
result can be rephrased as saying that the cycle Cn on n ≥ 18 vertices can
be colored using 3 colors so that no subpath of Cn has a coloring of the form
xx. We call such a coloring nonrepetitive. The coloring point of view was
introduced by Alon, Grytczuk, Ha luszczak, and Riordan in a 2002 paper [1],
which also contained the definition of the Thue chromatic number of a graph,
π(G), as the smallest number of colors needed in a nonrepetitive coloring of
G. In this terminology, Currie proved that π(Cn) = 3 for n ≥ 18.

Remark One can distinguish between vertex and edge Thue numbers de-
pending on whether one studies nonrepetitive vertex or edge colorings of
graphs. The original paper [1] introduced both variants but emphasized the
edge-coloring variant. Subsequent papers seem to have given more atten-
tion to the vertex-coloring variant. Here we use the term Thue chromatic
number to suggest vertex coloring.

Many problems related to the Thue chromatic number are still open.
For example, it is not yet known whether π(G) is bounded by some con-
stant for all planar graphs G, a particularly intriguing problem. Kündgen
and Pelsmajer [10] showed that graphs of treewidth at most k have Thue
chromatic number at most 4k, settling the special case of outerplanar graphs.
Moreover, π(G) ≤ 36∆2, as was shown by Alon, Grytczuk, Ha luszczak, and
Riordan [1]. It is also known that every graph has a subdivision whose Thue
chromatic number is at most 4 (shown by Grytczuk [9] for 5 and Barát and
Wood for 4 [9, 3]).

We look at the Thue chromatic number from the point of view of compu-
tational complexity. Deciding whether π(G) ≤ k is an ∃∀-question: is there
a coloring such that no subpath of the graph has a square coloring. Decid-
ing a question of this form belongs to the complexity class Σp

2 = NPNP, the
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second level of the polynomial-time hierarchy (see [15] for more information
on the polynomial-time hierarchy). We conjecture that the Thue chromatic
number problem is complete for that class. As a first result towards set-
tling this conjecture we show in Section 2 that determining whether a given
coloring of a graph is nonrepetitive is coNP-complete (in other words, decid-
ing whether a coloring is repetitive is NP-complete). Indeed, the problem
remains coNP-complete even when restricted to four colors, as we show in
Section 3. As an illustration of our technique, we obtain a new proof of the
Grytczuk-Barát-Wood result that every graph has a subdivision with Thue
chromatic number at most 4.

Deciding whether a given two-coloring of a graph is nonrepetitive (as
well as deciding whether a given graph can be nonrepetitively two-colored)
is easy, since a two-coloring is nonrepetitive if and only if it is a proper
coloring and the graph does not contain a path of length at least 4. This
raises the question of how hard it is to determine whether a coloring of a
graph with three colors is nonrepetitive. This problem looks difficult; for
example, by Currie’s result, we can take a word w that is square-free as a
circular word of any length n ≥ 18. Then a path of length 2n with coloring
ww is not square-free, but we have to look at a block of length n to find this
out.

This example suggests studying nonrepetitiveness with restricted block-
lengths. Let πk(G) be the smallest number of colors in a coloring of G which
does not contain a path of length at most 2k with a repetitive coloring. This
is a natural parameterization of the problem, π1(G) equals the chromatic
number of G, and π2(G) is the star-chromatic number of G, introduced by
Vince [16].

We complement the result that deciding the nonrepetitiveness of a col-
oring is coNP-hard by showing how to decide in time kO(k)n5 log n whether
a coloring of a graph on n vertices contains a path of length at most 2k with
a repetitive coloring. Using the terminology of parameterized complexity
[6, 7], for bounded block-lengths, nonrepetitiveness of a coloring is fixed-
parameter tractable: the exponent of the polynomial running time does not
depend on the parameter k.

Complementing our results, Fedor Manin [14] has recently announced
that determining whether a given edge coloring of a graph is nonrepetitive
is coNP-hard and that deciding the edge Thue number of a graph is Σp

2-
complete. He also established that the edge version of πk(G) is NP-complete
for fixed k. Manin’s and our results do not seem to imply each other.
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2 Nonrepetitiveness of a Coloring

A word x is a square if x = ww for some non-empty word w. A word
is nonrepetitive if it does not contain a square as a subword. A repetitive
sequence in a graph with a vertex-coloring is a path in the graph whose
coloring, as read along the path, is a square. A graph coloring is nonrepetitive
if it does not contain a repetitive sequence.

Theorem 2.1 Deciding whether a coloring of a graph is nonrepetitive is
coNP-complete.

