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Abstract

A drawing of a graph is x-monotone if every edge intersects every
vertical line at most once and every vertical line contains at most one
vertex. Pach and Tóth showed that if a graph has an x-monotone drawing
in which every pair of edges crosses an even number of times, then the
graph has an x-monotone embedding in which the x-coordinates of all
vertices are unchanged. We give a new proof of this result and strengthen
it by showing that the conclusion remains true even if adjacent edges are
allowed to cross each other oddly. This answers a question posed by Pach
and Tóth. We show that a further strengthening to a “removing even
crossings” lemma is impossible by separating monotone versions of the
crossing and the odd crossing number.

Our results extend to level-planarity, which is a well-studied gener-
alization of x-monotonicity. We obtain a new and simple algorithm to
test level-planarity in quadratic time, and we show that x-monotonicity
of edges in the definition of level-planarity can be relaxed.
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1 Introduction

The classic Hanani-Tutte theorem states that if a graph can be drawn in the
plane so every pair of independent edges crosses an even number of times, then it
is planar [9, 32]. (Two edges are independent if they do not share an endpoint.)
There are many ways to look at this result: in algebraic topology it is seen as a
special case of the van Kampen-Flores theorem [22, Chapter 5] which identifies
obstructions to embeddability in topological spaces. This point of view leads to
challenging open questions (see, for example, [23]); even in two dimensions—for
surfaces—the problem is not understood well. (See [31] for a survey of what we
do know.)

Here, we study a variant of the problem which was introduced by Pach and
Tóth [25]. A curve is x-monotone if it intersects every vertical line at most
once. A drawing of a graph is x-monotone if every edge is x-monotone and
every vertical line contains at most one vertex. In this context, the natural
analogue of the Hanani-Tutte theorem is that for any x-monotone drawing in
which every pair of independent edges crosses an even number of times, there
is an x-monotone embedding (that is, a crossing-free drawing) with the same
vertex locations. The truth of this result was left as an open problem by Pach
and Tóth. We prove this monotone Hanani-Tutte theorem as Theorem 3.1 in
Section 3.

The weak version of the classic Hanani-Tutte theorem states that if a graph
can be drawn so that every pair of edges crosses evenly, then it is planar. (For
background and variants of the weak Hanani-Tutte theorem, see [31].) For x-
monotone drawings this translates to the claim that if there is an x-monotone
drawing in which every pair of edges crosses an even number of times, then
there is an x-monotone embedding with the same vertex locations. This weak
monotone Hanani-Tutte theorem was first proved by Pach and Tóth.1 We give
a new proof of this result as Theorem 2.1 in Section 2.

Traditionally, Hanani-Tutte style results are obtained via characterizations
by obstructions. This can lead to very slick proofs, like Kleitman’s proof of
the Hanani-Tutte theorem for the plane (using obstructions K5 and K3,3) [19].
There are two drawbacks to this approach: complete obstruction sets are of-
ten unknown, e.g., for the torus or, in spite of several attempts (as discussed
in [7]), for x-monotone embeddings. Secondly, this approach is of little help
algorithmically. Pach and Tóth proved the weak monotone Hanani-Tutte theo-
rem using an approach of Cairns and Nikolayevsky [2] with which they proved
the weak Hanani-Tutte theorem for orientable surfaces. Our approach is based
on a different line of attack which began in [28].

In Section 4 we establish a connection between x-monotonicity and an-
other well-known graph drawing notion, level-planarity. Through this connec-
tion, the monotone Hanani-Tutte theorem (Theorem 3.1) leads to a simple,
quadratic-time algorithm for recognizing level-planar graphs. While the best-
known algorithm for this problem runs in linear time [17], it is quite compli-

1There is a gap in the original argument; an updated version is now available [25, 26].
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cated. There have been previous claims for simple quadratic time algorithms
for level-planarity testing, which we discuss in Remark 4.3.

The condition that edges are x-monotone in the monotone Hanani-Tutte the-
orems can be replaced by a weaker notion we call x-bounded. Let x(v) denote
the x-coordinate of a vertex v located in the plane. An edge uv in a drawing
is x-bounded if every interior point p of uv satisfies x(u) < x(p) < x(v). That
is, an edge is x-bounded if it lies strictly between its endpoints; it need not be
x-monotone within those bounds (see Corollary 2.7 and Remark 3.2). As a con-
sequence, we obtain a relaxed, yet equivalent, definition of level-planarity (Corol-
lary 4.5). We also describe an even weaker condition (nearly x-bounded) in Sec-
tion 2.1 and show that we can get similar results for it as well (see Lemma 2.8
and Remark 3.2).

The classic Hanani-Tutte theorems have extensions that bound crossing
number in terms of odd crossing number and independent odd crossing number,
with equality for very small values [24, 28, 29]. We will see in Section 5 that
such extensions fail for monotone odd and monotone independent odd crossing
numbers. Also, Theorem 2.1 may prompt the reader familiar with Hanani-
Tutte style results (in particular [24, Theorem 1] and [28, Theorem 2.1]) to ask
whether a stronger result is true: a “removing even crossings” lemma which
would say that all even edges can be made crossing-free even in the presence of
odd edges (while maintaining x-monotonicity and vertex locations). We will see
in Section 5 that there cannot be any such lemma for x-monotone drawings.

We end this section by stating a few definitions. The rotation at a vertex
is the clockwise ordering of edges at that vertex, in a drawing of a graph. The
rotation system of a graph is the collection of rotations at its vertices. In an
x-monotone drawing, the right (left) rotation at a vertex is the order of the
edges leaving the vertex towards the right (left). Usually we consider graphs,
but we will also have cause to study multigraphs, which allow the possibility of
having more than one edge between each pair of vertices. Our multigraphs will
never have loops. For any graph G and S ⊆ V (G), let G[S] denote the subgraph
induced by S, which is the graph on vertex set S with edge set {uv ∈ E(G) :
u ∈ S, v ∈ S}.

2 Weak Hanani-Tutte for Monotone Drawings

An edge is even if it crosses every other edge an even number of times (possibly
0 times). A drawing is even if all its edges are even.

Theorem 2.1 (Weak Monotone Hanani-Tutte; Pach, Tóth [25, 26]). If G has
an x-monotone even drawing, then G has an x-monotone embedding with the
same vertex locations and rotation system.

Our goal in this section is to give a new proof of Theorem 2.1.

Remark 2.2. By stretching and compressing and x-monotone drawing in the
plane horizontally we can change the x-coordinates of vertices arbitrarily as
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long as their relative x-order remains the same, and all the edges will remain
x-monotone. We can also alter the y-coordinate of any vertex by stretching the
plane vertically near that vertex, so that all edges remain x-monotone and all
other vertices are fixed. Thus, we can modify an x-monotone drawing to relocate
vertices arbitrarily, as long as the relative x-order of vertices is unchanged.

As a result, in any redrawing of an x-monotone drawing in which the rel-
ative x-order of the vertices does not change, we may as well assume that the
location of every vertex has remained unchanged. Alternatively, we may instead
assume that the vertices in an x-monotone drawing are located at the points
(1, 0), . . ., (|V |, 0). The same argument applies if the edges are x-bounded or
nearly x-bounded (defined in Section 2.1) rather than x-monotone. (We briefly
consider drawings with straight-line edges in Remark 2.4, and in that context
the argument no longer works.)

