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Abstract

We show that deciding whether a graph with given edge lengths
can be realized by a straight-line drawing has the same complexity as
deciding the truth of sentences in the existential theory of the real num-
bers, ETR; we introduce the class ∃R that captures the computational
complexity of ETR and many other problems. The graph realizabil-
ity problem remains ∃R-complete if all edges have unit length, which
implies that recognizing unit distance graphs is ∃R-complete. We also
consider the problem for linkages: in a realization of a linkage vertices
are allowed to overlap and lie on the interior of edges. Linkage real-
izability is ∃R-complete and remains so if all edges have unit length.
A linkage is called rigid if any slight perturbation of its vertices which
does not break the linkage (i.e. keeps edge-lengths the same) is the
result of a rigid motion of the plane. Testing whether a configuration
is not rigid is ∃R-complete.

1 Introduction

Many computational problems in geometry, graph drawing and other areas
can be shown decidable using the (existential) theory of the real numbers;
this includes the rectilinear crossing number, the Steinitz problem, and find-
ing a Nash equilibrium; what is less often realized—with some exceptions—is
that the existential theory of the reals captures the computational complex-
ity of many of these problems precisely: deciding the truth of a sentence
in the existential theory of the reals is polynomial-time equivalent to find-
ing the rectilinear crossing number problem [3], solving the Steinitz prob-
lem [34, 4], finding a Nash Equilibrium [43], recognizing intersection graphs
of convex sets and ellipses [42], recognizing unit disk graphs [32] and many
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other problems.1 In this paper we try to further substantiate this claim
by showing that some well-known Euclidean realizability problems have the
same complexity. One consequence of these results is that efficient algorith-
mic solutions to any of these problems are unlikely, since they would lead to
efficient decision procedures for the existential theory of the real numbers,
a problem that is NP-hard but not known (or expected) to be in NP.

1.1 The Existential Theory of the Real Numbers

The existential theory of the real numbers, ETR, is the set of true sentences
of the form

(∃x1, . . . , xn) ϕ(x1, . . . , xn),
where ϕ is a quantifier-free (∨,∧,¬)-Boolean formula over the signature
(0, 1,+, ∗, <,≤,=) interpreted over the universe of real numbers.2

Tarski showed that ETR is decidable, but the running time of his de-
cision procedure is not elementary (that is, bounded above by a tower of
exponentials of fixed height).3 The existential theory of the reals is expres-
sive enough to phrase many interesting problems in robotics and geometry,
so research into more practical algorithms for deciding ETR has continued
steadily since the 1970s when Collins discovered cylindrical algebraic decom-
positions that gave a double-exponential time algorithm for deciding ETR.
Canny, motivated by problems in robot motion planning, showed that the
problem is solvable in PSPACE [8]. This is still the best upper bound
on ETR in terms of complexity theory, though Renegar sharpened Canny’s
result in terms of algebraic complexity [36, 37, 38]. For a detailed survey,
see [33]; for experimental comparisons of running times, see [22].

As it turns out, ETR cannot only be used to solve algorithmic prob-
lems, it also captures the complexity of many such problems precisely. To
make this statement precise, we use the notion of reducibility from compu-
tational complexity: we say a problem A reduces to B (A≤mB) if there
is a polynomial-time computable function f so that x ∈ A if and only if
f(x) ∈ B for all x; the function f is known as the reduction.4 This notion

1A manuscript collecting many of these problems is in preparation [41].
2When writing formulas in the existential theory of the reals, we will freely use integers

and rationals, since these can easily be eliminated without affecting the length of the
formula substantially. We will also drop the symbol ∗.

3Tarski showed that the full theory of the reals is decidable by quantifier elimination.
4This reducibility is known as polynomial-time many-one reducibility; since we have

no need for other reducibilities in this paper, we simplify to “reduces”. We consider
decision problems (requiring a “yes” or “no” answer) encoded as sets of binary strings;
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of reducibility is transitive, so we can use it to (partially) order problems by
their complexity. Intuitively, A reduces to B if A is at most as hard as B,
since a solution to B can be combined with the polynomial-time algorithm
for f to answer membership in A.5 We can now define ∃R to be the complex-
ity class associated with ETR: a decision problem belongs to ∃R if it reduces
to ETR; a decision problem is ∃R-hard if every problem in ∃R reduces to it in
polynomial time, it is ∃R-complete if it belongs to ∃R and is ∃R-hard. Anal-
ogously, we define notions based on ∀R, the problems whose complement (in
{0, 1}∗) is in ∃R. Note that NP ⊆ ∃R, since we can express satisfiability of
a Boolean formula in ∃R. For example, (x∨ y ∨ z)∧ (x∨ y ∨ z)∧ (x∨ y ∨ z)
is equivalent to

(∃x, y, z)[x(x − 1) = 1 ∧ y(y − 1) = 1 ∧ z(z − 1) = 1

∧ (x(1− y)z) + ((1− x)yz) + ((1− x)(1 − y)(1− z)) = 0]

We do not know, whether coNP ⊆ ∃R. By Canny’s result, ∃R ⊆ PSPACE

and this is still the best known upper bound on ∃R [8].

1.2 Stretchability and ∃R-completeness

To show that a geometric problem is ∃R-complete we could try reducing from
ETR, but that is typically hard. Moreover, it is unnecessary, since there is
a prototypical geometric ∃R-complete problem due to Mnëv: stretchability
of pseudolines. A pseudoline is a simple curve which is x-monotone, that
is, the curve crosses every vertical line exactly once. An arrangement of
pseudolines is a finite collection of pseudolines so that any two pseudolines
cross exactly once. (We allow multiple pseudolines to cross at the same
point.) Two arrangements are equivalent if there is a homeomorphism of
the plane turning one into the other. An arrangement of pseudolines is
stretchable if it is equivalent to an arrangement of straight lines. We call the
corresponding computational decision problem STRETCHABILITY.

Mnëv showed that ETR reduces to STRETCHABILITY. Shor [44] gives a
much simpler proof of this result (also see [39]). In our terminology, we can
express Mnëv’s result as follows.

that is, A,B ⊆ {0, 1}∗, and f : {0, 1}∗ → {0, 1}∗. For more background on encodings and
basic definitions from computational complexity including complexity classes NP (non-
deterministic polynomial time) and PSPACE (polynomial space), see any of the standard
references, e.g. [35, 45]. We could have replaced polynomial time with logarithmic space
in the definition of ≤m but decided to use the more familiar notion.