Proof We reduce from the Hamiltonian Path problem. Let G = (V,E) be a
graph with V = {v1, . . . , vn}. We construct a graph H and a coloring that is
nonrepetitive if and only if G does not have a Hamiltonian path. The graph
H consists of two parts. In the first part, for each vi take a K2,n and color
the two element partition using colors a and b, and the n-element partition
using colors ci,j (for 1 ≤ j ≤ n). Next, for every i 6= j we introduce a new
vertex colored di,j and connect it to the b vertex of the K2,n belonging to vi

and the a vertex belonging to vj . Also, we connect all the vertices colored b
to a new vertex colored c. We construct the second part of H as follows: for
each 1 ≤ i, j ≤ n, we take a path Pi,j on three vertices, coloring the vertices
on Pi,j by a, ci,j , b. We connect the vertex colored by c to the a vertices of
the paths Pi,1 (1 ≤ i ≤ n). For every Pi,j (1 ≤ i ≤ n, 1 ≤ j < n) and
every edge vivi′ ∈ E we add a new vertex of color di,i′ and connect it to
the b vertex of Pi,j and the a vertex of Pi′,j+1. Finally, we connect all the
b-vertices of Pi,n to a new vertex colored c (1 ≤ i ≤ n).

This finishes the construction of H and its coloring (for an example see
Figure 1, where G is the diamond, i.e. K4 − e). We claim that G contains a
Hamiltonian path if and only if the coloring of H we constructed is repetitive.
This implies that deciding the nonrepetitiveness of a graph coloring is coNP-
complete.

To prove the claim, let us first assume that G has a Hamiltonian path
vπ(1), . . . , vπ(n). Consider the following path through H: we start at the K2,n

associated with vπ(1), traversing it so we see colors a, cπ(1),1, b. We continue
via the vertex colored dπ(1),π(2) to the K2,n associated with vπ(2), traversing it
as a, cπ(2),2, b, etc. until we reach the b vertex in the K2,n belonging to vπ(n).
We then continue to the vertex colored c, and traverse the second half of H
as follows: Pπ(1),1, vertex colored dπ(1),π(2), Pπ(2),2, vertex colored dπ(2),π(3),
etc. finishing with Pπ(n),n and the vertex colored c. Since vπ(1), . . . , vπ(n)

is a Hamiltonian path, this traversal of H is possible, and, comparing the
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Figure 1: The graph H corresponding to the graph ({1, 2, 3, 4},
{{1, 2},{1, 3},{1, 4},{2, 3},{3, 4}}).

colors in the two halves of H, we see that they are the same, and, therefore,
the coloring is repetitive.

For the reverse direction, assume that H contains a path P such that
the colors along P are of the form ww for some word w. Let us first suppose
that w does not contain the color c. Then P is entirely contained within the
first or the second half of H. In either case we can argue that no repetition
is possible, since all the colors except a and b are unique and vertices with
colors a and b are not adjacent. We can therefore assume that w contains
c. Consequently, P must contain both vertices z, z′ colored c (let z be the
vertex connecting the two halves). Without loss of generality, we can assume
that P starts in the first half of H, and thus there are paths Q,Q′, and Q′′

such that P = QzQ′z′Q′′. The first vertex of Q′ has color a, while all
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neighbors of z′ have color b, which means that Q′′ is empty, and, therefore,
P = QzQ′z′.

Now any path from z to z′ must, for every j, pass through some vertex
colored ci,j, 1 ≤ i ≤ n. In particular Q′ must do so and therefore contain at
least n vertices colored ci,j for some i, j. Therefore Q must also pass through
n vertices colored ci,j. Now Q cannot pass through two vertices colored ci,j

and ci,j′ since they belong to the same K2,n and this would Q to have ci,j

or ci,j′ as an endpoint, which is not possible as Q′ has endpoints colored
a and b. Since Q has to pass through n vertices colored ci,j this implies
that for every i there is exactly one j such that Q passes through a vertex
colored ci,j. Since we also argued that for every j there is an i so that Q′

and, thereby, Q pass through a vertex colored ci,j, there is a permutation π
such that cπ(j),j occurs on Q.

By the construction of the second half of H, vπ(1), . . . , vπ(n) is a Hamil-
tonian path of G. 2

We note that the proof used an unbounded number of colors to achieve
the coding. This can be remedied as we will see in the next section.

3 The Case of 4 Colors

We reduce the number of colors in the construction by replacing colors with
long nonrepetitive sequences on a fixed set of colors. As an illustration, we
first prove a simple graph-theoretic result.

Proposition 3.1 (Grytczuk, Barát and Wood) Every graph has a sub-
division which can be nonrepetitively colored with at most 4 colors.