The result claimed by Pach and Tóth in [25, Theorem 1.1] is almost the
same as Theorem 2.1, but instead of maintaining rotations, they state that one
can find an equivalent x-monotone embedding. Here, two drawings are equiv-
alent if no edge changes whether it passes above or below a vertex. However,
the example on the left in Figure 1 shows that one cannot hope to maintain
equivalence in this sense.

u

v

x

y

Figure 1: (Left) An x-monotone even drawing. Since x is above uv and y

is below uv, any equivalent x-monotone embedding with the same relative x-
ordering of the vertices will have uv below x and above y. But then xv is above
uy, so it is not equivalent. (Right) Essentially the same argument applies to
this 2-connected example.

The proof in [25] contains a gap: it is not immediately clear how multiple
faces that share a boundary can be embedded simultaneously.2 Eliminating the
gap requires dropping equivalence. Pach and Tóth have prepared an updated
version of the paper that includes a more detailed argument [26].3 As the graph
on the right in Figure 1 shows, the counterexample can be made 2-connected,

2On page 42 of [25], in the text after Lemma 2.1, Dκ cannot necessarily be glued together
without changing equivalence.

3In this newer version, equivalence is redefined to mean having the same rotation system.
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so equivalence cannot be obtained by assuming 2-connectedness. On the other
hand, see Corollary 2.5 for a positive result about equivalent redrawing.

In our proof of Theorem 2.1, we will repeatedly make use of a simple topo-
logical observation: suppose we are given two curves (not necessarily monotone)
that start at the line x = x1 and end at the line x = x2, and that lie entirely
between x = x1 and x = x2. The two curves cross an even number of times if
and only if they have the same vertical order at x = x1 and x = x2. (If they
start or end in the same point p, the vertical order at p is determined by the
vertical order in which they enter p).

We will also use the following redrawing tool.

Lemma 2.3. Let f be an inner face of an x-monotone embedding of a multi-
graph G, with mf and Mf being the leftmost and the rightmost vertex of f .
Add an edge mfMf to the embedding so that it lies in f . (Note that mfMf

is not required to be x-monotone and and that there may be multiple ways of
inserting mfMf into the rotations at mf and Mf .) Then the resulting graph
G∪ {mfMf} has an x-monotone embedding with the same vertex locations and
rotation system.

Note that the redrawing in Lemma 2.3 destroys equivalence in the sense of
Pach and Tóth [25]. This is necessarily the case; see Figure 2 for an example.

mf Mf

Figure 2: Although we can draw the edge mfMf within the Z-shaped face, any
subsequent x-monotone redrawing that maintains relative vertex x-order and
rotation system will not be equivalent.

Proof of Lemma 2.3. If G consists of multiple components, it is sufficient to
prove the result for the component containing f and shift its embedding verti-
cally so that it does not intersect any other component. This allows us to assume
that G is connected. Then every face is bounded by a closed walk.4 The bound-
ary of f can be broken into two mf ,Mf -walks B1, B2, with B1 starting above
mfMf in the rotation at mf , and B2 starting below.

Let Df be the drawing of G intersected with Uf := {(x, y) ∈ R
2 : x(mf ) <

x < x(Mf )}. (Df is a subset of the plane, not a graph.) We will locally redraw

4Walks are like paths except that vertices and edges can be repeated. In a closed walk the
last vertex is the same as the first vertex.
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G in Uf so that mfMf can be inserted as a straight-line segment. For each
(topologically) connected component Z of Df , either (i) for every x between
x(mf ) and x(Mf ), there is a y-value of B1 at x that is below all y-values of Z
at x, or (ii) for any x between x(mf ) and x(Mf ), there is a y-value of B2 at x
that is above all y-values of Z at x.

Let Z1 be the union of all components of the first type, and Z2 be the union
of all components of the second type. Let L be the line through mf and Mf .
We will show how to move Z1 to the half-plane above L, without changing the
x-value of any point in Z1 while fixing the points on the boundary of Uf . Let
P be an x-monotone curve with endpoints mf and Mf that lies strictly below
Z1 in Uf (note that mf and Mf do not belong to Uf ). Now move every point
v of Z1 up by the vertical distance between P and L at x = x(v). We proceed
similarly to move Z2 strictly below L, after which we can embed mfMf as L.
The overall embedding is as desired.

Proof of Theorem 2.1. We prove the following statement by induction on the
number of vertices and then the number of edges:

If G is a multigraph that has an x-monotone drawing in which all
edges are even, then G has an x-monotone embedding with the same
vertex locations and rotation system.

In the base case G consists of a single vertex, so the result is immediate. If
G consists of multiple components, we can apply induction to each component
and combine the drawings by stacking them vertically, that is, translate each
component vertically so no two components intersect. Thus, we may assume
that G is connected.

We first consider the case that there is more than one edge between the two
leftmost vertices of G, x1 < x2. If there are several edges between x1 and at
x2, say e1, . . . , ek, these have to be consecutive in the rotations at both x1 and
x2: This is trivial for the rotation at x2, since all edges incident to it on the left
have to go to x1. Now suppose there is an edge f = x1xℓ, ℓ > 2 so that f falls
between two edges ei and ej in the rotation at x1, 1 ≤ i, j ≤ k. It is easy to
see that f must cross either ei or ej oddly which contradicts f being even, so
such an edge does not exist. Hence all edges between x1 and x2 are consecutive
and, moreover, have mirror rotations at x1 and x2 (again a consequence of them
being even). We can then replace them with a single edge e between x1 and
x2. By induction, that reduced graph has the required embedding, and we can
replace e with the multiple edges e1, . . . , ek obtaining the desired embedding of
G.

Now, consider the case that there is only a single edge x1x2 between x1 and
x2. We contract x1x2 by moving x2 along the edge towards x1 and inserting
the right rotation of x2 into the rotation at x1 (see Figure 3). Note that all
edges remain even (since x1x2 is even), so by induction the new graph has an
x-monotone embedding in which x1 = x2 < x3 < · · · < xn. We can now split
the merged vertex into two vertices again and insert a crossing-free edge x1x2,
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obtaining an embedding of the original graph (since we kept the rotation) with
the original rotation.

x1 x2 x1, x2

Figure 3: How to contract edge x2x1 towards x1 and merging rotations.

This leaves us with the case that there is no edge between x1 and x2. If
G − x1 consists of a single component, consider all edges e1, . . . , ek leaving x1.
Each of these edges passes either above or below x2. We claim that it is not
possible that there are edges e and f so that e leaves x1 above f but passes
under x2, while f passes above x2: assume for a contradiction that this is the
case; pick a cycle C that contains both e and f (this cycle exists, since we
assumed G − x1 is a single component). Let MC be the rightmost vertex of
C. Consider the following two curves within C: Ce, which starts just below x2

on e and leads to MC , and Cf , which starts just above x2 on f and leads to
MC . Note that since e leaves x1 above f and C is a cycle consisting of even
edges lying entirely between x1 and MC , curve Ce enters MC above Cf . Pick a
shortest path Px2

from x2 to C (such a path exists, since G is connected). We
distinguish two cases (illustrated in Figure 4).

(i) Px2
lies strictly to the left of MC. Without loss of generality, suppose that

Px2
ends on Cf . Let P ′

x2
be the x2,MC -subpath of Px2

∪ Cf . Since Ce

and P ′

x2
share no edges, and Ce passes below x2, Ce must enter MC below

P ′

x2
(all edges are even). However, the last part of P ′

x2
belongs to Cf , so

Ce enters MC below Cf which we know to be false.

