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Abstract

We show that computing the crossing number and the odd crossing
number of a graph with a given rotation system is NP-complete. As a
consequence we can show that many of the well-known crossing number
notions are NP-complete even if restricted to cubic graphs (with or
without rotation system). In particular, we can show that Tutte’s
independent odd crossing number is NP-complete, and we obtain a
new and simpler proof of Hliněný’s result that computing the crossing
number of a cubic graph is NP-complete.

We also consider the special case of multigraphs with rotation sys-
tems on a fixed number k of vertices. For k = 1 we give an O(m logm)
algorithm, where m is the number of edges, and for loopless multi-
graphs on 2 vertices we present a linear time 2-approximation algo-
rithm. In both cases there are interesting connections to edit-distance
problems on (cyclic) strings. For larger k we show how to approximate
the crossing number to within a factor of

(
k+4

4

)
/5 in time O(mk logm)

on a graph with m edges.

∗Partially supported by NSA Grant H98230-08-1-0043.
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1 Introduction

Computing the crossing number is NP-complete, as was shown by Garey
and Johnson [6]. Hliněný recently proved, using a rather complicated con-
struction, that even determining the crossing number of a cubic graph is
NP-complete [7], settling a long-standing open problem [1].

We take a new approach to cubic graphs through graphs with rotation
systems. We show that determining the crossing number of a graph with a
given rotation system is NP-complete, and then prove that this problem is
equivalent to determining the crossing number of a cubic graph. This also
gives a new and easy proof that determining the minor-monotone crossing
number defined in [2] is NP-complete.

The constructions used in the NP-hardness result for graphs with ro-
tation system and cubic graphs can be extended to work for other crossing
numbers such as odd crossing number, pair crossing number and rectilinear
crossing number. In the case of odd crossing number, the proof of correctness
becomes more complex though, and for this proof we introduce a new prob-
lem, Minimum Tournament Arrangement, that should be of interest
in its own right.

In particular, we can show that computing the independent odd crossing
number of a graph is NP-hard; while this result is not unexpected, it does im-
ply that the algebraic approach to crossing number through the independent
odd crossing number began by Tutte [24] and continued by Székely [21, 22]
will not lead to polynomial time algorithms for the independent odd crossing
number (which would have allowed us to approximate the crossing number
to within a square root by a recent result [19]).

Graphs with rotation systems are of interest in their own right; we have
encountered them several times during recent research projects [15, 17, 18].
For example, at the core of our separation of the crossing number from the
odd crossing number is a two-vertex multigraph with rotation system [18]. In
Section 5 we show that the crossing number can be computed efficiently for
a one-vertex multigraph with rotation system, and that crossing number can
be approximated efficiently for loopless two-vertex multigraphs with rotation
system (the problem is in polynomial time in this case but it requires linear
programming [18]). There are unexpected connections between the two-
vertex case and edit distance problems over strings. For k-vertex multigraphs
with rotation system we give an approximation algorithm to compute the
crossing number to within a factor of O(k4). We do not know whether this
problem can be solved exactly in polynomial time, even for k = 3.
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2 NP-hardness

Consider a graph drawn in the plane. The rotation at a vertex is the clockwise
order of its incident edges. A rotation system is the list of rotations of all
vertices. We are interested in drawings of a graph in the plane with a fixed
rotation system. If G is equipped with a rotation system, we write crrot (G),
as opposed to cr(G) to denote the fact that we only consider drawings of G
that respect the given rotation system.

We also consider “flipped” rotations. Flipping the rotation at a vertex v
means reversing the cyclic order of the edges incident to v. For a graph with
rotation system we write crflip(G) if we restrict ourselves to drawings of G
which respect the rotation of G up to allowing the rotation at each vertex
to flip. Trivially, cr(G) ≤ crflip(G) ≤ crrot (G).

Theorem 2.1. Computing the crossing number of a graph with rotation
system is NP-complete. The problem remains NP-complete if we allow the
rotation at each vertex to flip.

Proof. We adapt Garey and Johnson’s reduction from Minimum Linear

Arrangement to Crossing Number [6]. Given a graph G = (V,E), a
linear arrangement is an injective function φ : V → {1, . . . , |V |} and the
value of the arrangement is

∑

uv∈E

|φ(u) − φ(v)|.

Given a graph G and a number k, deciding whether G allows a linear ar-
rangement of value at most k is NP-complete [6, GT42].

Let us fix a connected graph G = (V,E), with V = {v1, . . . , vn}, m = |E|,
and k. We can assume that n ≤ m (for trees the problem can be decided in
polynomial time [6, GT42]), and k ≤ m(n− 1) ≤ m2. From G we construct
an edge-weighted graph H with rotation system, as shown in Figure 1. In a
drawing of a weighted graph, a crossing of an edge of weight k with an edge
of weight l contributes kl to the crossing number. The use of weighted edges
simplifies the construction; later we will replace each weighted edge by a
small unweighted graph, obtaining a simple graph H ′ with rotation system.