5So “A reduces to B” does not mean that B is easier than A, as the word “reduces”
may incorrectly suggest.
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Theorem 1.1 (Mnëv [34]). STRETCHABILITY is ∃R-complete.

Remark 1.2. Mnëv showed a much stronger result, his universality theo-
rem, about the realizability of semi-algebraic sets through point-set config-
urations, of which Theorem 1.1 is a consequence. We will return to univer-
sality briefly in Section 2.3 when dealing with issues of precision.

Just because an arrangement is stretchable, it need not be easy to real-
ize; indeed, Mnëv’s universality theorem implies that there are stretchable
arrangements of pseudolines so that every straight-line realization contains
a non-rational line (that is, a line not containing a rational point; an earlier
example of this is due to Perles according to Richter-Gebert and Ziegler [18,
p.144]). It is known, however, that realizations cannot be arbitrarily com-
plex. This is based on a result by Grigor’ev and Vorobjov [20] on semi-
algebraic sets. The total degree of a (multivariate) polynomial f : Rn → R

is the maximum over the sum of variable exponents in each monomial term.

Theorem 1.3 (Grigor’ev, Vorobjov [20, Lemma 9]). If f1, . . ., fk : Rn → R

are polynomials each of total degree at most d and coefficients of bit-length at
most L; then every connected component of {x ∈ R

n : f1(x) ≥ 0, . . . , fk(x) ≥
0} contains a point of distance less than 2Ld

cn

from the origin, for some
absolute constant c > 0.

The theorem (with proof) can also be found in [2, Theorem 13.15].6

Based on this theorem, Goodman, Pollack, and Sturmfels [19] proved the
following result. (They phrase the result for point configurations, which are
dual to arrangements.)

Lemma 1.4 (Goodman, Pollack, Sturmfels [19]). A stretchable arrange-
ment of n pseudolines can be realized by n straight lines so that all inter-
section points lie in the unit disk and so that the distance between any two
intersection points and the distance of any intersection point and a line not
containing that point is at least 1/22

cn

for some fixed c > 0.

Goodman, Pollack, and Sturmfels also showed the complementary result
that some arrangements do require a precision of order 1/22

cn

:

Lemma 1.5 (Goodman, Pollack, Sturmfels [19]). There are stretchable ar-
rangements of n pseudolines so that any straight-line realization of the ar-
rangement for which all intersection points lie in the unit disk contains two
intersections points within a distance less than 1/22

cn

of each other for some
fixed c > 0.

6The statement in [2] contains a typo in the radius of the ball.
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2 Realizability of Graphs

Given a graph G = (V,E) and a length ℓ(e) ∈ R>0 for each e ∈ E, is there a
straight-line drawing of the graph in the plane (not necessarily crossing-free)
where each edge has its prescribed length? If so, we say that the graph is
realizable in R

2. Realizability depends on the notion of drawing we use; in
the standard definition of a drawing, different vertices cannot coincide in
the drawing and a vertex cannot lie on an edge unless it is an endpoint of
that edge.7 If we do allow vertices to coincide and lie on edges, we enter
the realm of linkages. For example, K2,3 cannot be realized by a standard
straight-line drawing in the plane if all edges have unit length, but it can be
realized as a linkage with vertices overlapping.8 This section will center on
graph realizability while Section 3 will discuss linkage realizability.

2.1 Graph Realizability

Theorem 2.1. Deciding whether a graph with given lengths is realizable is
∃R-complete even if all edges have unit length.

Remark 2.2. We are not aware of any hardness results on the graph (as
opposed to the linkage) realizability problem, though David Eppstein writes
that he expects that “the Eades-Whitesides logic engine technique can be
used to show that it’s NP-hard to test whether a graph is a unit distance
graph” [14]. There are results on plane realizations, which we survey in
Section 2.4. The special case of the complete graph turns out to be efficiently
solvable: Lemke, Skiena, and Smith sketch an algorithm that shows how to
determine realizability of the complete graph and compute the coordinates
of the points [29]. The history of complexity results on linkage realizability
is discussed in Remark 3.2.

In the proof of Theorem 2.1 we make use of the Peaucellier linkage, a
beautiful device transforming circular motion into linear motion.9 Figure 1

7For a discussion of graph drawing assumption, see [48].
8Our distinction between realizability of graphs and linkages is not universal, but not

unusual; for linkages, [10] is a good reference; for graph realizability, definitions and ter-
minology vary, e.g. realizable graphs are sometimes called Euclidean graphs. Often the
definitions allow that vertices lie on edges of which they are not endpoints, though that
may in some cases be due to oversight; as we will see, from a computational point of view,
this distinction does not matter.

9There are many applets implementing Peaucellier’s linkage available on the web to
play with [30]. James Joseph Sylvester writes about Lord Kelvin that he “nursed it as
if it had been his own child, and when a motion was made to relieve him of it, replied
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shows the linkage; we require |ab| = |bc|, |ad| = |af | and |cd| = |de| = |ef | =
|fc|. If we keep points a and b fixed, and move c (on a circular arc with
center b), then e moves on a straight line. In other words, the locus of e is
a straight line segment [21].

a b
c

d

e

f

Figure 1: A Peaucellier Linkage

Figure 2 shows how to construct this Peaucellier linkage as a realizable
graph with edges of unit length; we call this gadget Pa,b(e) (edges ad and
af have been replaced by two rigid parts with unnamed vertices).

a b

c

d

e

f

Figure 2: A Peaucellier Linkage with edges of unit length

Note that in the drawing all vertices have distinct positions and no vertex
lies on an edge without being an endpoint of that edge. By continuity this
remains true if we move e slightly from its initial position. In general, we will
need to place the Peaucellier gadget into partially completed drawings, and
at that point we need to keep ensuring the basic graph drawing conventions.

“No! I have not had nearly enough of it—it is the most beautiful thing I have ever seen in
my life.” [47]. There have been other devices, both earlier and later, achieving the same
effect, see [26] for an early history.
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We call a drawing nice if (i) no vertex lies on a line of which it is not the
endpoint, (ii) no more than two edges cross in a point, (iii) two vertices
that are not adjacent have a distance different from 1.

With the Peaucellier gadget, we can build a “colinearity” gadget that
ensures that three points lie on a line.