(ii) Px2
contains a vertex at or to the right of x = MC . Let P

′

x2
be the shortest

subpath of Px2
starting at x2 and ending at or to the right of x = MC .

Since Px2
has no edges in common with either Ce or Cf , P

′

x2
enters MC

above Ce and below Cf if P ′

x2
ends in MC . Otherwise, P ′

x2
passes MC

above Ce and below Cf . Since we know that Ce enters MC above Cf ,
Case (ii) also leads to a contradiction.

This establishes the claim that if e leaves x1 above f , then it is not possible
that e passes below x2 while f passes above x2. In other words, if some edge
e starting at x1 passes below x2, then all edges starting below e at x1 also
pass below x2. Hence, all edges passing below x2 are consecutive at x1 and so,
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x1 x2

MC

e

f

Ce

Cf

Px2
x1 x2

MC

e

f

Ce

Cf

Px2

Px2

Figure 4: (Left) Case (i): Px2
is dashed, P ′

x2
is the thick gray path from x2 to

MC ; (Right) Case (ii): Both subcases are displayed: the top Px2
stays to the

left of MC , while the bottom Px2
passes to the right of MC . P ′

x2
as thick gray

path in both cases.

perforce, are the edges passing above x2. We can now add a new edge e from x2

to x1 that attaches in the rotation between the group of edges passing above x2

and the edges passing below x2. This new edge will then be even, so we are in
an earlier case that we know how to solve (by contracting the new edge, which
reduces the number of vertices, then applying induction).

It remains to deal with the case that G− x1 separates into multiple compo-
nents. Let H ′

i, i = 1, 2 be two of those components and let Hi, i = 1, 2 be H ′

i

together with its edges of attachment to x1, that is, Hi = G[{x1}∪V (H ′

i)]. Note
that the edges of H1 and H2 attaching to x1 cannot interleave, meaning that at
x1 we cannot have edges e1, e2, f1, f2 in that order so that ei, fi ∈ E(Hi) for
i = 1, 2; the reason is that ei and fi can be extended to a cycle Ci ⊂ Hi and
C1 would cross C2 an odd number of times if e1, f1 interleaves with e2, f2 at
x1. This implies that we can define a partial ordering ≺ on these components,
where H1 ≺ H2 if the edges (or edge) attaching H1 to x1 are surrounded (in the
right rotation at x1) by the edges attaching H2 to x1. Now let H be a minimal
element of ≺; then the edges of H attaching to x1 are consecutive at x1. If H
contains the rightmost vertex of G, then H is also a maximal element in ≺, so
H cannot be the only minimal element of ≺; in this case, reassign H to another
minimal element of ≺ that does not contain the rightmost vertex of G. Let
H ′ = H − {x1}.

Consider G − V (H ′). By induction, there is an embedding of G − V (H ′)
which maintains the vertex locations and the rotation system. Let f be the
face incident to x1 into which H has to be reinserted (so that we recover the
original rotation system). We can assume that f is not the outer face: if it is,
we can make it an inner face by adding an edge from x1 to the rightmost vertex
of G. By Lemma 2.3, we can assume that the embedding has an x-monotone
edge from x1, starting where H ′ was attached in its rotation, to the rightmost
vertex incident to f , which we call Mf . We can find an x-monotone embedding
of H by induction. Note that all vertices of H must lie to the left of Mf , since
otherwise an edge of H must have crossed an edge on the boundary of f oddly
before G − V (H ′) was redrawn using Lemma 2.3. But then we can insert the
new embedding of H into the embedding of (G−V (H ′))∪{x1Mf} near the edge
x1Mf , such that there are no crossings, which gives us the desired embedding
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of G.

Remark 2.4. There is a straight-line variant of Theorem 2.1 if we allow the y-
coordinates of vertices to change. This has nothing to do with the Hanani-Tutte
part of the result; it is entirely due to the fact that any x-monotone embedding
can be turned into a straight-line embedding in which every vertex keeps its
x-coordinate [6, 25]. This redrawing can lead to an exponential blow-up in the
area required for the drawing [21].5

All redrawing steps in the proof of Theorem 2.1 maintain equivalence except
for applications of Lemma 2.3. This part of the proof only arises if G − {x1}
is not connected. Hence, if we can make an assumption on G so that this case
never occurs, we can conclude that the resulting embedding is equivalent to
the original drawing in the sense of Pach and Tóth [25]. We already saw that
2-connectedness is not sufficient, however, another notion is: a graph in which
the vertices are ordered (from left to right, say) is a hierarchy if every vertex
except the rightmost one has an edge leaving it towards the right [5].

Corollary 2.5. If a hierarchy G has an x-monotone even drawing, then G has
an equivalent x-monotone embedding with the same vertex locations and rotation
system.

Proof. This follows from the proof of Theorem 2.1. The only operation that
changes equivalence of edges and vertices in that proof is the application of
Lemma 2.3. If G is a hierarchy, G − x1 consists of a single component, since
any two vertices in G − x1 are connected by a path (in a hierarchy any two
vertices must have a common ancestor). Since contracting the leftmost edge of
a hierarchy results in another hierarchy the result follows by induction.

2.1 From x-monotone to x-bounded

The x-monotonicity assumption in Theorem 2.1 can be replaced by a weaker
condition. Recall that an edge uv in a drawing is x-bounded if every interior
point p of uv satisfies x(u) < x(p) < x(v). That is, an edge is x-bounded if
it lies strictly between its endpoints; it need not be x-monotone within those
bounds.

Lemma 2.6. Suppose we are given a drawing of a graph G with an x-bounded
edge e. Then e can be redrawn, without changing the remainder of the drawing
or the position of e in the rotations of its endpoints, so that e is x-monotone
and the parity of crossing between e and any other edge of G has not changed.

Proof. Suppose that e = ab and let v be an arbitrary vertex between a and b:
x(a) < x(v) < x(b). Since e connects a to b it has to cross the line x = x(v)
an odd number of times. Consequently, e crosses one of the two parts into
which v splits x = x(v) evenly, and e crosses the other part oddly. In a small

5The examples in the paper allow multiple vertices in each layer, but these can be replaced
by the requirement that vertices are not too close to edges they are not incident to.
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neighborhood of x = x(v), redraw G by pushing all crossings of e with x = x(v)
from the even side across v to the odd side (see top and middle part of Figure 5).
Note that the odd side of x = x(v) remains odd and there are no crossing with
e left on the even side. Moreover, the parity of crossing between e and any
other edge does not change since e is moved an even number of times across v.
Repeat this for all v between a and b; now e only passes above or below each
such v, never both. We can now deform e into an x-monotone edge connecting
a and b, without having the edge pass over any vertices. Since the deformation
does not pass over any vertex, it does not affect the parity of crossing between
e and any other edge. This means we have found the redrawing required by the
lemma (see middle and bottom part of Figure 5).

a b

a b

a b

Figure 5: How to redraw an x-bounded edge. (Top) Before the redrawing.
(Middle) After pushing e off the odd parts. (Bottom) After deforming e into an
x-monotone drawing.

In hindsight we see that the redrawing in Lemma 2.6 can be done quite
efficiently: for each vertex v between a and b we only need to know whether e
passes oddly above or below it, and we can build a polygonal arc from a to b

that passes each vertex on the odd side.