We start with a cycle (u1, . . . , u4n) with edge-weights so high that it has
to be embedded without any crossings. For every 1 ≤ i ≤ 2n we connect ui

to u4n+1−i by a path Pi of length 2 and edges of weight w. Furthermore,
we connect the midpoint ai of Pi and the midpoint ci of P2n+1−i by a path
Qi = aibici of length 2 with edges of weight w′, but replacing bici by two
edges of weight w′/2 (1 ≤ i ≤ n).
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Figure 1: The graph H

Finally, we encode G as follows: for each edge vivj ∈ E we add an edge
of weight 1 from bi to bj. The weight 1 edges incident to bi are inserted into
the rotation at bi between the two bici-edges of weight w′/2; among each
other these edges can otherwise be ordered arbitrarily.

This concludes the description of H with the rotation system shown in
Figure 1. We let k′ = n(n−1)ww′+kw′+m2, where w = 7m4 and w′ = 5m2.
We claim that crflip(H) ≤ k′ implies that G allows a linear arrangement of
value at most k and that this in turn implies that crrot (H) ≤ k′. Since
crflip(H) ≤ crrot (H), this immediately implies that the existence of a linear
arrangement of G of value at most k is equivalent to both crrot (H) ≤ k′ and
crflip(H) ≤ k′; hence deciding either is NP-hard.

If G has a linear arrangement of value at most k, we can draw H with
the given rotation system using the linear arrangement to order the paths
Qi; this yields a drawing of crossing number at most k′ (the m2 term in
k′ compensates for the potential pairwise crossings of the edges in H that
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represent edges in E), so crrot (G) ≤ k′.
For the other implication, consider a drawing of H with crossing number

at most k′ = n(n − 1)ww′ + kw′ + m2, allowing rotation flips. The heavy-
weight cycle on {u1, . . . , u4n} is drawn without crossings, and the rest of H
is connected (since G is connected) so it is drawn entirely on one side of that
cycle; we may assume without loss of generality that it is on the interior of
the cycle. Note that k′ < n2ww′ +m2w′ +m2, and by choice of w and w′

this is at most 35m8 + 5m4 +m2 < w2. Hence, in our drawing no two edges
of weight w cross each other, and therefore the paths Pi (1 ≤ i ≤ 2n) are
drawn as shown in Figure 1.

Next, consider the modified paths Qi. Qi must cross each of the paths
Pi+1 through P2n−i, contributing (2n−2i)ww′ to the crossing number. Sum-
ming these values for i = 1, . . . , n, we observe a contribution of at least
n(n− 1)ww′ from crossings between the Qi and the Pj to the crossing num-
ber. This leaves k′ − n(n − 1)ww′ = kw′ + m2 possible crossings. Since
kw′ + m2 ≤ m2w′ + m2 = (w′/5)(w′ + 1) < (w′/2)2, there cannot be any
further crossings among edges from any of the paths Qi and Pj (all of these
edges have weight w, w′ or w′/2, and w > w′ > w′/2; so any crossing would
contribute at least (w′/2)2 to the crossing number). From this it follows that
the rotation at each bi is not flipped.

Finally, we want to argue that every bi lies between Pn and Pn+1. We
already know this for bn. Consider any bi. As G is connected by assumption,
there is a path from bn to bi using edges encoding G. If this path crosses Pn

or Pn+1, it contributes w or more to the crossing number. However, since
kw′ + m2 < m2w′ + m2 = 5m4 + m2 < 7m4 = w, this is not possible.
Therefore, every bi is also located between Pn and Pn+1.

In summary, the drawing of H looks as shown in Figure 1. This drawing
clearly indicates a linear arrangement φ of G. An edge e = uv contributes at
least |φ(u)−φ(v)|w′ to the crossing number ofH, so

∑
uv∈E |φ(u)−φ(v)|w′ ≤

kw′ +m2. Since m2 < w′, the value of the linear arrangement is at most k.

We still need to convert H to an unweighted graph. To this end, we
replace each edge e of weight x by x parallel edges, and then subdivide each
of these edges; the effect is that e is replaced by a copy of K2,x with the
endpoints of e identified with the partite set of size 2. The new edges are
inserted in the rotation at where e was, ordered as indicated in Figure 2.
Thus we obtain an unweighted graph H ′ from H. Since all weights are
polynomially bounded in the size of G, the unweighted graph is of size at
most polynomial in the size of G.

Recall that the existence of a linear arrangement of G of value at most
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→ . . .

Figure 2: Replacing an edge by parallel paths

k is equivalent to both crrot (H) ≤ k′ and crflip(H) ≤ k′. Suppose that
crrot (H) ≤ k′. Since H ′ can be drawn like H, we have crrot (H

′) ≤ crrot (H).
Also crflip(H ′) ≤ crrot (H

′), so we have crrot (H
′) ≤ k′ and crflip(H

′) ≤ k′.
To finish, since crrot (H

′) ≤ k′ implies that crflip(H ′) ≤ k′, it suffices to
show that crflip(H

′) ≤ k′ implies that crflip(H) ≤ k′. Consider a drawing
of H ′ that allows the rotation at each vertex to flip, and which has crossing
number at most k′. This drawing naturally induces a rotation system of H
(which corresponds to the given rotation system, except that the rotation of
some vertices might have been flipped). Each edge e = uv of weight x in H
now corresponds to a collection Pe of x paths of length 2 in H ′. For every
edge e pick one path Pe ∈ Pe that has the smallest number of total crossings
with paths in

⋃
f 6=e Pf . Then replace Pe by an edge following Pe of weight

x. The resulting drawing has weighted crossing number at most the crossing
number of the drawing of H ′ we started with, that is, k′.