Lemma 2.3. There is a gadget C(u1, u2, u3) with edges of unit length so
that in any realization of C(u1, u2, u3) the points u1, u2 and u3 lie on a line.
On the other hand, if three distinct points u1, u2 and u3 lie on a line segment
of length at most δ > 0, for some fixed δ, then C(u1, u2, u3) is realizable.
Moreover, C(u1, u2, u3) can be added to an existing nice drawing with three
such vertices u1, u2, u3 so that the resulting drawing remains nice.

Proof. We will use Peaucellier’s linkage to guarantee colinearity: given three
vertices (ui)i∈[3] create three copies (Pi)i∈[3] of P , identify a := a1 = a2 = a3
and b := b1 = b2 = b3, and ui with ei, i ∈ [3] to obtain Ca,b(u1, u2, u3).
Realizability of Ca,b(u1, u2, u3) guarantees that u1, u2, and u3 are colinear
by the properties of the Peaucellier gadget.

For the reverse direction, assume we start with a nice drawing containing
three vertices u1, u2, u3 lying on a sufficiently short line segment. Pick a
and b so that Ca,b(u1, u2, u3) is realizable and nice (by itself) and remains so
for small perturbations of ab. The resulting drawing may not be nice, since
two non-adjacent vertices may have a distance of 1, two distinct vertices
overlap, or a vertex lies on an edge. Perturbing ab slightly can destroy all
three of these events, since it will perturb the locations of all the vertices in
Ca,b(u1, u2, u3); the only pairs of vertices whose distance remains constant
have an edge between them.

To encode STRETCHABILITY we need to express that a point u2 lies
between u1 and u3. For this we need another gadget B(u1, u2, u3).

Lemma 2.4. There is a gadget B(u1, u2, u3) with edges of unit length so
that in any realization of B(u1, u2, u3) in which u1, u2, and u3 lie on a line,
u2 lies between u1 and u3. On the other hand, if u2 lies on the line segment
u1u3 and u1u3 has length at most δ > 0, then B(u1, u2, u3) is realizable.

Proof. Consider the graph B(u1, u2, u3) shown in Figure 3. In any realiza-
tion of that graph, uu1 and uu3 have distance 3, while uu2 has distance
at most 3, hence if all three points lie on the same line, then u2 must lie
between u1 and u2.

We can now complete the proof of Theorem 2.1.
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u

u1

u2

u3

Figure 3: B(u1, u2, u3)

Proof of Theorem 2.1. It is easy to see that the problem lies in ∃R (note that
we do not have to calculate any square roots). We reduce from STRETCHA-

BILITY: Suppose we are given a pseudoline arrangement A. Create a vertex
for every intersection point. For any three consecutive points u1, u2, u3 along
a pseudoline add the devices C(u1, u2, u3) and B(u1, u2, u3). Call the result-
ing graph GA (all edges having unit length). If GA is realizable, then a real-
ization contains a set of line segments whose order of intersection correspond
to A. Since every two of these lines intersect (we included every intersection
point in GA), we can extend these line segments to infinite straight lines
without changing the order type, hence A is stretchable.

In the reverse direction, we have to show that if A is stretchable, then
GA is realizable. This would be entirely straightforward, if we did not have
to ensure that the drawing is nice. Let us assume that A is stretchable.
Then there is a realization by straight lines in which all intersections lie
within the unit disk centered at the origin (using dilation). Let Dδ be the
drawing containing all intersection points dilated by a factor of δ > 0, where
δ is chosen sufficiently small for the B and C gadgets to work properly.
Note that Dδ is a nice drawing, trivially so, since all points have distance
less than 1 and there are no edges yet. To this drawing add the two rigid
legs of each B gadget, obtaining a drawing D′

δ. The resulting drawing may
not necessarily be nice, since there could be two non-adjacent vertices which
have a distance of 1, two vertices that overlap, or a vertex lying on an edge.
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Let p be a point on one of the gadgets B (p does not have to be a vertex);
we write p(δ), thinking of p as depending on δ. The coordinates of p(δ) are
nearly polynomials in δ, except that they may contain a term of the form√
1− sδ for some fixed s ∈ R only depending on the placement of the B gad-

get that p belongs to in the initial drawing D. The square of the distance
between two points (not necessarily belonging to the same B), or the square
of the distance between a point and a line containing an edge (not neces-
sarily belonging to the same gadget as the point) can similarly be expressed
as a near-polynomial term in δ with at most 3 terms

√
1− siδ, i = 1, 2, 3.

Hence, the condition that such a distance is 0 or 1 can be expressed using an
equation which is nearly polynomial, except for at most three terms of the
form

√
1− siδ. However, three such terms can be removed (using symmet-

ric polynomials), replacing the distance conditions with purely polynomial
equations, which either have a finite number of solutions or are true for all
δ. As we let δ go to zero, the different B gadgets converge to different lo-
cations (since the lines they are based on cannot be parallel: every pair of
lines crosses), so it is not possible that two points belonging to different B
gadgets always have distance 0 or 1, and similarly a point in one B gadget
cannot always have distance 0 from a line in another B gadget. Finally, if
two points within the same B gadget always have distance 1, they have an
edge between them, and the distance between a point and a line in the same
B gadget changes with δ, unless the point is an end-vertex of an edge of B.
These observations imply that there are only a finite number of values of δ
for which D′

δ is not nice. Hence, we can pick an arbitrarily small δ > 0 for
which the drawing D′

δ is nice. Fix such a δ.
We can now add the flexible middle leg of each B gadget, so that the

additional vertices maintain niceness (this is why the middle leg has two
interior vertices: to be flexible enough to maintain niceness).

Finally, Lemma 2.3 allows us to add all the C gadgets one by one, main-
taining niceness of the drawing. This shows that GA is realizable, even
fulfilling the stronger condition that every pair of non-adjacent vertices has
a distance different from 1.

Corollary 2.5. The problem of graph realizability remains ∃R-complete
even if (i) we do not require that vertices not lie on edges they are not
endpoints of and (ii) non-adjacent vertices must have a distance different
from 1.