Redrawing one edge at a time using Lemma 2.6 gives us the following
strengthening of Theorem 2.1. Later, we will use that result to strengthen The-
orem 3.1, and to show that x-monotone edges can be replaced by x-bounded
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edges in the definition of level planarity (see Corollary 4.5 in Section 4.2).

Corollary 2.7. If G has an even drawing in which every edge is x-bounded, then
G has an x-monotone embedding with the same vertex locations and rotation
system.

Next, we give a condition weaker than x-bounded, for which we can prove
some of the same results. Consider an edge e in a given drawing of a graph
G with endpoints u, v such that x(u) < x(v). Let Ce be the concatenation of
e with the line segment from v to u. We say that e is nearly x-bounded if for
every vertex z with x(z) < x(u) or x(z) > x(v), the winding number of Ce with
respect to z is even.

Lemma 2.8. Suppose we are given a drawing of a graph G with a nearly x-
bounded edge e. Then e can be redrawn, without changing the remainder of
the drawing, so that e is x-bounded and the parity of crossing does not change
between e and any edge of G that is independent of e.

Proof. We can gradually deform e to the line segment uv, which causes e to
become x-bounded. Suppose that e passed over the vertex z an odd number
of times during the deformation. Since e is nearly x-bounded, it must be that
x(u) ≤ x(z) ≤ x(v). If x(u) < x(z) < x(v), we can stretch e near the line
x = x(z) so that it passes over z once more, and e remains x-bounded. In the
end, since e has passed over every vertex other than u and v an even number
of times, the parity of crossing with e and any edge e′ of G remains unchanged
unless e′ shares an endpoint with e.

Although this does not allow us to directly generalize Corollary 2.7 to draw-
ings with nearly x-bounded edges, we will apply Lemma 2.8 presently, in Re-
mark 3.2.

3 Strong Hanani-Tutte for Monotone Drawings

Pach and Tóth [25] wrote “It is an interesting open problem to decide whether
[the conclusion of Theorem 2.1] remains true under the weaker assumption that
any two non-adjacent edges cross an an even number of times.” The goal of this
section is to establish this result.

Theorem 3.1 (Monotone Hanani-Tutte). If G has an x-monotone drawing in
which every pair of independent edges crosses evenly, then G has an x-monotone
embedding with the same vertex locations.

Remark 3.2. Similar to Theorem 2.1 and Corollary 2.7, the statement of The-
orem 3.1 remains true if we only require edges to be x-bounded or nearly x-
bounded rather than x-monotone: simply redraw edges one at a time using
Lemma 2.6 and/or Lemma 2.8, before applying Theorem 3.1.
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In a proof of the standard Hanani-Tutte theorem, it is obvious that a minimal
counterexample has to be 2-connected, since embedded subgraphs can be merged
at a cut-vertex. Unfortunately, the merge requires a redrawing that does not
maintain monotonicity, so here we must use structural properties that are more
tailored to x-monotone redrawings. For a subgraph H of G let N(H) denote
the set of neighbors of vertices of H in G − V (H), that is, N(H) := {u : uv ∈
E(G), v ∈ V (H), u ∈ V (G) − V (H)}.

Lemma 3.3. Suppose that G is a smallest (fewest vertices) counterexample to
Theorem 3.1. Then:

(i) G is connected.

(ii) G has no connected subgraph H and vertices a, b ∈ V (G) − V (H) such
that x(a) < x(v) < x(b) for all v ∈ V (H), N(H) = {a, b}, and V (G) −
(V (H) ∪ {a, b}) 6= ∅.

(iii) If G has a cut-vertex a and G−{a} has a component H such that x(a) <
x(v) for all v ∈ V (H), then H has only one vertex b, and G has no edge ac

with x(b) < x(c). Also, in this case G has no connected subgraph H ′ 6= ∅
so that x(a) < x(v) < x(b) for all v ∈ V (H ′), a ∈ N(H ′) 6= {a}, and
x(v) > x(b) for all v ∈ N(H ′)− {a}.

Proof. If a smallest counterexample G is not connected, none of its components
are counterexamples to Theorem 3.1. But then we could embed each component
separately and stack the drawings vertically so they do not intersect each other,
yielding an embedding of G. This contradiction establishes (i).

Consider (ii). Since G is a smallest counterexample, both G − V (H) and
G[V (H)∪{a, b}] have embeddings (both graphs are smaller than G by assump-
tion). We can deform the crossing-free drawing of G[V (H) ∪ {a, b}] so that
it becomes very flat. If ab ∈ E(G) we can then insert this drawing into the
drawing of G − V (H) near the edge ab, without adding crossings. This gives
us a crossing-free drawing of G, which is a contradiction. If ab 6∈ E(G) then we
add ab to the drawing of G−V (H) so that it has no independent odd crossings
(we will presently see how this can be done); the resulting G−V (H)∪{ab} has
fewer vertices than G so it also has an embedding, and we can proceed as in the
case that ab ∈ E(G), removing the edge ab in the end.

When ab 6∈ E(G), here is how we draw the edge ab with no independent odd
crossings: Let P be any a, b-path with interior vertices in H . By suppressing
the interior vertices of P , we can consider it an x-bounded edge (in the sense
defined earlier) between a and b, so Lemma 2.6 tells us that we can draw an
x-monotone edge that has the same parity of crossing with all edges of G−V (H)
as does P .

Finally, we consider (iii), where H is a component of G−{a} so that x(a) <
x(v) for all v ∈ V (H). Let b be the vertex with the largest x-value in H . If
|V (H)| > 1, then we have case (ii) using H := H − b. Therefore |V (H)| = 1
and V (H) = {b}. If G has an edge ac with x(b) < x(c), we can first embed
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G − {b} (since it is smaller than G), and then add ab and b to the embedding
alongside of ac without crossings.

It remains to consider a connected subgraph H ′ 6= ∅ so that x(a) < x(v) <
x(b) for all v ∈ V (H ′), a ∈ N(H ′) 6= {a}, and x(v) > x(b) for all v ∈ N(H ′)−
{a}. If there is an edge e not in H ′ with endpoints in H ′, we can replace
H ′ by H ′ ∪ {e} and it still satisfies all the conditions; thus we may assume
that H ′ contains all such edges, i.e., that H ′ is an induced subgraph of G. By
minimality, G − {b} has an embedding. Of all the edges from a to H ′, let au

be the one that is lowest in the rotation at a. Let f be the face in the drawing
of G that lies immediately below au. Follow the boundary of f from a to u

until it exits H ′ to a vertex c not in H ′. If c = a then H ′ could not have any
neighbors v with x(v) > x(b), a contradiction. The only other possibility is that
x(c) > x(b). Then by Lemma 2.3, we can add the edge ac to G−{b} and obtain
an embedding without introducing crossings. Since x(a) < x(b) < x(c), we can
instead add ab to the drawing without crossings, so G has an embedding which
is a contradiction.

The proof of Theorem 3.1 now proceeds by induction on the number of odd
pairs (pairs of edges that cross an odd number of times). Roughly speaking:
If we encounter an odd pair (by necessity its edges are adjacent), we can ei-
ther make it cross evenly or we are in a situation which has been excluded by
Lemma 3.3. To realize this goal, we need additional intermediate results. These
results are not about smallest counterexamples, but are true in general.