In Section 4 we show that Theorem 2.1 remains true for other notions of
crossing numbers.

3 Cubic Graphs

Theorem 2.1 can be used to prove that computing the crossing number of a
cubic graph is NP-complete. This was a long-standing open question that
was solved only recently by Petr Hliněný.

Theorem 3.1 (Hliněný [7]). Computing the crossing number of a 3-connected,
cubic graph is NP-complete.

Proof. Consider a graph G with rotation system. We will construct a 3-
connected, cubic graph G′ such that crflip(G) ≤ k if and only if cr(G′) ≤ k.
This suffices, since by Theorem 2.1 deciding crflip(G) ≤ k is NP-complete.
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We can assume that G has no vertices of degree 1 (by removing them) or
2 (by contracting an incident edge); G could become a multigraph, but the
crossing number remains unchanged. Replace each vertex v by a hexagonal
grid, made up of 4k + 4 rows of d = deg(v) hexagons per row. (The idea of
using hexagonal grids is present in Hliněný’s original proof.) Let the vertices
along the top be labeled v1, . . . , v2d+1, as shown in Figure 3.

4k + 4





v1
v2
v3
v4
v5

v2d

v2d+1

... . . .

· · ·

Figure 3: Hexagonal grid replacing vertex

Let us say the rotation at v lists edges in order e1, . . . , ed (cyclic order,
so the first element is chosen arbitrarily). We make each ei incident to
v2i. Repeating this for every vertex, we obtain a simple graph of maximum
degree 3; the hexagonal grids still contain vertices of degree 2; we can remove
these by edge contractions to obtain a simple, cubic graph G′. Let Hv be
the subgraph of G′ resulting from the hexagonal grid that replaced v by
removing degree 2 vertices through edge contraction. Note that each edge of
Hv belongs to a single row or two consecutive rows of (partially contracted)
hexagons.

Any drawing of G with crossing number at most k yields a drawing of
G′ with at most k crossings. For the reverse direction, suppose that we have
a drawing of G′ with at most k crossings. Let X be the set of edges of Hv

involved in crossings. Since |X| ≤ 2k there must be two consecutive rows
in Hv that do not contain an edge of X; let Rv be the subgraph formed by
these rows. Rv is a subdivision of a 3-connected graph, so Rv has a unique
embedding on the sphere up to flipping the rotation. Hence, without loss
of generality, Rv is drawn so that each of its hexagons, some of which are
partially contracted, bounds an empty face.

We can easily find disjoint paths Pi from v2i to Rv for 1 ≤ i ≤ d within
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Hv. Let H ′
v be the union of Rv and all Pi. Consider the restriction of

the drawing of G′ to the drawings of the H ′
v (for all v ∈ V ) and all edges

between distinct Hv (the edges in E). At each Hv, consider the edges ei
extended through the paths Pi until they reach Rv. Since Rv is not involved
in any crossings, the paths attach at Rv in their original order P1, P2, . . . Pd.
Hence, if we contract Rv to a single point, the paths will attach in the order
corresponding to the rotation at v or its flipped rotation. Contracting every
Rv to a single point, we obtain a subdivision of G with the given rotation or
flipped rotation at each vertex of G. Removing the subdivisions yields the
desired drawing of G. Since none of the operations (restriction, contraction
of crossing-free edges, removing subdivisions) increase the crossing number
we have obtained a drawing of G with crossing number at most k. Thus,
computing the crossing number of a simple, cubic graph is NP-complete.

Finally, observe that the graph G′ we constructed is 3-connected: suppose
that there were two vertices disconnecting G′; if both vertices belong to the
same Hv, then they have to be among the labeled vertices; however, since
we assumed that G has minimum degree at least 3, this is not possible.
Hence the two vertices must belong to two different Hv and must be among
the labeled vertices that are connected to other grids; however, each grid
is attached to at least three other grids (since the original graph G has
minimum degree 3), so removing two vertices from G′ cannot disconnect it.

Remark 3.2. Theorem 3.1 remains true if the graph is given with rotation
system. Indeed, the proof becomes easier since we no longer have to be
concerned about the hex-grids flipping. Also note that for cubic graphs
allowing vertex rotations to flip is equivalent to not specifying a rotation
system since there are only two rotations at each vertex of degree 3.