Proof. This follows from the proof of Theorem 2.1: the proof never used
assumption (i) and when constructing the realization of GA, we ensured
that non-adjacent vertices have distance different from 1.
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2.2 Euclidean Dimension and Unit Distance Graphs

Let En be the infinite graph on vertex set R
n so that xy is an edge of

En if and only if |x − y| = 1. Then Corollary 2.5 implies that recognizing
subgraphs or induced subgraphs of E2 is ∃R-complete (independent of how
we arbitrate the issue of vertices lying on edges). The Euclidean dimension
of a graph G is the smallest n so that G is a (induced) subgraph of En, a
notion introduced by Erdős, Harary, and Tutte [16].10

Corollary 2.6. Deciding whether a graph has Euclidean dimension 2 is ∃R-
complete (in both the induced and non-induced version). Hence, computing
the Euclidean dimension of a graph is ∃R-complete.

Subgraphs of E2 are also known as unit distance graphs [9], strict unit
distance graphs are induced subgraphs of E2. The following is just a re-
statement of the preceding corollary, answering a question suggested by
Eppstein [14].

Corollary 2.7. Recognizing (strict) unit distance graphs is ∃R-complete.

Consequently, it is very unlikely that we will be able to recognize unit
distance graphs efficiently [24].

Remark 2.8. We can think of unit distance graphs as graphs whose edges
are labeled “= 1”; this suggests looking at alternative label sets. For ex-
ample, if edges can have labels “< 1” and “> 1” instead of “= 1” we get
unit disk graphs; McDiarmid and Müller [32] recently showed that SIMPLE

STRETCHABILITY (in which no more than two pseudolines are allowed to in-
tersect in a point) reduces to the recognition problem for unit disk graphs, so
the unit disk graph problem is also ∃R-complete, since SIMPLE STRETCH-

ABILITY and STRETCHABILITY are polynomial-time equivalent [43].

2.3 Issues of Precision

The reduction from STRETCHABILITY to graph realizability in the proof
of Theorem 2.1 is geometric in the following sense: each realization of the
graph with length constraints constructed from the pseudo-line arrangement

10Erdős, Harary, and Tutte [16] defined the dimension of a graph using (non-induced)
subgraphs of En. Later, Erdős and Simonovits [15] introduced Euclidean dimension under
the name faithful dimension. The two notions differ: take a wheel W6 with six spokes
and remove one of the spokes. The resulting graph is realizable as a subgraph, but not
as an induced subgraph of E2. The name “Euclidean dimension” seems to be due to
Maehara [31]. For details and more terminology and history, see [46, Section 13.2].
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encodes a straight-line realization of the arrangement. More precisely, the
position of certain vertices of the graph encode the locations of intersection
points of the straight-line realization. In other words, the intersection points
of a realization can be obtained by projecting onto certain points of the
graph. Lemma 1.5 now immediately implies that some graph realizations
have exponentially low vertex resolution: the ratio between the maximum
distance of any two vertices divided by the minimum distance between any
two (distinct) vertices can be of order 22

cn

. Similarly, the reductions to
Euclidean dimension and unit distance graphs are geometric. We state the
result for unit distance graphs only.

Corollary 2.9. There are unit distance graphs on n vertices so that any
realization of the graph contains two distinct vertices at distance at most
1/22

cn

for some fixed constant c > 0.

Some of the traditional ETR results are actually universality theorem; for
example, Mnëv [34] showed that any semi-algebraic set is stably equivalent
to the realization space of a pseudoline arrangement. We do not want to
define stable equivalence explicitly (see [39] for a detailed discussion), but
roughly speaking it means that the two sets look very similar algebraically.
Stable equivalence is not immediately useful to our purposes, since it does
not imply any complexity bounds, but many of the universality theorems in
the literature could be recast as polynomial-time many-one reductions. We
also think it likely that many of our geometric reductions can be turned into
universality theorems with some additional effort. We discuss universality
theorems for linkages in Remark 3.3.

2.4 Plane Realizations and Matchstick Graphs

It is natural to ask what happens if we require the realizations of the graphs
to be plane, that is, free of crossings. Strengthening earlier results by White-
sides [49] and Eades and Wormald [13], Cabello, Demaine, and Rote [7]
showed that the plane realizability problem is (strongly)NP-hard even when
restricted to 3-connected, infinitesimally rigid planar graphs with unit edge
lengths. Plane realizable graphs with unit edge lengths—plane unit distance
graphs—are known as matchstick graphs.

It remains open whether recognizing matchstick graphs, or solving the
general plane realizability problem, is ∃R-complete. If the graph is a trian-
gulation, then Cabello, Demaine, and Rote [7] show that plane realizability
can be decided in polynomial time in the real RAM model, and in P, if the
graph has bounded degree. Their proof can be modified to show that the
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problem lies in coRP without assuming bounded degree; a problem lies in
coRP if there is a probabilistic algorithm which is correct if it says “no” and
is correct with probability at least 1/2 if it says “yes” [35, 45]. Running the
algorithm repeatedly yields an algorithm with arbitrarily small error bound.

Lemma 2.10. If G is a triangulation with prescribed lengths, then plane
realizability can be tested in coRP, even if the edge lengths include square
roots of rationals.

Our proof adapts an argument from Cabello, Demaine, and Rote [7].

Proof. By a result of Di Battista and Vismara [12] it is sufficient to verify
the triangle inequality in each triangle, and ensure that the sum of angles
at each interior vertex is 2π. Since the graph is a triangulation, we can
easily determine its topological embedding (if there is a non-triangle face, it
has to be the outer face, if all faces are triangles, we can try each of them
as the outer face in polynomial time). Now pick an interior vertex v and
consider one of its incident triangles; the angle α formed by the triangle
at v fulfills the law of cosines: cosα = (b2 + c2 − a2)/2ab, with standard
notation for the triangle. Consequently, sinα =

√

1− ((b2 + c2 − a2)/2ab)2.

Suppose the angles at v are αi, i ∈ [n], and let Ak :=
∑k

i=1 αi. We can then
write recursive expressions for sinAk and cosAk using identities sin(α +
β) = sinα cosβ + cosα sinβ and cos(α+ β) = cosα cosβ + sinα sin β. This
expression can be viewed as a directed acyclic graph whose leaf nodes are
the only nodes containing the square root operation (note that this remains
true even if the input lengths are square roots of rationals). Blömer [5,
Theorem 2.2] showed that deciding whether such an expression equals 0 lies
in coRP. In particular, testing whether sinAn = 0 and cosAn = 1 is in
coRP. We also need to ensure that all Ak < 2π, but it is sufficient to do this
approximately, since the test of sinAn = 0 and cosAn = 1 guarantees that
An is a multiple of 2π, and the approximate test can be done in polynomial
time.

