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Abstract

This note collects open questions and conjectures related to graph

drawing research. In spite of their topological provenance, the first three

problems are purely combinatorial problems on digraphs and words; only

the last problem is a straight-forward crossing number problem.

1 Tournaments and Linear Arrangements

A tournament is a directed graph containing exactly one arc between any two
vertices. For a tournament T on a set V of vertices let T (u, v) be the number of
directed paths of length 2 from u to v. A tournament arrangement of a graph
G = (V, E) is a tournament T on V , the cost of the arrangement is defined as

|E| +
∑

uv∈E

T (u, v).

Tournament arrangements generalize linear arrangements, in which the tourna-
ments are restricted to be linear orders. We can also view a linear arrangement
as a permutation ϕ mapping V to {1, . . . , |V |}; then the value of the linear ar-
rangement is |E|+∑

uv∈E
T (u, v) =

∑

uv∈E
(T (u, v)+1) =

∑

uv∈E
|ϕ(u)−ϕ(v)|,

which is the usual way to define the value of a linear arrangement of the ver-
tices of G, so our definition agrees with the standard definition for tournaments
which are linear orders.

Conjecture 1.1 (Pelsmajer, Schaefer, Štefankovič [5]). The minimum cost of

a tournament arrangement of a graph is achieved by a linear arrangement.

This seems a natural conjecture to make, and its truth would have simplified
the proof of NP-hardness for deciding the independent odd crossing number (a
variant of the standard crossing number). For that proof it turned out to be
sufficient to show that the conjecture holds for complete graphs:
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Theorem 1.2 (Pelsmajer, Schaefer, Štefankovič [5]). The minimum cost of a

tournament arrangement of Kn is
(

n+1

3

)

.

For a minimum linear arrangement of a complete graph, the order of the
vertices does not matter, which makes it easy to see that the cost of a minimum
linear arrangement is

(

n+1

3

)

, verifying the conjecture for complete graphs. The
natural next step would be to verify the conjecture for simple families of graphs
such as paths, cycles, and trees.

There is a very tempting avenue of attack on the conjecture: Suppose we have
a tournament arrangement of a graph G which is not a linear arrangement; then
the tournament must contain a directed cycle; find an arc in the tournament so
that reversing the arc brings us closer to a linear arrangement (by reducing the
number of directed cycles) without increasing the cost of the arrangement. This
approach leads into dangerous territory: Ádám conjectured that any directed
graph containing a directed cycle contains an edge that can be reversed so as
to decrease the number of directed cycles; the conjecture fails for multigraphs,
but its status is open for simple graphs. The attack we outlined would require
settling Ádám’s conjecture for tournaments: any tournament which is not a
linear order contains an arc that can be reversed so as to decrease the number
of directed cycles; even this variant is still open [1].

2 Edit Distance of Cyclic Words

Given two words, the swapping distance between the two words is the smallest
number of transpositions of adjacent letters (swaps) that turn one word into
the other. The swapping distance is a special case of the edit distance problem
in which other operations (replace, insert, delete, swap) are allowed for various
costs, and it is known to be solvable in time O(n log n). However, what happens
if we ask for the swapping distance of cyclic words, that is words in which the
first and last letter are adjacent?

The cyclic variant of the swapping distance models computing the crossing
number of a multigraph on two vertices with a given rotation system (a cyclic
order of the edges leaving each vertex): the two cyclic words are the orders in
which the edges leave the vertices [5]. At this point one would expect to find
a (dynamic programming?) algorithm to solve the cyclic swapping distance
problem to calculate the crossing number for 2-vertex multigraphs. Instead the
reverse is true: we know how to calculate the crossing number in polynomial
time using integer programming using relaxation [4], thus giving us an algorithm
for computing the swapping distance for cyclic words in which each letter occurs
only once, that is, permutations. It seems rather hard to believe that an edit
distance problem should require integer programming.

Conjecture 2.1. The swapping distance of cyclic words can be computed in

polynomial time.
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3 Binary Square-Free Words

Thue showed that it is possible to construct a word that does not contain any
squares, that is subwords of the form ww. He even showed that an infinite
square-free word can be built over the alphabet {0, 1, 2}. While binary words
can be square-free, any binary word of length at least 4 must contain a square,
so in particular there are no infinite binary square-free words. However, there
are infinite binary words that do not contain any odd squares, that is squares
ww where |w| is odd. For example, 010101 . . . is such a word. So what about
avoiding even squares, squares for which |w| is even? While this problem is
harder, one can define such a word a = (an)n∈N explicitly via

an = ⌊nφ mod 2⌋,

where φ = (
√

5+1)/2 is the golden ratio [6]. Then a1a2 . . . = 110001100011 . . .,
a sequence that is listed in Sloane’s Encyclopedia of Integer Sequences [2, Se-
quence A085002].

What is unusual about here is that traditionally square-free words are con-
structed by repeatedly applying square-free morphisms (morphisms that map
square-free words to square-free words) to an initial square-free word.

Question 3.1. Is there a construction of a square-free word over a three-letter
alphabet that is not based on recursively applying square-free morphisms?

It is easy to build a square-free word over a four-letter alphabet by com-
bining a and 010101 . . . bit by bit. There are other aspects of the sequence
a which are intriguing; for example, the lengths of the squares that do occur
are 1, 5, 21, 89, . . ., that is, Fibonacci numbers of the form f3n+2. Numerical
evidence seems to suggest that there is a relationship between the length of
squares in a sequence bn = ⌊nα mod 2⌋, for irrational α and the numerators
and denominators of the convergents of the continued fraction of α.

4 The Triviality of Adjacent Crossings

In his famous paper on algebraic aspects of the crossing number, Tutte wrote
“We are taking the view that crossings of adjacent edges are trivial, and easily
got rid of” [7]. Taking Tutte at his word, the following question should be
trivial:

If a graph can be drawn in the plane so that no two non-adjacent
edges cross, is the graph planar?

While the answer to the question is yes, the easiest proof seems to involve the
Hanani-Tutte theorem which is the stronger statement that a graph is planar
if it can be drawn in the plane so that no two non-adjacent edges cross an odd
number of times. Hence we ask whether our question above can be answered
directly without using the Hanani-Tutte theorem. To emphasize that crossings
of adjacent edges are hardly trivial, I propose the following conjecture:
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Conjecture 4.1. If a graph can be drawn in a surface so that no two non-

adjacent edges cross, then the graph can be embedded in that surface.

By the recently established Hanani-Tutte theorem for the projective plane,
we know that the conjecture is true for the projective plane, but even the case
of the torus remains open [3].
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