As Hliněný observes, Theorem 3.1 implies that computing the minor-
monotone crossing number is NP-complete [7]. Another result, which follows
immediately (as observed in [3]) is that it is NP-hard to find a drawing of a
directed graph in which all incoming (and therefore all outgoing) edges at a
vertex are consecutive and which minimizes the crossing number.

Finally, our Theorem 2.1 is in turn derivable from Hliněný’s result, as
the gadget in Figure 4 shows. If we take a cubic graph and replace each
vertex by the gadget, we obtain a graph with a fixed rotation system, whose
crossing number differs from the crossing number of the original graph by
an additive term.
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Figure 4: Rotation gadget

4 Other Crossing Numbers

There are many different ways to define a notion of crossing number and
the current definition has not always been the standard one; even recently
Tao and Vu in their book on additive combinatorics define crossing num-
ber to be what we would call pair crossing number, and state and use the
crossing lemma for it [23]. For the historical development of the notion of
crossing number and its variants, see the papers by Pach and Tóth [14] and
Székely [21]. Here, we concentrate on four of the main variants: the recti-
linear crossing number, the odd crossing number, the pair crossing number
and the independent odd crossing number.

The rectilinear crossing number of G, rcr(G), is the minimum number of
crossings in a straight-line drawing of G that is, a drawing in which edges
are realized as straight-line segments.

A graph G has crossing number at most
(
m
2

)
. If we replace each cross-

ing with a temporary vertex, the resulting graph is planar and thus has a
straight-line drawing with the same rotation system by the proof of Fáry’s
theorem [13]; by doubling each temporary vertex (one copy corresponding
to each edge of G crossing at the temporary vertex) and perturbing the tem-
porary vertices slightly, we obtain a drawing of a subdivision of G with the
same crossing number as the original drawing and in which every edge of G
corresponds to a polyline with at most

(
m
2

)
+ 1 line segments. Therefore, if

G′ is obtained from G by subdividing each edge of G with
(
m
2

)
vertices, then
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rcr(G′) = cr(G) and rcrrot (G
′) = crrot (G). If we start with G cubic, then G′

has vertices of degree 3 and 2, but we can easily make G′ cubic, by attaching
the gadget in Figure 5 to each vertex of degree 2.

Figure 5: Gadget to attach to degree 2 vertices

Hence, by Theorem 3.1 and Remark 3.2, we obtain the next result.

Theorem 4.1. Computing the rectilinear crossing number of a cubic graph
with or without a given rotation system is NP-hard.

It is not clear whether we can maintain 3-connectivity (our proof certainly
does not do so). It is not known whether rcr, with or without rotation, lies
in NP.

The pair crossing number of a drawing is the number of pairs of edges
that cross, counting each pair only once. The odd crossing number of a
drawing is the number of pairs of edges that cross an odd number of times.
The independent odd crossing number of a drawing is the number of pairs of
non-adjacent edges that cross an odd number of times. Taking the minimum
of each parameter over all drawings of a graph G gives the pair crossing
number, pcr(G), the odd crossing number, ocr(G) and the independent odd
crossing number, iocr(G). All of these crossing numbers can be extended to
weighted graphs, graphs with rotation and flipped rotations analogously to
crossing number.

Computing ocr and pcr without rotation system is NP-complete and
the problems remain in NP if we add rotation systems [14, 20]. In fact, the
problems remain NP-hard as well:

Theorem 4.2. Computing odd or pair crossing number of a cubic, 3-connected
graph with or without a given rotation system is NP-complete.

While the proof of this result is based on the same basic construction
as Theorem 2.1, the verification that the construction works becomes much
more complex and needs new ideas. For this reason we leave the proof to
Section 6.1

1The claim about pair crossing number could be established directly by modifying the
proof of Theorem 2.1. Odd crossing number, however, seems to require additional work.
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As a bonus, Theorem 4.2 allows us to settle the complexity of the in-
dependent odd crossing number problem simply because iocr(G) = ocr(G)
for cubic graphs, since any three edges incident to the same vertex can be
redrawn so they cross each other evenly by modifying the rotation at the
vertex. Since independent odd crossing number lies in NP [14], we obtain
the following result.

Corollary 4.3. Computing the independent odd crossing number of a graph
is NP-complete.

5 Parameterization

One way to parameterize the crossing number problem is by the number of
vertices of the graph; that is, we think of the number of vertices as small and
fixed but allow an arbitrary number of (multiple) edges and loops. Without
rotation system, this problem is equivalent to computing the crossing number
of a weighted graph without multiple edges or loops: Given a graph G =
(V,E) with multiple edges and loops, note that in a crossing-number optimal
drawing any two edges with the same endpoints can be routed in parallel. If
we let G′ be the complete graph on V with edge weights w(uv) equal to the
number of edges in E between u and v, then the weighted crossing number
of G′ equals cr(G). Note that the weights of G′ can be stored using at most
logm bits, where m = |E|.