Remark Grytczuk [9] proved that every graph has a subdivision which can
be colored with at most 5 colors; Barát and Wood improved his result to 4
colors [3]. Our construction is closer in spirit to Grytczuk’s original proof.

The following lemma constructs a family of nonrepetitive sequences with
useful properties. We write xR for the reverse of the sequence x.

Lemma 3.2 We can in polynomial time construct m nonrepetitive sequences
of length O(m) on colors 1, 2 and 3 so that

(i) for any two sequences x and y, if we split each sequence into two halves
of equal length, x = x1x2 and y = y1y2, then xi 6= yi and xi 6= yR

3−i

(for i = 1, 2),
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(ii) all sequences begin 31 and end 13, and

(iii) all sequences have the same length.

To see that the lemma is true, take a nonrepetitive sequence x of length
1764m+13 and permute the colors so it starts with 31. We claim that every
subword of 14 letters has to contain the sequences 13 and 31, a claim we will
verify later. So if we let xi be the subword of x that starts with the i-th 31
in x, and ends with the first 13 at least 1176m − 1 positions later, we know
that 1176m ≤ |xi| ≤ 1176m+ 13 and we have fulfilled condition (ii). In this
fashion we can pick 42m sequences xi from x (1 ≤ i ≤ 42m), since x42m ends
no later than position 42m · 14 + 1173m + 13 = 1764m + 13. Note that any
two of these sequences y and z overlap in at least 588m + 13 positions in x,
because x42m must contain position 14 · (42m − 1) + 1 = 588m − 13 and x1

ends no earlier than position 1176m, so there is a string of length 588m+13
common to all xi. Since y and z have length at most 1176m+13 the overlap
of length at least 588m + 13 between them forces their first halves, as well
as their second halves to overlap. Therefore, the first halves of y and z
must differ from each other, as must the second halves (otherwise, x would
contain a square). Among the 42m sequences, we can pick 3m sequences of
the same length, fulfilling condition (iii). While it is possible that for two of
these sequences y and z, the first half of y equals the reverse of the second
half of z, it is not possible that the first half of y equals the reverse of the
second half of two other sequences z and z′, since in that case the second
halves of z and z′ would be identical, which we excluded. Similarly, the
second half of y can be equal to the reverse of at most one other sequence.
Hence we can pick m = 3m/3 sequences fulfilling condition (i).

We are left with the proof of the claim that any nonrepetitive sequence
of length 14 contains the subsequence 13, and, consequently, every other
two-digit subsequence. So let x be a nonrepetitive 14-digit string over the
alphabet {1, 2, 3}. A 1 must occur within the first four digits of x. If that 1 is
followed by a 3 we are done, so we know that there is a sequence 12 starting
within the first four positions of x. Suppose that sequence continued with a
1, i.e. we see 121. Then the next digit cannot be 2 again, so we have 1213,
and, therefore, a 13 within the first seven digits of x. In other words, we
know that there is a sequence 123 starting within the first four positions of
x. There are two cases: suppose the next digit after 123 is 1, i.e. we have
1231, the next digit has to be 2 (otherwise we have a 13), followed by 1
(since the word is nonrepetitive): 123121. The next digit cannot be a 2,
since the word is nonrepetitive, so it has to be a 3 and we are done, since
we have found a 13 within the first nine positions of x. In the second case,

7



we have 1232. To avoid repetition, this sequence needs to continue 12321.
If the next digit is a 3, we are done, so we can assume we see 123212, which
cannot be followed by 1 (repetition), so we have 1232123, which cannot be
followed by 2 (repetition), giving us 12321231 followed by 2 (otherwise we
have a 13), followed by 1 (repetition), yielding 1232123121. Finally, this
string cannot be followed by a 2, so we see 12321231213, which means a 13
within x.

Proof of Proposition 3.1 It is enough to prove the theorem for the case
G = Kn. Let (xi)

m
i=1 be a family of m =

(

n
2

)

nonrepetitive sequences as
described in Lemma 3.2. Replace the i-th edge of G with a path of length
|xi|+ 7 and color it 210xi012. Also, give each vertex of G color 0. We claim
that this coloring of a subdivision G′ of G is nonrepetitive.