If recognizing matchstick graphs were ∃R-complete and the reduction
were geometric, then, similarly to Corollary 2.9, we would need to be able to
construct matchstick graphs in which vertices are forced to be exponentially
close. This would be a first indication of potential ∃R-hardness.

Question 2.11. Can one construct a matchstick graph on n vertices so that
in every plane realization of the graph there are two vertices of distance at
most 1/22

cn

for some fixed constant c?
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3 Realizability of Linkages

A linkage is a graph G = (V,E) with a length ℓ(e) assigned to each edge
e ∈ E; edges of a linkage are also called rods or bars; a configuration, or
realization, of G in R

2 is a mapping of V to R
2 so that the distance between

the endpoints of each edge e equals ℓ(e). If there is a configuration of
the linkage, we call the linkage realizable; our terminology is based on the
exposition in [10]; a more detailed treatment can be found in [11]. We discuss
two computational problems related to linkages: realizability, in Section 3.1
and rigidity, in Section 3.2.

3.1 Linkage Realizability

Theorem 3.1. Deciding whether a linkage is realizable is ∃R-complete even
if all edges have unit length.

The ∃R-hardness of linkage realizability can also be obtained from uni-
versality results on linkages, see the discussion in Remark 3.3); the main
new contribution in Theorem 3.1 is the restriction to unit lengths (and a
simpler proof).

Remark 3.2. NP-hardness of linkage realizability was shown by Yem-
ini [50] and Saxe [40]. Saxe showed that linkage realizability in R is NP-
complete even if distances are restricted to values 1, 2: let w := {w1, . . . , wn}
be an instance of the partition problem and create the graph Cn on edges
e1, . . . , en with ℓ(ei) = wi. Then Cn can be realized in R if and only if w
is a positive instance of partition. Using gadgets with edges ab, bc and ac,
where w(ab) = w(bc) = 1 and w(ac) = 2 we can replace edges of arbitrary
integer length with edges of lengths 1 and 2. Saxe extended this construc-
tion to show that linkage realizability in R

k for linkages with distances 1, 2 is
NP-hard for all k ≥ 1. He also discusses approximation results and results
on how hard it is to decide whether there is a unique solution. Abbott [1]
showed that deciding whether a linkage is rigid is hard; we discuss his result
later in this section.

In the algebraic community, the linkage realizability problem is known
as the Euclidean distance matrix completion problem (EDMCP); research
in that community seems to concentrate on algebraic characterizations and
using tools such as semi-definite programming to solve instances of the prob-
lem, see [28] for a survey.

Remark 3.3. Kempe claimed his universality theorem for linkages in 1876.
Roughly speaking, it shows how to trace any (compact) algebraic curve with
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a linkage, so linkages are universal for (compact) algebraic curves.11 This
suggests a proof of ∃R-hardness for linkage realizability: to test whether a
polynomial f can take on the value 0 extend the linkage tracing f so that
the vertex tracing f is forced to lie on the line corresponding to f = 0. Then
f = 0 has a solution if and only if the extended linkage is realizable. This ap-
proach can be made to work, however, there are some obstacles to overcome;
first, Kempe’s proof is incomplete (some of his gadgets have degenerate con-
figurations). Jordan and Steiner [23] and Kapovich and Millson [25] gave
the first correct and complete proofs of Kempe’s universality theorem (and,
in Kapovich and Millson’s case even stronger results). The next obstacle
is that these papers did not analyze the effectiveness of the constructions;
Gao and Zhu [17] analyzed Kempe’s proof and showed that in the plane
O(n4) links are sufficient (also see Abbott [1, Section 1.5]), this still does
not show that the lengths of the links can be calculated effectively (or can
be assumed to be algebraic or rational numbers). The first detailed analysis
of this aspect seems to be in Abbott’s thesis [1] which we will discuss again
below with respect to rigidity. Abbott’s version of Kempe’s universality the-
orem can be extended to a proof of ∃R-hardness of linkage realizability as
sketched above. However, the approach is quite intricate (after all, a much
stronger result is obtained: universality); our proof below is more direct,
and, moreover, it shows that unit lengths are sufficient to get ∃R-hardness,
while, as far as I know, there are no universality theorems for unit linkages.

The proof of Theorem 3.1 requires some modifications to the proof of
Theorem 2.1; in some respects, the proof becomes easier, since we no longer
have to ensure that vertices do not accidentally overlap with other vertices
or edges in realizations. On the other hand, we need a new device that
guarantees that vertices of linkages are mapped to distinct points of the
plane.

In the construction we will use a small set of radii (the particular set
of radii is rather arbitrary), so we first show that if we are given a linkage
with multiple integer lengths, we can replace it with a unit length linkage
without affecting realizability.

Lemma 3.4. Given a linkage G with integer lengths, we can construct a
linkage G′ with unit lengths only, so that G is realizable if and only if G′

is realizable. The size of G′ is polynomial in the size of G and the integer
lengths (in unary).

Proof. Let M be the Moser spindle shown in Figure 4.

11See [25] or [11, Section 3.2.1] for detailed expositions.
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Figure 4: The Moser graph

The seven vertices ofM are distinct in any realization ofM in the plane:
obviously the three vertices in each of the four triangles are distinct. Now
the distance between a and c is either 0 or

√
3, and the same is true for

a and f . So it is not possible that one of c or f or both of them coincide
with a, since c and f have a distance of 1. Hence, both c and f are distinct
from a, and this already forces all vertices of M to be pairwise distinct. In
particular, the diamond on {a, b, c, d} does not collapse. We can thus chain
several Moser graphs together by identifying them along triangles to create
pairs of vertices at arbitrary integer distances. This allows us to replace an
edge of length n in G using a gadget with less than 7(2n − 1) vertices.

Lemma 3.4 helps us resolve the problem of keeping vertices distinct: we
cannot simply paste two triangles together along an edge, since the resulting
diamond linkage can be realized by a single triangle, with two of the vertices
(and two pairs of edges) coinciding. With the Moser graph we can avoid
collapses of this type. For the proof of Theorem 3.1 we need devices that
keep arbitrary pairs of vertices apart in a realization. This problem comes
in two types: vertices like the two vertices in the diamond that are either
identical or far apart, and vertices that could potentially be very close in
a realization, but are not allowed to coincide. The second problem is more
difficult, and we will show how to resolve it presently, the first problem
only occurs in the construction of the Peaucellier linkage where we resolve
it ad-hoc.