Moreover, that weighted crossing number of G′ can be computed exactly.
For each edge there are

∑
k<(n

2
) k! ≤

(
n
2

)
! orderings in which other edges can

cross it (where n = |V |), since any two edges cross at most once. Replacing
each crossing with a vertex yields a planar graph with at most O(n4) vertices,
so we can exhaustively try all crossing patterns and test them for planarity in
time O

((
n
2

)
!(

n

2
)n4
)
. For each planar drawing, we can calculate its crossing

number in time O(n4 log2m) by scanning each pair of crossing edges and
adding the product of their weights to the crossing number. The minimum
of these numbers is the weighted crossing number of G′, which we had to
compute. The overall running time is O(2n3 log nn4 log2m).

The problem becomes more interesting if the graph G is given with a
rotation system. For example, the separation of pcr and ocr was first demon-
strated via a two-vertex multigraph with rotation system [18]. In the follow-
ing sections we discuss the cases of one and two vertices connecting them
with well-known problems such as determining the number of inversions in
a permutation and finding the edit distance of two cyclic words. We also
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include a weak approximation result for the general case.

5.1 One Vertex

Given a graph with a rotation system on a single vertex (with loops), it is
quite straightforward to compute its crossing number in quadratic time.

In contrast, a linear time algorithm for the one-vertex case would come
as a surprise, since the problem contains as a special case a well-studied
problem: computing the number of inversions of a permutation. Given a
permutation π over {1, . . . ,m}, an inversion of π is a pair (i, j) such that
i < j and π(i) > π(j). It is well-known that the number of inversions of a
permutation π equals ds(123 . . . m, π(1)π(2) . . . π(m)), where ds(u, v) is the
number of transpositions of adjacent letters required to get from word u to
word v (see, for example [9, Section 5.1.1]). The best-known algorithms for
either problem run in Θ(m logm).2

The inversion problem is easily encoded as a crossing number problem on
a single vertex: simply let the rotation at the vertex be 12 . . . mπ(m)π(m−
1) . . . π(2)π(1); this suggests that an algorithm for the single-vertex case that
runs better than O(m logm) will be hard to come by.

We can, however, compute the crossing number of a one-vertex multi-
graph in time Θ(m logm), extending the algorithm used to compute the
number of inversions of a permutation.

Theorem 5.1. The crossing number of a one-vertex multigraph with rotation
system can be computed in time O(m logm).

Proof. Let π be the rotation of the one-vertex multigraph G. If the graph
has m edges, then π has length 2m, containing each number in 1, 2, . . . ,m
exactly twice. Split π into two halves: π = π0π1. If both occurrences of
i ∈ {1, . . . ,m} are in π0 we say i is of type 0. If both occurrences of i are
in π1 we say i is of type 1. Otherwise i is of type 2. An edge of type 0 does
not cross an edge of type 1 in a minimal drawing. Let crrot (G, i, j) be the
number of crossings between edges of type i and type j. Then crrot (G) =
crrot (G, 0, 0) + crrot (G, 1, 1) + crrot (G, 2, 2) + crrot (G, 0, 2) + crrot (G, 1, 2).

We compute crrot (G, 0, 0) and crrot (G, 1, 1) recursively. The value of
crrot (G, 0, 2) and, similarly, crrot(G, 1, 2) can be computed directly in linear
time as follows: Process π0 from left to right. Keep a counter that counts
how many type 2 edges have been seen so far; initially, the counter is zero.
During the loop, when we encounter a type 0 edge we store the current value

2See [9, Exercises 5.1.1-6 and 5.2.4.-21]. Wagner’s linear time algorithm [25] for com-
puting ds(u, v) is wrong.
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of the counter at that position. At the end of the loop, we sum for each
type 0 edge the difference between the two values stored at the positions
where the edge begins and ends. That sum is crrot (G, 0, 2). Finally, consider
crrot (G, 2, 2). All edges of type 2 begin in π0 and end in π1. Two type 2
edges cross if the order of their endpoints in π0 and in π1 is the same. Hence,
we can compute crrot (G, 2, 2) by counting inversions, which can be done in
time O(m logm) as we mentioned earlier.

Combining these observations, we obtain the recurrence

T (m) = 2T (m/2) +O(m logm)

for the running time of the algorithm, which has the solution T (m) =
O(m log2m). However, we can improve the analysis: since an edge cannot
have more than one type in each step of the recursion, we really have

T (m) = T (m0) + T (m1) +O(m2 logm2) +O(m),

where mi is the number of edges of type i, and m0 + m1 + m2 = m. It is
easy to show that T (m) = O(m logm).

5.2 Two Vertices

In this section we consider graphs on two vertices, allowing multiple edges,
but no loops. The crossing number of a loopless two-vertex multigraph can
be expressed as the solution of an integer linear program whose relaxation
can be used to compute the optimal integer solution in polynomial time [18].