For the lemmas we introduce some new terminology generalizing our usual
notion of lying above or below a curve to curves with self-intersections: Let C be
a curve in the plane with endpoints p and r so that for every point c ∈ C−{p, r},
x(p) < x(c) < x(r). (This is similar to the definition of an x-bounded edge
except that we allow self-intersections.) Suppose that q is a point for which
x(p) ≤ x(q) ≤ x(r). Extend C via a horizontal ray from p to x = −∞ and a
horizontal ray from r to x = ∞, and consider the plane R2 minus that extended
curve. We can 2-color its faces so that adjacent faces (faces whose boundaries
intersect in a nontrivial curve) have opposite colors. We say that q is above
(below) C if q lies in a face with the same color as the upper (lower) unbounded
region.

In the following two lemmas, let G satisfy the assumption of Theorem 3.1,
that is, we assume an even x-monotone drawing in which every pair of indepen-
dent edges in G crosses evenly. Both lemmas deal with the following scenario:
G contains three edges ei = v0vi, i ∈ {1, 2, 3} so that e3 lies between e1 and e2
in the right rotation of v0, with e1 above e2 at v0, e1 and e2 cross oddly, and e3
crosses each of the other two edges evenly.

Lemma 3.4. For arbitrary xR > x(v0), define G′ as the graph induced by G on
vertices v with x(v0) < x(v) ≤ xR. Let G′

i be the component of G′ that contains
vi. (If x(vi) > xR, then G′

i = ∅.)
Suppose that G′

1, G
′

2, G
′

3 are pairwise disjoint and that for every i there is
a path Pi (in G) from v0 through ei to some vertex v′i satisfying x(v′i) ≥ xR so
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that all vertices v of Pi satisfy x(v) ≥ x(v0). (If Gi = ∅, then let E(Pi) = {ei}.)
Then each G′

i has no neighbors (in G) to the left of x(v0), for i ∈ {1, 2, 3}.

x0

v′3

v′2

v′1

G′

1
G′

2

G′

3

x = x(v0) x = xR

e1

e3

e2

Figure 6: Lemma 3.4.

Proof. By choosing each Pi to be minimal, we can assume that for every vertex
v of Pi other than its final endpoint v′i, we have x(v0) ≤ x(v) < xR, and also
x(v′i) ≥ xR. Note that for any point in the plane q with x(v0) ≤ x(q) ≤ xR that
does not lie on the curve Pi, q is either above or below Pi in the sense defined
just before Lemma 3.4.

Suppose, for a contradiction, that G′

i has a neighbor v′ to the left of x(v0).
Then we may let P ′

i be a path from vi to v′ such that every vertex of P ′

i − v′ is
in G′

i. Fix j, k so that {i, j, k} = {1, 2, 3}.
The paths P ′

i and Pj are disjoint, so every edge of P ′

i crosses Pj evenly (as
every pair (e, f) ∈ (P ′

i , Pj) crosses evenly). Every vertex of P ′

i − v′ is between
x(v0) and xR, so if vi is above Pj , then every vertex of P ′

i − v′ is above Pj ,
and when the last edge of P ′

i reaches the line x = x(v0), it must be above
v0. Likewise, if vi is below Pj , then the last edge of P ′

i must pass below v0.
Similarly, vi is above (below) Pk if and only if the last edge of P ′

i passes above
(below) v0.

We split the proof into cases. Suppose that (i, j, k) = (1, 2, 3). Then ei
begins in the rotation at v0 above ej and ek, and ei crosses ej oddly and ek
evenly. Since ei crosses other edges of Pj and Pk evenly, vi must be below Pj

and above Pk. Then by the above/below argument in the previous paragraph,
the last edge of P ′

i must pass both below and above v0, a contradiction. The
case (i, j, k) = (1, 3, 2) is the same, and the cases with i = 2 are symmetric.

Suppose that i = 3; without loss of generality, (j, k) = (1, 2). Then ei begins
in the rotation at v0 below ej and above ek, and ei crosses ej and ek evenly.
Since ei crosses other edges of Pj and Pk evenly, vi must be below Pj and above
Pk. Then by the earlier above/below argument, the last edge of P ′

i must pass
both below and above v0, a contradiction.

Lemma 3.5. Suppose that for some distinct j, k ∈ {1, 2, 3}, there is a cycle C

that contains ej and ek such that every vertex v of C satisfies x(v) ≥ x(v0). Let
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vR be the vertex on C with largest x-value. Let i be the unique index such that
{i, j, k} = {1, 2, 3}. Suppose that vi is not in C.

Let G′

i be the component of G−V (C) that contains vi. Then every vertex v

of G′

i satisfies x(v0) < x(v) < x(vR).

Proof. Let Pj and Pk be the v0, vR-paths in C that contain ej, ek, respectively.
Suppose that x(vi) > x(vR). First, consider the case (i, j, k) = (1, 2, 3):

Since ej and ek begin in the rotation at v0 below ei, and ei crosses ej oddly
and ek evenly, it must be that vj is above ei and vk is below ei. (See Figure 7.)
Every other edge of Pj crosses ei evenly, so all its other vertices are also above
ei; likewise, every other vertex of Pk is below ei. But then vR lies above and
below ei; contradiction. The case (i, j, k) = (1, 3, 2) is the same, and the cases
with i = 2 are symmetric. Suppose that i = 3; without loss of generality,
(j, k) = (1, 2). Then in the rotation at v0, ej is above ei and ek is below ei, and
ei crosses ej and ek evenly. Then vj is above ei and vk is below ei. Then (as
seen earlier), every vertex of Pj − v0 is above ei and every vertex of Pk − v0 is
below ei, a contradiction since vR is in both.

v0

vR

ei

ek
ej

Figure 7: ei crosses ej oddly and ek evenly.

Thus, we may assume that x(v0) < x(vi) < x(vR). As argued in the proof
of Lemma 3.4, vi is below Pj and above Pk, or vi is above Pj and below Pk,
depending on the order of values assigned to i, j, k.

Suppose that there is a path P ′

i in G − V (C) from vi to a vertex v′ with
x(v′) < x(v0) or x(v

′) > x(vR). Let P
′

i be a minimal such path, so that it exits
the region between lines x = x(v0), x = x(vR) with its last edge e′. P ′

i is disjoint
from Pj , so e′ passes above (below) v0 or vR if and only if every vertex of P ′

i

is above (below) Pj . Likewise if we replace Pj by Pk. But then the vertices of
P ′

i are either all above Pj and Pk or they are all below Pj and Pk, including vi,
which contradicts what we have already shown for vi.

We are finally in a position to prove Theorem 3.1. We need one more piece
of terminology: consider two edges e and f that share the same right (or left)
endpoint. The distance between e and f is the number of edge ends between
the ends of e,f in the left (or right) rotation at their shared vertex. (We do
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not measure distance within the entire rotation; only within the right or left
rotation.)

Proof of Theorem 3.1. Let G be a smallest (fewest vertices) counterexample to
the theorem. By Lemma 3.3(i), G is connected. Fix an x-monotone drawing
of G with the same vertex locations, which minimizes the number of odd pairs
(that is, the number of pairs of edges crossing oddly). If there are no odd pairs,
then Theorem 2.1 completes the proof.