Lemma 3.5. We can create a linkage P ′ with V (P ′) including a, b, and e
so that if a and b are fixed in the plane, then the locus of e is a line segment
of length at least 1.

Proof. We start with the Peaucellier linkage P shown in Figure 2 assigning
each edge a length of 2. In a linkage realization of P several pairs of points
that need to be distinct for the gadget to work can collapse; this includes
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the diamonds connecting a to d and a to f as well as the pairs d, f and c, e.
Suppose x and y is one of these pairs; then we add a rather crude device to
the linkage: add edges xx′, x′y′ and y′y of lengths w(xx′) = 1, w(x′y′) = 3,
and w(y′y) = 1. In any realization, this forces xy to have distance at least 1
(and x and y can have distance up to 5 which is sufficient for all realizations
of P ). The resulting linkage P ′ fulfills the statement of the lemma.

With the Peaucellier linkage we can now construct a linkage L(u1, u2, u3)
that combines the functionality of the earlier colinearity and betweenness
gadgets B(u1, u2, u3) and C(u1, u2, u3); as opposed to these earlier gadgets,
the new device does not guarantee that u2 is strictly between u1 and u3: u2
could coincide with either. This is a problem we fix later.

Lemma 3.6. There is a linkage L(u1, u2, u3) with lengths in [4] so that
the realizability of L(u1, u2, u3) implies that u2 lies on the line segment u1u3
(including endpoints), while, in the reverse direction, if u2 does lie on the line
segment u1u3 and u1u3 has length at most 1, then L(u1, u2, u3) is realizable.

Proof. Given three vertices (ui)i∈[3] create three copies (P ′
i )i∈[3] of P ′ as

constructed in Lemma 3.5, identify a := a1 = a2 = a3 and b := b1 =
b2 = b3, and ui with ei, i ∈ [3]. Realizability of this part guarantees that
u1, u2, u3 are colinear. To ensure that u2 lies between u1 and u3 we add
two new vertices g, h and edges gh, hu2, gu1, gu3 with w(gh) = w(hu2) =
2, and w(gu1) = w(gu3) = 4. The resulting device is L(u1, u2, u3). If
L(u1, u2, u3) is realizable, then u2 lies on u1u3 (including endpoints), and if
u1u3 has length at most 1 and u2 lies on that segment, then L(u1, u2, u3) is
realizable.

Finally, we need a gadget D(u1, u2) that guarantees that u1 and u2
are distinct, where u1 and u2 are two intersection points. In general, such a
gadget does not exist: if the loci of u1 and u2 can come arbitrarily close, then
they must intersect, since both are compact sets. However, for realizations
of stretchable arrangements, we have Lemma 1.4 which gives us a lower
bound on how close intersection points need to get, and we can use that to
build a device that simulates true “distinctness” well enough to work for our
construction.

Lemma 3.7. There is a linkage T (a, b) with lengths in [2] and {a, b, c} ⊂
T (a, b) so that if we assign a and b to any two points of distance less than 1
in the plane, then a and c have distance |a−b|2 in any realization of T (a, b).

The gadget is based on the von Staudt constructions also used by Mnëv [34].
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Proof. We first build a gadget that ensures that two lines are parallel.12 Take
a C6 on vertices p1, . . . , p6 and add edge p2p5. Let all these edges have unit
length, and add two edges p1p3 and p4p6 of length 2. In any realization of this
graph, the lines through p1p2 and p4p5 are parallel, and p1/p5 and p2/p4 can
get arbitrarily close together (even coincide). Now add Peaucellier linkages
L(p1, a, p2), L(p1, b, p2), L(p4, c, p5), L(p4, d, p5). The resulting gadget is
P (a, b, c, d); note that ab and cd are parallel in any realization of P (a, b, c, d),
and if we are given points {a, b, c, d} so that ab and cd are parallel, and all
points in {a, b, c, d} lie within a unit disk, then P (a, b, c, d) is realizable.

To build T (a, b), start with vertices a, b, add vertices c, u, v, w and edges
au, av, uv of unit length, add two Peaucellier linkages L(a, b, u) and L(a, c, v),
and add P (u, v, b, w) and P (u,w, b, c). Then |a− c| fulfills |a− c|/|a−w| =
|a − b|/|a − u| = |a − b|, so |a − c| = |a − w| · |a − b| = |a − b|2, since
|a − w| = |a − b|, as uv and bw are parallel. Furthermore, if a and b have
distance at most 1, then T (a, b) is realizable.

Corollary 3.8. We can build a linkage D(u1, u2) so that u1, u2 are distinct
in any realization of D(u1, u2); moreover, for any u1, u2 which have distance

at least 1/22
n
2

(and distance at most 1), there is a realization of D(u1, u2).
The linkage D(u1, u2) has size at most polynomial in n.

Proof. We take n2 copies of T (a, b) from Lemma 3.7 and chain them together
by identifying a, c with a, b of the next device. Finally, we identify the
vertices a, b of the first T (a, b) with the vertices d, e of the Moser spindle
(Figure 4) so that a and b have distance less than 1/2 (indeed, closer to
0.47).13 Then, by the properties of T (a, b), the vertices a, c of the last copy

of T (a, b) have distance |a− c| = |d− e|2n
2

< 1/22
n
2

.
Given vertices u1, u2 take two copies of L as constructed in Lemma 3.6

on vertices L(u1, a, b) and L(a, b, u2). The resulting device D(u1, u2) forces

u1 and u2 to have distance at least |d − e|2n
2

> 0 and are thus distinct.

12Kempe used a parallelism gadget like this in his proof of the universality theorem
that every bounded part of an algebraic curve can be traced by a suitable linkage. His
parallelism gadget was flawed, however; there are many ways to repair the construction,
we follow a construction due to Kapovich and Millson [25], also described in [11, Section
3.2.2].

13The realization of the Moser graph is not unique; both of the diamonds can flip;
to force d and e to be realized at distance < 1/2 as shown in Figure 4 we brace the
construction by adding edges gx, xy, and yb of lengths w(gx) = 1, w(xy) = 3, w(yb) = 1;
this forces g and b to have distance at least 1, thereby forcing the intended realization of
the Moser graph.
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Also, for any u1, u2 that have at least distance 1/22
n
2

, gadget D(u1, u2) is
realizable.

We are finally in a position to prove Theorem 3.1.