Here we want to give a fast and simple 2-approximation algorithm for
the two-vertex case. To do so, we look at the crossing number problem as an
edit-distance problem on words. The edit distance between two words is the
smallest number of operations transforming one word into the other. There
are numerous variants of this problem depending on which operations are
allowed and what the associated costs are [25, 10]. There are also several
papers studying objects other than words, such as trees and cyclic words
(also known as necklaces) [11, 12, 8], but it seems the particular variant we
find needful here—allowing only swaps (at unit cost) on cyclic words—has
not been considered at all so far. A swap is the transposition of two adjacent
letters in a word. A cyclic word is the equivalence class of a word under cyclic
shifts. The last and first letter of a cyclic word are considered adjacent. Let
ds(u, v) be the smallest number of swaps transforming u into v, where u and
v are ordinary words. Similarly, let d◦s(u, v) be the smallest number of swaps
transforming u into v allowing cyclic shifts at no cost. Then d◦s(u, v) is the
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swapping distance of the two cyclic words represented by the words u and
v. E.g. d◦s(abcd, cdba) = 1, while ds(abcd, cdba) = 5.

Computing ds is easy (see [25]). Our goal is the computation of d◦s(u, v).

Swapping distance of Cyclic Words

Instance: Two words u, v, integer k.
Question: Is d◦s(u, v) ≤ k?

We do not know how hard this problem is in general; however, with the
restriction that the words contain each letter exactly once, we can solve the
problem. Indeed, in that case it is equivalent to computing the crossing
number of a loopless two-vertex multigraph G with rotation system.

This is easily seen: let the two (cyclic) words u and v represent the
rotations of the two vertices p and q of G reading the edges clockwise. Draw
p with edges leaving p in the order determined by u. Let vR denote the
reverse of v. For every swap in the sequence of d◦s(u, v

R) swaps we extend
all edges and cross the two edges corresponding to the letters swapped. We
obtain a set of curves ordered according to vR which can then be connected
without further crossings to a vertex q with rotation v.

Suppose, on the other hand, that we are given a graph G with two vertices
p and q that have clockwise rotations u and v. Fix a drawing of G that
respects the rotations and minimizes the crossing number. In this drawing
no two edges can cross more than once, by a standard argument [21]: if they
did, we could consider the segments of the edges between the crossings, and
avoid one or two crossings by redrawing the segments alongside each other,
following the segment with fewer crossings, reducing the total number of
crossings; the redrawing move might introduce self-intersections of an edge,
but those can be removed easily.

For each crossing, the arcs from p to the crossing form a closed Jordan
curve; let the region bounded by this curve that does not contain q be called
a p-bigon. For any p-bigon B, if an edge crosses its boundary exactly once,
then the arc from p to that crossing must lie within B, forming a p-bigon
contained within B; note that such an edge enters the rotation at p from the
interior of B. Now let B be a minimal bigon (with respect to containment).
Any edge that crosses B must cross each of the two arcs bounding B exactly
once (it cannot cross either arc more than once since two edges cross at most
once, and if it only crossed the boundary of B once then B would not be
minimal). We redraw one of these arcs alongside the other, removing the p-
bigon and lowering the number of crossings by one (see Figure 6). The change
in the rotation at p translates into a swap of letters in u corresponding to the
two curves that form the bigon. Repeating this argument, we can inductively
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prove that the crossing number of G equals the swapping distance of u and
vR.

Proposition 5.2. For a loopless two-vertex multigraph G with rotations u
and vR, crrot (G) = d◦(u, v).

−→

Figure 6: Removing a minimal bigon and a crossing; changing the rotation

We rephrase the restricted swapping-distance problem as follows: we can
assume that u = σ(1)σ(2) · · · σ(m) and vR = 12 · · ·m for some permutation
σ of the elements of the cyclic group Zm Define cr(σ) := d◦(u, v). Thinking
of u as a word, we can say σ(i) is in position i.

For each i ∈ Zm, let swapi be the permutation that switches i and i+ 1
mod m and fixes all other elements of Zm; then for any permutation τ of Zm,
τ ◦swapi has the positions of τ(i) and τ(i+1) switched. For each i ∈ Zm, let
shifti denote the permutation of Zm such that shifti(j) = j − i mod m for
all j ∈ Zm; then τ ◦ shifti has each τ(j) moved i positions up. By definition,
cr(σ) is the minimum number of swaps in a sequence of swaps and shifts
τ0, τ1, . . . , τk such that σ ◦ τ0 ◦ τ1 ◦ · · · ◦ τk is the identity permutation. Since
swapi ◦ shiftj = shiftj ◦ swapi+j mod m for any i, j ∈ Zm, we can assume that
τ0 is the only shift and τ1, . . . , τk are swaps.

We define a new function c̃r on permutations that will be seen to be re-
lated to cr. For a permutation τ of Zm and for each i ∈ Zm, let d+

i (τ) = τ(i)−
i mod m and d−i (τ) = i− τ(i) mod m, and let di(τ) = min{d+

i (τ), d−i (τ)}.
The latter measures the minimum number of swaps needed to move τ(i) to
position τ(i). Next define d(τ) =

∑
i∈Zm

di(τ) and

c̃r(τ) = min{d(τ ◦ shiftj) : j ∈ Zm}.

We claim that c̃r approximates cyclic swapping distance to within a factor
of 2.