Suppose that there are edges e1 and e2 that cross oddly. Then e1 and e2
have a shared endpoint v0, and we may assume that v0 is the left endpoint of
e1 and e2. Choose e1 and e2 so that their ends at v0 have minimum distance in
the right rotation at v0, with e1 above e2. Then e1 and e2 are not consecutive in
the rotation at v0; if they were, they could be redrawn so that they cross once
more near v0, by switching their order in the rotation at v0; this contradicts
the choice of drawing of G. So there is at least one edge incident to v0 that
lies between e1 and e2 in the rotation at v0, and by minimality, all such edges
cross each other evenly and cross both e1 and e2 evenly. Pick one such edge, e3.
Let v1, v2, v3 be the right endpoints of e1, e2, e3, respectively, and let G0 be the
subgraph of G induced by all vertices v fulfilling x(v) ≥ x(v0).

Case 1. Vertices v1, v2, v3 are in different components of G0 − v0.

In Case 1, for each i ∈ {1, 2, 3}, consider the component of G0 − v0 that
contains vi and let v′i be its vertex with largest x-value. Assign i, j, k so that
{i, j, k} = {1, 2, 3}, and x(v′i) is smaller than x(v′j) and x(v′k). Let xR = x(v′i)
and apply Lemma 3.4, which defines G′

i, G′

j , G′

k and shows that G′

i has no
neighbors to the left of x(v0). Then by Lemma 3.3(iii) (with a = v0 and H =
G′

i), G
′

i has just one vertex vi = v′i (= b) and x(vi) > x(vj) and x(vi) > x(vk).
Then G′

j and G′

k are non-empty, so they also have no neighbors to the left of
x(v0). This contradicts the second part of Lemma 3.3(iii) with H ′ equal to G′

j

(or G′

k) restricted to vertices v with x(v) ≤ xR.

If we are not in Case 1, let xL be smallest such that the subgraph induced
by {v ∈ V (G) : x(v0) < x(v) ≤ xL} has a component that contains at least
two vertices of v1, v2, v3. Then there is a cycle C that contains ej and ek
for some distinct k, j ∈ {1, 2, 3} and a vertex vL such that x(vL) = xL and
x(v0) ≤ x(v) ≤ x(vL) for all v ∈ V (C). If vvL ∈ {e1, e2, e3}, then we may
assume that C contains vvL.

Let i be the unique index for which {i, j, k} = {1, 2, 3}. By the previous
assumption, vi 6= vL. By Lemma 3.5, x(vi) < x(vL) or vi ∈ V (C)− vL.

Suppose that there is a path Q from vi to C so that x(v0) < x(v) < x(vL)
for all v ∈ V (Q). Then Q ∪ ei ∪ C − vL contains a cycle C′ with ei and either
ej or ek. But every vertex v of C′ satisfies x(v0) ≤ x(v) < x(vL) for all v in C′,
contradicting the choice of vL.

It immediately follows that vi is not in V (C)− vL; also vi 6= vL, so we may
let G′

i be the component of G− V (C) that contains vi. By Lemma 3.5, G′

i lies
between x = x(v0) and x = x(vL) (since vi 6= vL). The previous paragraph
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also implies that G′

i has no neighbors in V (C) − {v0, vL}. Let v′i be the vertex
of G′

i with largest x-value, let xR = x(v′i), and define G′

i, G
′

j , G
′

k according to
Lemma 3.4 (and note that this doesn’t alter G′

i).

Case 2. G′

i is not adjacent to vL.

(Same as Case 1:) By Lemma 3.3(iii), G′

i has only the one vertex vi = v′i,
and G′

j and G′

k are non-empty because x(vi) is greater than x(vj) and x(vk).
Then we can apply Lemma 3.3(iii) with H ′ equal to G′

j (or G′

k) restricted to
the vertices with the x-coordinate smaller than x(v′i), and we are done.

Case 3. There is an edge from G′

i to vL.

Apply Lemma 3.3(ii) with H = G′

i. This completes the proof of the theorem.

4 Level-Planarity Testing

The strong Hanani-Tutte theorem can be viewed as an algebraic characterization
of planarity: testing whether a graph is planar can be recast as solving a system
of linear equations.6 Unfortunately, the system has |E| · |V | = O(|V |2) variables
which leads to an impractical O(|V |6) running time.7

Similarly, Theorem 3.1 can be viewed as an algebraic criterion for testing
whether a graph has an x-monotone embedding, for a given x-coordinate order
of the vertices. However, unlike the system of linear equations for planarity, the
equations for x-monotonicity are so simple that solvability can be checked di-
rectly in quadratic time. We present the details of this algorithm in Section 4.1.
In Section 4.2 we will see how to extend the algorithm to recognizing level-planar
graphs, so we obtain a very simple, quadratic-time algorithm for level-planarity
testing. Linear time algorithms for this task are known, but are quite com-
plex. We discuss the rather confusing situation of algorithms for level-planarity
testing in more detail in Remark 4.3.

4.1 Testing x-Monotonicity

How can we use Theorem 3.1 to test whether a given graphG with x-coordinates
assigned to the vertices has an x-monotone embedding? LetD be an x-monotone
embedding of G and let D′ be an x-monotone drawing of G on the same vertex
set. Pick any edge e in D′ and continuously transform it into its drawing in D;
we can assume that the edge remains x-monotone during the transformation.
As the edge changes, its parity of intersection with any independent edge only
changes when it passes over a vertex v (at which point its parity of intersection

6Tutte presented his theorem as an algebraic characterization of planarity, but he did not
investigate algorithmic implications [32]. Algebraic planarity testing based on the Hanani-
Tutte characterization was probably first described by Wu [34, 35] in a sequence of papers
first published in Chinese in the 70s.

7There are linear-time algorithms for planarity testing based on a Hanani-Tutte-like char-
acterization, but they do not take the algebraic route [4, 3].
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with every edge incident to v changes). The same effect can be achieved by
making an (e, v)-move: Take e, and close to x = x(v) deform it into a spike
that passes around v. In other words: if G has an x-monotone embedding then
there is a set of (e, v)-moves that turns D′ into a drawing in which every pair of
independent edges crosses evenly. Since the reverse is also true, by Theorem 3.1,
we now have an efficient test.

Theorem 4.1. Given a graph G and a placement of the vertices of G in the
plane, we can test in time O(|V |2) whether G has an x-monotone drawing on
that vertex set.

Proof. If G has an x-monotone embedding on the given vertex set, then no two
vertices lie on a vertical line. As discussed in Remark 2.2, we can deform the
plane so that the vertices are located at (1, 0), . . ., (|V |, 0), and the drawing will
remain x-monotone—but it will remain an embedding as well. Thus, we can
assume that the vertices are located at (1, 0), . . ., (|V |, 0).