Proof of Theorem 3.1. It is easy to see that the problem lies in ∃R. We
reduce from STRETCHABILITY.

Suppose we are given a pseudoline arrangement A. Create a vertex for
every intersection point. For any three consecutive points u1, u2, u3 along
a pseudoline add the device L(u1, u2, u3). For any two intersection points
u1, u2 add the device D(u1, u2). By Lemma 3.4, we can assume that the
resulting graph GA has edges of unit length only. If A is stretchable, then
there is a realization ofA by straight lines in which all intersections lie within
the unit disk and any two intersection points have distance at least 1/22

cn

for
some fixed c > 0 by Lemma 1.4. But then GA is realizable as long as n ≥ c,

because then 1/22
n
2

< 1/22
cn

. On the other hand, if we assume that GA

is realizable, then a realization contains a set of line segments whose order
types correspond to A. Since every two of these lines intersect (we included
every intersection point in GA, we can extend these line segments to infinite
straight lines without changing the order type, hence A is stretchable.

3.2 Rigidity

Two configurations p, p′ : V → R
2 of the same linkage G = (V,E,w) are con-

gruent if |p(u)−p(v)| = |p′(u)−p′(v)| for all pairs u, v ∈ V . A configuration
p : V → R

2 of G = (V,E,w) is rigid if there is a ε > 0 so that any configu-
ration p′ : V → R

2 that is close to p in the sense that |p(v) − p′(v)| < ε for
all v ∈ V is congruent to p. Informally speaking, the configuration cannot
be changed by perturbing points slightly.

Abbott [1] showed that rigidity is coNP-hard using the following argu-
ment: Let ISO be the problem of deciding whether a family fi, i ∈ [s], of
polynomials in n variables has an isolated zero. Let H2N be the following
computational problem: given a family fi, i ∈ [s], of s homogeneous poly-
nomials in n variables, is there a non-trivial zero, i.e. (x1, . . . , xn) 6= 0, so
that fi(x1, . . . , xn) = 0 for all i ∈ [s].14 Then H2N reduces to ISO based on
the observation that a family of homogenous polynomials has a non-trivial
zero if and only if 0 is not an isolated zero of this family [1, Corollary 5.6].
Moreover, ISO reduces to rigidity, a non-trivial reduction due to Abbott [1,
Theorem 5.7], and part of his thesis on Kempe’s universality theorem; the

14The name H2N seems to be short for Hilbert’s homogenous Nullstellensatz [27].
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reduction is in polynomial time, as long as the total degree of the polyno-
mials is bounded by a constant. Together with Koiran’s result that H2N is
NP-hard even for polynomials of total degree 2, this implies Abbott’s result
that rigidity is coNP-hard. However, as we are about to show, H2N is not
only NP-hard, but ∃R-complete, so that rigidity is ∀R-hard using the same
chain of reductions that Abbott uses. The following lemma is a stepping
stone to the ∃R-hardness of H2N.

Lemma 3.9. Deciding whether a family of polynomials fi : R
n → R, i ∈ [s]

has a common root in Bn(0, 1) (the unit ball) is ∃R-complete. We can
assume that all fi have total degree at most 2.

Proof. It is well-known that deciding whether a family of polynomials gi :
R
m → R, i ∈ [s], has a common root is ∃R-complete [43], even if all gi have

total degree at most 2.15 We want to reduce this problem to the problem of
deciding whether a family of polynomials fi has a common root in Bn(0, 1).

Suppose we are given a family of polynomials gi : R
m → R, i ∈ [s] of

total degree at most 2. By Theorem 1.3 we know that if the gi, i ∈ [s], have
a common root, then such a root has distance less than R = 2L2

cn

from the
origin, where L is an upper bound on the bit-lengths of the coefficients of
the gi and c > 0 is some fixed constant (we use that the gi have total degree
2). Let t = ⌈n log c+ logL⌉+ 1 (so 22

t

> R2) and define

fi(x1, . . . , xm, y0, y1, . . . , yt) := y20gi(x1/y0, . . . , xm/y0)

for i ∈ [s] and

fs+1(x1, . . . , xm, y0, y1, . . . , yt) := yt − 1/2

and
fs+1+i(x1, . . . , xm, y0, y1, . . . , yt) := yi−1 − y2i

for i ∈ [t]. Note that all the fi have total degree at most 2.
If the fi, i ∈ [s + 1 + t] have a common root (x1, . . . , xm, y0, y1, . . . , yt),

then yt = 1/2, since fs+1 = 0, and yt−i = 2−2i for i ∈ [t] since fs+i+1 = 0 for
i ∈ [t]. In particular, y0 > 0, so fi = 0 implies that gi(x1/y0, . . . , xm/y0) = 0,
for all i ∈ [s], so (x1/y0, . . . , xm/y0) is a common root of the gi, i ∈ [s].

On the other hand, assume that the gi have a common root (x′1, . . . , x
′
m),

we can assume that (x′1, . . . , x
′
m) has distance less than R from the origin.

Let yi := 2−2t−i

for i ∈ {0} ∪ [t] and xi := x′iy0. By definition, all fi = 0,

15This is a folklore result; for example, it is easy to see that STRETCHABILITY can be
rephrased like this. The version in the Blum-Shub-Smale model can be found in [6].
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i ∈ [s + 1 + t]. We only need to verify that (x1, . . . , xm, y0, y1, . . . , yt) ∈
Bm+1+t(0, 1). Now

∑t
i=0 y

2
i ≤ ∑∞

i=0 4
−2i = 1/4+1/16+1/256+1/65536+

. . . ≤ 1/4+1/8 = 5/8. Also,
∑m

i=1 x
2
i = y20

∑m
i=1 x

′
i
2 ≤ y20R

2 ≤ (1/R2)2R2 =
1/R2. So (x1, . . . , xm, y0, y1, . . . , yt) has distance at most

√

5/8 + 1/R2 < 1
from the origin (assuming that R ≥ 2), and we have found a common root
of the fi in B

m+1+t(0, 1).

Corollary 3.10. H2N is ∃R-complete.

Proof. It is easy to see that H2N belongs to ∃R, so we only have to show
that it is ∃R-hard. By Lemma 3.9 deciding whether a family of polynomials
fi : R

n → R, i ∈ [s], has a common root x ∈ Bn(0, 1) is ∃R-complete, even
if all fi have total degree at most 2.