Theorem 5.3. For any permutation σ, cr(σ) ≤ c̃r(σ) ≤ 2 cr(σ).
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By Proposition 5.2, it immediately follows that for any two-vertex loop-
less multigraph G represented by a permutation σ, crrot (G) ≤ c̃r(σ) ≤
2 crrot (G).

Proof. We first show that c̃r(σ) ≤ 2 cr(σ). For any permutation τ of Zm and
any j ∈ Zm, |di(τ)− di(τ ◦ swapj)| is 0 unless i ∈ {j, j+1 mod m}, in which
case it is 0 or 1. Therefore |d(τ) − d(τ ◦ swapj)| ≤ 2 for all j; if cr(G) = k,
then there is a shift τ0 and k swaps τ1, . . . , τk so that σ ◦τ0 ◦τ1 ◦· · · ◦τk is the
identity, so d(σ ◦ τ0 ◦ τ1 ◦ · · · ◦ τk) = 0, and, therefore, d(σ ◦ τ0) ≤ 2k. On the
other hand, d(σ ◦ τ0) ≥ c̃r(G) by definition, and we obtain c̃r(G) ≤ 2 cr(G).

It remains to show that cr(σ) ≤ c̃r(σ). For this, it suffices to prove
that cr(σ) ≤ d(σ), since this implies cr(σ ◦ shiftj) ≤ c̃r(σ) for some j, and
cr(σ ◦ shiftj) = cr(σ) (for any j).

Zm is partitioned into cycles by σ. If all of them are trivial then σ = id
and cr(σ) = 0 = d(σ), but otherwise we may let S ⊆ Zm be the set of
elements of a nontrivial cycle ψ in σ. (Then ψ = σ|S , and for all i, j ∈ S
there is some k such that σk(i) = j.)

First we consider the case that there exist i, j ∈ S with di(σ) = d−i (σ)
and dj(σ) = d+

j (σ). Then there must exist some such i, j with j = σ(i). We
may assume that di(σ) ≤ dj(σ); the other case is similar. We first apply
d−i (σ) swaps to move σ(i) = j from position i down to position j, which also
moves each σ(j), σ(j + 1), . . . , σ(i − 1) one position up. Then we can apply
d−i (σ)−1 swaps to move σ(j) upward from position j+1 to position i, which
moves each σ(j+1), σ(j+2), . . . , σ(i−1) back down one step to their original
positions. Thus we have switched the positions of j and σ(j) while fixing all
other elements, using 2di(σ)−1 swaps . For the new permutation σ′ we have
dj(σ

′) = 0, di(σ
′) = dj(σ) − di(σ), and dk(σ

′) = dk(σ) for all k 6∈ {i, j}, so
d(σ′) = d(σ) − 2di(σ). By induction there is a way to make σ′ become the
identity permutation using shifts and at most d(σ′) swaps, altogether giving
us a way to change σ to the identity using at most d(σ′) + 2di(σ)− 1 swaps.
That is no more than d(σ), completing this case.

In the remaining case, we may assume without loss of generality that
di(σ) = d+

i (σ) for all i ∈ S. For each i ∈ S, let f(i) ∈ S\{i} be (uniquely)
defined such that only the first and last elements in positions i, i+1, . . . f(i)
are in S. For every i ∈ S, perform f(i)− i− 1 swaps that move σ(i) upward
from position i to position f(i) − 1; this also moves each i ∈ Zm\S one
position back. Then apply shift1. We get a permutation σ′ with σ(i) in
position f(i) for each i ∈ S, and σ(i) = σ′(i) for each i ∈ Zm\S. Then
d(σ) − d(σ′) =

∑
i∈S(f(i) − i mod m). Since the number of swaps used is
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∑
i∈S(f(i) − i− 1 mod m) which is no more than d(σ)−d(σ′), we finish by

applying induction to σ′.

Remark 5.4. The bounds of Theorem 5.3 are asymptotically optimal: for
σ := (1 2)(3 4) · · · (2m − 1 2m) we have c̃r(σ) = 2m and cr(σ) = m; for the
lower bound consider τ := (1 m) (as a permutation of numbers 1, . . . , 2m),
then c̃r(τ) = 2m− 2 and cr(τ) = 2m− 3.

Remark 5.5. We have seen that the crossing number of a loopless two-vertex
multigraph equals the swapping distance of two cyclic words. If instead of
cyclic words we restrict the problem to ordinary words, the swapping distance
equals the crossing number of a two-vertex multigraph which has both of its
vertices on the boundary of a disk and all edges within the disk. We can
view this as a special case of the crossing number of a two-vertex multigraph,
by replacing the boundary of the disk by many parallel edges. The fact that
c̃r(G) approximates cr(G) in this case is known as Spearman’s Footrule and
was first proved by Diaconis and Graham [4].

Theorem 5.3 gives us a fast and easy way to approximate crrot (G) for a
two-vertex multigraph. Computing c̃r(σ) from the definition can be done in
quadratic time; using dynamic programming the problem can be solved in
linear time: to simplify the following sketch, we assume that |σ| is odd, and
let dmax = ⌊|σ|/2⌋. For all 0 ≤ d ≤ dmax and 0 ≤ j < |σ| let

nd
j := |{i : d+

i (σ ◦ shiftj) = di(σ ◦ shiftj) = d}|, and

n−d
j := |{i : d−i (σ ◦ shiftj) = di(σ ◦ shiftj) = d}|.