Now draw each edge as a monotone arc above y = 0. Note that two edges
cross oddly in this drawing if and only if their endpoints alternate in the order
along the x-axis. By the discussion preceding the theorem, it is sufficient to
decide whether there is a set of (e, v)-moves that turns this drawing into a
drawing in which every pair of independent edges crosses evenly. We can model
this using a system of equations: We introduce variables xe,v for each e ∈ E

and v ∈ V ; xe,v = 1 means an (e, v)-move is made, xe,v = 0 means it is not.
For two edges e = (e1, e2) and f = (f1, f2) to intersect, their intervals on the
x-axis have to overlap. And there are two cases: the endpoints alternate (and
the edges cross oddly in the initial drawing) or they do not (and the edges cross
evenly). Let us first consider the case e1 < f1 < e2 < f2. In the initial drawing,
e and f cross oddly, so we must have xe,f1 = 1 − xf,e2 for e and f to cross
evenly. If e1 < f1 < f2 < e2, then e and f cross evenly, and we must have
xe,f1 = xe,f2 for e and f to cross evenly. Note that these equalities are the only
conditions that affect whether e and f cross evenly. Hence, it is sufficient to
set up this system of equations for all such pairs of edges e and f and solve
it. This can be done using a simple depth-first search: build a graph F on
vertex set E × V . Consider every pair of independent edges e = (e1, e2) and
f = (f1, f2) in G, If e1 < f1 < e2 < f2, then add a red edge ((e, f1), (f, e2)) to
F . If e1 < f1 < f2 < e2, add a green edge ((e, f1), (e, f2)) to F . Now perform a
depth-first traversal of (the not necessarily connected) graph F . When starting
the traversal at a new root arbitrarily assign a value of 0 to the root variable.
When following a green edge, assign the parent value to the child vertex, when
following a red edge, swap 0 to 1 and vice versa. Whenever encountering a back-
edge verify that the value assignment to the endpoints of the edge is consistent
with its color (green for equal, red for different). If this test fails, the graph
cannot be embedded. Otherwise, the depth-first search succeeds and the graph
has an x-monotone embedding.

Since we can assume that G is planar, we know that |E| ≤ 3|V |, and our
algorithm runs in time O(|V |2) with a small constant factor.
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Remark 4.2. The O(|V |2) bound in Theorem 4.1 can be far from optimal
since only (e, v)-moves for which v lies between the endpoints of e are possible.
If we define the layout complexity of a graph with assigned x-coordinates as
|{(e1e2, v) : x(e1) < x(v) < x(e2), v ∈ V (G), e1e2 ∈ E(G)}|, then the algorithm
in Theorem 4.1 runs in linear time in the size of the layout. This measure seems
fair if we actually want to draw the graph (since we have to know in what order
edges pass a vertex).

4.2 Testing Level-Planarity

The definition of an x-monotone drawing does not allow two vertices to have the
same x-coordinate. If we remove this restriction we enter the realm of leveled
graphs: a leveled graph is a graph G = (V,E) together with a leveling ℓ : V → Z.
A leveled drawing of (G, ℓ) is a drawing in which edges are x-monotone and
x(v) = ℓ(v) for every v ∈ V . (G, ℓ) is level-planar if it has a leveled embedding.
Some papers have considered proper levelings, in which each edge’s endpoints
are on consecutive levels; we typically do not require our leveling to be proper.

Our results can easily be extended to handle level-planarity testing, an im-
portant case of layered graph drawing [5, 14, 15, 20, 17].

Remark 4.3. Level-planar graphs can be recognized and embedded in linear
time using PQ-trees [20, 17, 16]; this work is based on earlier work for the spe-
cial case of hierarchies [5]. There had been an earlier attempt at extending this
to general graphs [14, 15], but there were gaps in the algorithm as pointed out
in [18]. Alternative routes have included identifying Kuratowski-style obstruc-
tion sets for level-planarity [13], characterizations via vertex-exchange graphs [12,
10] and reductions to 2-satisfiability [30]. It appears that all of these approaches
have subtle problems: currently known obstruction sets for the general case are
not complete and are known to be infinite (for standard notions of obstruction
containment); only special cases, like trees, are understood [7]. The testing [12]
and layout [10] algorithms based on vertex-exchange graphs rest on a charac-
terization of level-planarity that is not fully established at this point, the case
when the vertex exchange graph is disconnected remains open [11]; this is un-
fortunate, since both algorithms are relatively fast, O(|V |2) for both testing and
layout, and very simple (the testing algorithm is somewhat similar to ours, even
if the characterization it is based on is different). Finally, there also seems a
gap in the suggested reduction to 2-satisfiability (which, if correct, would also
result in a quadratic time testing algorithm).

Thus, although the algorithm we are about to describe may not be the first
simple, quadratic-time algorithm for level-planarity testing, it appears to be the
first with a complete correctness proof.

Level-planar graphs do not directly generalize x-monotone graphs since an x-
monotone graph can have vertices at non-integer levels. However, if G has an x-
monotone embedding, then (G, ℓ) is level-planar with ℓ(v) = |{u : x(u) ≤ x(v)}|.

Our interest in this section is the reverse direction; how can we reduce testing
level-planarity to testing x-monotonicity? The answer is a simple construction:
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Take a leveled drawing of (G, ℓ). Perturb all vertices slightly, so no two vertices
are at the same level. If there is a vertex whose left or right rotation is empty,
insert a new edge and vertex on its empty side so that the edges extends slightly
beyond all the perturbed vertices from the same level. If there is a vertex with
both left and right rotation empty, remove it.

Suppose that the resulting graph G′ has an x-monotone embedding with the
same vertex locations. By the construction of G′, every vertex v that used to
have level ℓ(v) = x∗ is now incident to an edge that passes over the line x = x∗.
Since all these curves may not intersect each other, we can perturb the drawing
slightly (while keeping it x-monotone) to move every vertex of G back to its
original level. Also, if (G, ℓ) is level-planar, then G′ is obviously x-monotone,
so we can use the algorithm from Theorem 4.1 on G′ to test level-planarity of
(G, ℓ). Since we only added at most |V (G)| vertices and edges to G, the resulting
algorithm still runs in quadratic time—with a small constant factor.

Corollary 4.4. Given a leveled graph (G, ℓ) we can test in time O(|V |2) whether
G is level-planar.

Note that this result does not require the leveling of G to be proper and thus
improves on the algorithm by Healy and Kuusik [12] (assuming it is correct)
which requires the leveling to be proper. Turning an improper leveling into a
proper leveling (by subdividing edges) can increase the number of vertices by a
quadratic factor.

There is one final conclusion we want to draw from the reduction of level
planarity to x-monotonicity: when defining a level planar drawing we required
edges to be x-monotone (in the literature one also finds the equivalent require-
ment that edges are straight-line segments between levels). As with Corol-
lary 2.7, it is now easy to see that the x-monotonicity requirement is stronger
than necessary.

Corollary 4.5. If (G, ℓ) can be embedded so that x(v) = ℓ(v) for every v ∈ V

and every edge is x-bounded, then G is level planar.

Proof. Fix an embedding of (G, ℓ) so that x(v) = ℓ(v) for every v ∈ V and
every edge is x-bounded. Consider the leveled graph G′ constructed before
Corollary 4.4. Then G′ has a leveled embedding in which every edge is x-
bounded. By Corollary 2.7, G′ has an x-monotone embedding in which each
vertex keeps its x-coordinate (and the rotation system remains unchanged). As
above, from this embedding we can obtain a level-planar embedding of G.

5 Monotone Crossing Numbers

Our Hanani-Tutte results can be recast as results about monotone crossing num-
bers of leveled graphs. For a leveled graph (G, ℓ) let mon-cr(G, ℓ) be the smallest
number of crossings in any leveled drawing of (G, ℓ). Similarly, we can define
mon-ocr(G, ℓ) as the smallest number of pairs of edges that cross oddly in any
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leveled drawing of (G, ℓ). Finally, mon-iocr(G, ℓ) is the smallest number of pairs
of non-adjacent edges that cross oddly in any leveled drawing of (G, ℓ). We
suppress ℓ and simply write mon-cr(G), mon-ocr(G), and mon-iocr(G). With
this notation we can restate the original result by Pach and Tóth, our Theo-
rem 2.1, as saying that mon-ocr(G) = 0 implies mon-cr(G) = 0. Similarly, our
Theorem 3.1 can be restated as mon-iocr(G) = 0 implies mon-cr(G) = 0.