Suppose, to the contrary, that G′ contains a path P with a coloring of
the form ww. P has to contain the color 0, since otherwise ww would be
a subword of some xi which is not possible (as the xi’s are nonrepetitive).
There are two types of vertices colored 0: the vertices of G, all of whose
neighbors are colored 2, and the vertices introduced in the subdivision, all
of whose neighbors are colored 1 and 3. Hence, for a repetition, P must
contain two vertices colored 0 of the same type, and that is only possible if
P contains a whole path Q between two vertices of G. It is not possible that
the coloring of Q is a subword of w, since the colorings of the paths (and
their reverses) are unique. Hence, Q must contain the border between the
two halves of P . In other words, ww has to contain the following string:

0210v0120,

where v = xi for some i (if v = xR
i we reverse P ), and the boundary of ww

occurs within v. Assuming that the boundary occurs in the second half of
v (the other case being similar), the first half of 0210v0120 must occur a
second time along P ; but then the first half of v must occur as the prefix
or the reverse of the suffix of some other xj. This possibility, however, is
precluded by choosing sequences xi fulfilling Lemma 3.2 (i). 2

Corollary 3.3 Deciding whether a coloring of a graph is nonrepetitive is
coNP-complete even for colorings with at most 4 colors.

Proof We will show how to replace the colors in the graph H constructed
in the proof of Theorem 2.1 with just 4 colors. Using Lemma 3.2 we obtain
sequences xi, one for each of the colors c, ck,j, and dk,j. If a vertex has
color ck,j or dk,j, and it has been assigned sequence xi, replace the vertex
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with a path of length |xi| + 7 and color it 210xi012. For the two vertices
colored c, we proceed similarly, but in this case the vertex is replaced with
a path colored 130xi031; call the two paths replacing the c vertices C and
C ′ (where C is the path connecting the two halves of G). Finally, recolor
vertices with colors a or b to have color 0. This construction uses colors
0, 1, 2, 3 only.

We claim that the coloring of the resulting graph will be nonrepetitive
if and only if the original graph G did not have a Hamiltonian path.

The proof of one direction remains unchanged: a Hamiltonian path in
G still corresponds to a repetitive coloring, since we just replaced colors by
color sequences.

Suppose then that G contains a path P colored ww. As we argued earlier,
P has to contain the color 0, since otherwise ww would be a subword of some
xi, which is nonrepetitive.

We have four types of vertices colored 0: those with neighbors 1, 3, those
with neighbors 1, 2, those with two neighbors colored 2 and those with two
neighbors colored 3. Let us look at the last type first.

Suppose P does not contain the sequence 303 (which occurs exactly four
times: twice on each of the paths replacing c). In that case P cannot traverse
C (or C ′), and is therefore caught within one of the two halves of G. We
claim that this is impossible.

First of all, observe that P does have to contain at least one vertex from
C or C ′, since otherwise we argue as in the proof of Theorem 2.1 that the
two halves of the graph obtained by removing C and C ′ do not contain a
square. (That part of the proof of Theorem 2.1 did not use the fact that a
and b are different colors.)

Suppose next that P contains exactly one vertex from C and/or exactly
one vertex from C ′. Such a vertex must be one of the end-vertices of C
or C ′ colored 1. Then P must contain one of the sequences 201 or 102;
by changing direction of P if necessary, we can ensure that P contains the
sequence 201. We distinguish two cases by whether P lies in the left or right
half of G.

If P lies in the left half of G, we use the fact that all occurrences of 201 in
that half share the same vertex colored 1 (the end-vertex of C which belongs
to P ), so 201 can occur at most once along P . Hence, the middle | of P has
to occur either at 2|01 or 20|1. In the first case the next color after 01 along
P must be 0: 2|010, so P itself must start with 010, however, 010 does not
occur anywhere else in the left half of G without using the endpoint of C
that is already in use, so this is impossible. In the second case, the next two
colors of P after 201 are 02: 20|102, that is P has to start with the sequence
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102. Again, the only other occurrences of 102 in the left half of G use the
endpoints of C which is already in use in P , so this is not possible either.

If P lies in the right half, the argument is similar: the occurrence of
201 can be either as 201 or 2|01 or 20|1 with respect to the midpoint of P .
In the first case (i.e. the middle of P does not occur within 201), the 201
must be matched as a whole which is only possible by including vertices
from C ′. Hence the path P needs to contain vertices from both C and C ′,
implying that ww contains a string of the form 210xi012. As we argued in
Proposition 3.1 this is impossible by the construction of the xi.

Consequently, P must contain at least two vertices from either C or C ′;
since we assumed that it does not contain 303, P must begin in C with 310
or 0310 (the last 0 corresponding to an a vertex) and/or end in C ′ with
013 or 0130 (the initial 0 corresponding to a b vertex). However any two
occurrences of any of these sequences in the same half share a vertex, so this
is not possible.