Using a standard transformation, we can turn each fi into a homogenous
polynomial, just adding one additional variable y0: define

gi(x1, . . . , xn, y0) := y40fi(x1/y0, . . . , xn/y0),

i ∈ [s]. Then (gi)i∈[s] is a family of homogeneous polynomials of total degree
4 and (x1, . . . , xn, y0) is a common root of all gi, i ∈ [s], if and only if either
y0 = 0 or y0 6= 0 and (x1/y0, . . . , xn/y0) is a common root of the fi, i ∈ [s].
This does not yet meet our goal, since we can have non-trivial common
roots of the gi that do not correspond to any common roots of the fi: just
let y0 = 0 and (x1, . . . , xn) 6= 0. This can be remedied by making y0 an
upper bound of the xi; let

gs+1(x0, x1, . . . , xn, y0) = y40 − x40 − (
n
∑

i=1

x2i )
2

adding a new variable x0.
Let (x0, x1, . . . , xn, y0) be a non-trivial common root of the gi, i ∈ [s+1]

(adding x0 to the list of variables of the gi with i ∈ [s]). If y0 = 0, then
x0 = x1 = · · · xn = 0 (because gs+1 = 0), so (x0, x1, . . . , xn, y0) = 0 and the
root is trivial. Hence, we must have y0 6= 0. But then gi(x1, . . . , xn, y0) = 0
implies that fi(x1/y0, . . . , xn/y0) = 0, so (x1/y0, . . . , xn/y0) is a common
root of the fi. Moreover, since gs+1 = 0, we have that y40 > (

∑n
i=1 x

2
i )

2, so
∑n

i=1(xi/y0)
2 < 1 which implies that (x1/y0, . . . , xn/y0) ∈ Bn(0, 1).

For the reverse direction, assume that we are given a root (x1, . . . , xn) ∈
Bn(0, 1) of the fi, i ∈ [s]. Let y0 := 1 and x0 := (y40 − (

∑n
i=1 x

2
i )

2)1/4 (which
is defined, since

∑n
i=1 x

2
i < 1). By definition, gs+1(x0, x1, . . . , xn, y0) = 0

and gi(x0, x1, . . . , xn, y0) = 0. So (x0, x1, . . . , xn, y0) is a non-trivial common
root of the gi which is what we had to prove.
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Thus following Abbott’s construction [1, Theorem 5.7]16, we get ∀R-
hardness of rigidity.

Theorem 3.11. Rigidity in R
2 is ∀R-complete.

To complete the proof of Theorem 3.11 it remains to show that rigidity
lies in ∀R. The formal definition of rigidity given at the beginning of this
section gives us an ∃∀ formula for rigidity. We use a lemma that allows us to
convert the leading existential quantifier into a group of universal quantifiers
in this case.

Lemma 3.12 (Schaefer [41]). Suppose

Φ(ε, y1, . . . , yℓ) = (∀x1, . . . , xk) ϕ(ε, x1, . . . , xk, y1, . . . , yℓ),

is such that Φ(ε, y1, . . . , yℓ) implies Φ(ε′, y1, . . . , yℓ) for all ε > ε′ > 0. Then
we can find a quantifier-free formula ψ(ε, x1, . . . , xk, y1, . . . , yℓ, z1, . . . , zm) of
length at most |ϕ| + dm in time |ϕ| + dm, where m = cn3 log |ϕ| so that

(∃ε > 0)(∀x1, . . . , xk) ϕ(ε, x1, . . . , xk, y1, . . . , yℓ)

is equivalent to

(∀z1, . . . , zm)(∀ε)(∀x1, . . . , xk) ψ(ε, x1, . . . , xk, y1, . . . , yℓ, z1, . . . , zm)

for some fixed constants c, d > 0.

Remark 3.13. Lemma 3.12 is a consequence of the lemma by Grigor’ev
and Vorobjov stated here as Theorem 1.3.

Proof of Theorem 3.11. We already showed ∀R-hardness, based on the re-
duction by Abbott [1, Theorem 5.7]. We still have to show that the problem
belongs to ∀R. The input is a particular configuration of some linkage G
given as a position p(v) assigned to each vertex V (G) = {v1, . . . , vn}. As a
computational problem, the input needs to be finite, so we assume that the
coordinates of p(v) are algebraic real numbers. The configuration is rigid if
there is an ε > 0 so that for all p′(v), v ∈ V (G) with

(i) |p′(v)− p(v)| ≤ ε for all v ∈ V and

(ii) |p′(u)− p′(v)| = |p(u)− p(v)| for all uv ∈ E(G),

16The reduction is polynomial time, since our polynomials have total degree 2.
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we have that the configurations p′ and p are congruent. This characteriza-
tion is not ∀R because of the leading existential quantifier. However, it is
monotone in ε in the sense of Lemma 3.12 so we can convert the existen-
tial quantifier into a block of universal quantifiers of length polynomial in n
and the original formula. This if sufficient to show that the problem lies in
∀R.

Remark 3.14. The proof of Theorem 3.11 can probably be strengthened
to show that recognizing the rigidity of unit distance graphs is ∀R-complete.
However, the construction will be a rather lengthy, technical recreation of
Kempe’s proof with unit distance graphs, so the author decided to leave this
for a different occasion.

4 Open Questions

Approximation Saxe introduced an approximate version of realizability
for linkages, but we can apply it to both graph and linkage realizability:
call a graph or linkage ε-approximately realizable if the vertices can be
placed so that for every edge, 1−ε < len(e)/ℓ(e) < 1+ε, where len(e)
is the actual length of edge e in the straight-line drawing and ℓ(e) is
the intended length. For unit distance graphs, this leads to the notion
of a ε-unit distance graph.

Question 4.1. Is recognizing ε-approximately realizable graphs or
linkages still ∃R-hard? Is recognizing ε-unit distance graphs ∃R-hard?

The case ε = 1/22
O(nc)

would be a good starting point in view of
Lemma 1.4. Saxe [40] showed that 1/9-approximate realizability of
linkages in R is NP-complete (this proof requires a different encoding
from the one outlined in Remark 3.2, since the partition problem can
be approximated well).

Higher Dimensions All of our results were proved for R2; since R is well-
understood, this leaves the question of how hard it is to decide prob-
lems on linkages and graphs in higher-dimensional spaces.

Acknowledgements I would like to thank the anonymous referee for point-
ing out the universality papers by Jordan and Steiner [23] and Kapovich and
Millson [25].
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