From this point of view we can now ask questions that parallel analogous
problems for the regular (non-monotone) crossing number variants cr, ocr, and
iocr. For example, we know that ocr(G) = cr(G) for ocr(G) ≤ 3 [28] and
iocr(G) = cr(G) for iocr(G) ≤ 2 [29]. Pach and Tóth showed that cr(G) ≤
(

2 ocr(G)
2

)

[24, 28]. The core step in this result is a “removing even crossings”
lemma, in this particular case: if G is drawn in the plane and E0 is the set
of its even edges, then G can be redrawn so that all edges in E0 are free of
crossings. It immediately implies cr(G) ≤

(

2 ocr(G)
2

)

, since only non-even edges
can be involved in crossings (and every pair of non-even edges needs to cross at
most once). A similar result for monotone drawings fails dramatically:

Theorem 5.1. For every n there is a graph G so that mon-cr(G) ≥ n and
mon-ocr(G) = 1.

In other words: even if there are only two edges crossing each other oddly
and all other edges are even, then any x-monotone drawing of G with the given
leveling may require an arbitrary number of crossings. Thus we cannot hope
to establish a “removing even crossings” lemma in the context of x-monotone
drawings since it would imply a bound on mon-cr(G) in terms of mon-ocr(G).

Proof. Our example uses 8 vertices, allowing multiple edges which we bundle
into a single weighted edge. Consider the graph on 8 vertices with edges 36 and
57 of weight 1 and edges 12, 13, 25, 26, 37, 46, 47, 68, and 78 of weight n > 1.
Weighted edges can be replaced by paths of length 2 turning the example into
a simple graph.

1 2 3 4

5 6
7 8

Figure 8: The drawing showing mon-ocr(G) ≤ 1. The solid edges have weight
n, the dashed edges have weight 1.

We next argue that mon-cr(G) ≥ n. Suppose there is a drawing D with
mon-cr(D) < n. Then the only pair of edges that may intersect is 36 and 57.
Without loss of generality, we can assume that 12, 13 and 78 are drawn exactly
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as they are in Figure 8. We distinguish two cases depending on whether 46
passes below 5 (as in Figure 8) or above 5. Let us first consider the case that 46
passes below 5. Adding edges 25, 57, we see that they are forced to be drawn
as in Figure 8. At this point, edge 68 has to pass below 7 and then 47 is forced.
That is, if we assume that 46 passes below 5, then the edges we added have to
be drawn as shown in Figure 9. By inspection it is clear that adding edge 36 to
this drawing will cause at least n crossings, either with edge 25 or edge 47.

1 2 3 4

5 6
7 8

Figure 9: The unique way of drawing edges 25, 57, 68, and 27, assuming 46
passes below 5 and mon-cr(D) < n.

On the other hand, if 46 passes above 5, then edge 25 is forced to pass below
3 and 4 and edge 57 is forced below 6. This forces 68 above 7 which in turn
forces 37 below 4 and 6 and above 5. However, now it is impossible to add edge
26 without having it cross either 13 or 37, see Figure 10.

1 2 3 4

5 6
7 8

Figure 10: The unique way of drawing edges 25, 57, 68 and 37, assuming 46
passes above 5 and mon-cr(D) < n.

6 Future Directions

The following questions were first included in the conference version of this
paper. Since that time there has already been some progress, which we include
as annotations.

Planarity Testing Can the running time of our level-planarity testing algo-
rithms be improved? There are several obstacles to this, most fundamen-
tally the problem that to describe the effect of (e, v)-moves we need a
system with a quadratic number of variables. It is not obvious (to us at
least), how to reduce the size of this system. Other problems in the algo-
rithm like the linear overhead in the “conquering” steps of the algorithms
may be overcome with better data structures.
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Monotone Crossing Numbers The monotone crossing number of a leveled
graph G is the smallest number of crossings in any x-monotone drawing
of the leveled graph. This problem is known to be NP-hard (even for
two levels [8]) and the monotone crossing number can be arbitrarily large,
even for a planar graph.8

We get a more interesting question if we define the monotone crossing
number for unleveled graphs as the smallest crossing number of any x-
monotone drawing for any leveling of the graph. Is this monotone crossing
number bounded in the crossing number? For comparison, rcr2(G) is at

most
(

cr(G)
2

)

, where rcr2(G) allows straight-line edges with one bend [1].

Pach and Tóth [27] recently announced that the (unleveled) monotone crossing

number of a graph G can be bounded by 2 cr(G)2 and that there are graphs for

which the monotone crossing number is at least 7/6 cr(G) − 6. We should also

mention that Valtr [33] showed that the monotone crossing number is bounded

by 4k4/3 where k is the monotone pair crossing number (again for unleveled

graphs).

Bi-monotonicity Let us define y-monotonicity like x-monotonicity after a 90-
degree rotation; not very exciting by itself, but what happens if we want
embeddings that are bi-monotone, that is, both x- and y-monotone?

• If a graph has both an x-monotone embedding and a y-monotone
embedding, does it always have a bi-monotone embedding?

• If there is a drawing of a graph which is bi-monotone, is there a
straight-line drawing with the same x and y ordering?

• What about bi-level-planarity?

As far as we know, bi-monotonicity and bi-level-planarity are new con-
cepts, however, they are quite natural: If we specify the relative locations
of objects on a map, we specify them in terms of “west/east of” and
“north/south of” which is exactly what bi-monotonicity models. Imagine
specifying the stations for a subway map: actual distances do not matter,
what matters is relative location in terms of x and y.

As it turns out it is possible that a leveled graph has both an x-monotone
and a y-monotone embedding without having a bi-monotone embedding, see
the leveled graph in Figure 11. By Theorem 2.1 the graph is x-monotone and
(applying the Theorem at an angle of 90 degrees) y-monotone. However, it can
be shown that the graph is not bi-monotone.

This means that an algebraic bi-monotonicity criterion has to be more sophis-

ticated than just requiring a bi-monotone even drawing. It also opens up the

question of what is the complexity of recognizing bi-monotone or bi-level planar

graphs?

Acknowledgment. We thank the anonymous referee for careful proofreading.

8The leveled graph is such an example.

23



Figure 11: An leveled path that is not bi-monotone.
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[18] Michael Jünger, Sebastian Leipert, and Petra Mutzel. Pitfalls of using
PQ-trees in automatic graph drawing. In Giuseppe DiBattista, editor,
Proceedings of the 5th International Symposium on Graph Drawing, GD’97
(Rome, Italy, September 18-20, 1997), volume 1353 of LNCS, pages 193–
204. Springer-Verlag, Berlin, 1998.

[19] Daniel J. Kleitman. A note on the parity of the number of crossings of a
graph. J. Combinatorial Theory Ser. B, 21(1):88–89, 1976.

[20] Sebastian Leipert. Level Planarity Testing and Embedding in Linear Time.
PhD thesis, Universität zu Köln, Köln, 1998.
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