We conclude that P must contain the sequence 303. This sequence occurs
exactly four times, twice in C and C ′. The two occurrences in the same path
C or C ′ cannot match with each other, since one begins 3031xi, and the other
30310 (and the xi’s do not contain zeroes). Hence a 303 from C must match
with a 303 from C ′. But then either all of C or all of C ′, and therefore both
must belong to P .

From this point on, we can argue as in the original proof. 2

4 Bounded-Length Sequences

Checking whether a coloring of a graph is nonrepetitive for block-lengths up
to some fixed value k can be done in polynomial time: we have to check all
the O(n2k) paths of length at most 2k. Here we present an algorithm that
is significantly more efficient than brute force: we show that the problem
is fixed-parameter tractable, i.e., it can be solved in time O(f(k)nc). This
means that the exponent of n does not increase as k increases.

Theorem 4.1 Given a vertex-colored graph G(V,E), it can be checked in
time kO(k) · |V |5 log |V | whether G has a repetitive sequence of length 2k.

Proof The algorithm is based on color-coding, introduced by Alon et al. [2].
Assign a random label from {1, . . . , 2k} to each vertex of G independently
with uniform distribution. Assume that we have a polynomial-time algo-
rithm for checking whether there is a repetitive sequence v1, . . . , v2k where
vertex vi has label i (below we will present such an algorithm). If the graph
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has a repetitive sequence, then the sequence receives the labels 1, . . . , 2k
with probability 1/(2k)2k , hence the algorithm finds such a repetitive se-
quence with probability 1/(2k)2k . If the graph has no repetitive sequence,
then of course no such sequence is found by the algorithm. Therefore, the al-
gorithm produces a correct answer with probability at least 1/(2k)2k , which
can be increased to a constant by repeating the algorithm (2k)2k times.
Randomized algorithms based on color-coding can be derandomized using
standard techniques, see [2] and [6, Section 8.3].

We still need to show how to check whether there is a repetitive sequence
v1, . . . , v2k where vertex vi has label i. For a given labeling λ : V →
{1, . . . , 2k} of the vertices, we proceed as follows. For a given vertex x, the
algorithm below checks whether there is a repetitive sequence v1, . . . , v2k

where λ(vi) = i and vk = x. Therefore, the algorithm has to be repeated
for every possible choice of x, i.e., |V | times.

We build a directed graph D(U,A) where the U is a subset of V × V .
For v, v′ ∈ V , the pair (v, v′) is a vertex of D only if

• v and v′ have the same color in G,

• λ(v′) = λ(v) + k,

• if λ(v) = k, then v = x, and

• if λ(v′) = k + 1, then v′ is a neighbor of x in G.

There is an arc from (v, v′) to (u, u′) in D if and only if

• u is a neighbor of v,

• u′ is a neighbor of v′, and

• λ(u) = λ(v) + 1.

Note that, by the properties of the vertices in D, the last requirement also
implies λ(u′) = λ(v′) + 1.

It is easy to see that D is acyclic, hence the length of the longest directed
path can be determined in time O(|A|) using standard techniques. We claim
that D has a directed path on k vertices if and only if G has a repetitive
sequence on 2k vertices. Indeed, if (v1, v

′

1), (v2, v
′

2), . . . , (vk, v
′

k) is a directed
path in D, then v1, . . . , vk, v′1, . . . , v′k is a path in G. Notice that the i-th
vertex of the path in G has label i, thus a vertex cannot appear twice in
the sequence. Furthermore, vi and v′i have the same color in G, hence the
path is repetitive. The converse statement is also easy to see: if v1, . . . , v2k
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is a repetitive sequence such that λ(vi) = i and vk = x, then the vertices
(v1, vk+1), (v2, vk+2), . . . , (vk, v2k) exist in D and they form a directed path.

The directed graph D contains at most |V |2 vertices and hence at most
|V |4 edges. Finding the longest path in the acyclic graph D can be done
in linear time. The algorithm has to be repeated for every possible vertex
x, thus the running time is |V |5 for a given labeling. The derandomization
adds a factor O(log |V |) to the running time. 2

The case k = 2 is of special interest. Graphs that do not have repetitive
sequences of length at most 4 are often called star-free or apathic. For star-
free coloring, the complexity of the coloring problem is settled:

Proposition 4.2 (Coleman, Moré [4]) Deciding whether a graph has a
star-free coloring with three colors is NP-complete, even if the graph is bi-
partite.

The proof is quite simple: replace each edge of a graph G with three
paths of length 2. Then the original graph is 3-colorable, if and only if the
resulting (bipartite) graph has a star-free 3-coloring. The result was proved
by Coleman and Moré in the context of computing sparse Hessian matrices.
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