Note that d(σ ◦ shiftj+1) = d(σ ◦ shiftj) −
∑dmax

d=1 nd
j +

∑dmax −1
d=0 n−d

j . Also,
nd

j+1 = nd+1
j for − dmax ≤ d < dmax, and ndmax

j+1 = n− dmax

j . Let

Xj = −
dmax∑

d=1

nd
j +

dmax −1∑

d=0

n−d
j .

ThenXj+1−Xj = −ndmax

j+1 +2n1
j−n

− dmax +1
j , and the values ndmax

j , n1
j , n

− dmax +1
j

can be located within 〈nd
0〉

d=dmax

d=− dmax
in constant time. Thus, our algorithm

is as follows: Compute 〈nd
0〉

d=dmax

d=− dmax
, then X0, then X1, . . . ,X|σ|−1, then

〈d(σ ◦ shiftj)〉
|σ|−1
j=0 , and finally take the maximum of the previous sequence.

Each step takes linear time, and the last step gives us c̃r(σ).

Corollary 5.6. The crossing number of a loopless two-vertex multigraph
with rotation system can be approximated to within a factor of 2 in linear
time.
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5.3 Several Vertices

There is little we can say at this point about how hard it is to compute the
crossing number of a graph with a rotation system on a fixed number k of
vertices when k ≥ 3. Using results from a previous paper [18], however, we
can give at least an approximation result. In this section we allow both loops
and multiple edges.

Theorem 5.7. The crossing number of a multigraph G = (V,E) with ro-
tation system can be approximated to within a factor of

(
k+4
4

)
/5 in time

O(mk logm), where k = |V | and m = |E|.

In [18] we showed that cr(G) ≤ ocr(G)
(
k+4
4

)
/5 (see Section 4 for the

definition of ocr). In fact, the proof applies to a multigraph G with rotation
system, yielding crrot (G) ≤ ocrrot (G)

(
k+4
4

)
/5. The proof works by choosing

a particular sequence of k − 1 edges e1, . . . , ek−1 and contracting G along
those edges obtaining a one-vertex multigraph G′ with rotation system. For
graphs on a single vertex, crossing number and odd crossing number are the
same; hence, crrot (G

′) = ocrrot(G
′). Furthermore, the sequence of edges is

chosen such that crrot (G
′) ≤ ocrrot (G)

(
k+4
4

)
/5. The redrawing procedure of

the proof establishes that ocrrot(G) ≤ ocrrot (G
′). Introducing c := ocrrot (G

′)
allows us to summarize the discussion as

c/(

(
k + 4

4

)
/5) ≤ ocrrot (G) ≤ c.

Since ocrrot (G) ≤ crrot (G) ≤ ocrrot (G)
(
k+4
4

)
/5, we conclude that

c/(

(
k + 4

4

)
/5) ≤ crrot (G) ≤ c

(
k + 4

4

)
/5.

Now c can be computed in time O(m logm) using the algorithm from Theo-
rem 5.1 for one-vertex multigraphs with rotation system. The only remaining
problem is that we do not know the sequence of edges that determines G′ and
π′. Thus we try all possible sequences, giving a running time of O(mk logm).

6 Odd and Pair Crossing Numbers

The obvious strategy for proving Theorem 4.2 is to adapt the corresponding
proof for cr to ocr using redrawing tools, showing that cr and ocr agree
for the graphs used in the constructions or are close enough for the proof
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to go through.3 We could not make this approach work and decided to
replace Minimum Linear Arrangement with a different problem based
on tournaments instead of linear orders. We introduce this new problem,
Minimum Tournament Arrangement, and show it to be NP-hard in
Section 6.1. With this we complete the proof of Theorem 4.2 in Section 6.2.
Minimum Tournament Arrangement also leads to some combinatorial
questions that are interesting in their own right.

6.1 A Tournament Problem

Our attempts to reduce Minimum Linear Arrangement to the odd cross-
ing number problem with rotation ran into problems, since we were not able
to show that an optimal drawing represents a linear arrangement. What
happens if we replace the linear arrangement with the next best thing: a
tournament?

A tournament T = (V, F ) is a directed graph such that for each pair of
distinct vertices u, v ∈ V exactly one of uv, vu is in F . Let twoT (u, v,w) be
the indicator for the existence of an oriented path of length 2 between u and
v, passing trough w, formally

twoT (u, v,w) =
{ 1 if {uw,wv} ⊆ F or {vw,wu} ⊆ F

0 otherwise.
(1)

Let twoT (u, v) be the number of w ∈ V for which twoT (u, v,w) = 1. We
consider the following problem:

Minimum Tournament Arrangement

Given: A simple undirected graph G = (V,E), number k.
Question: Does there exist a tournament T = (V, F ) such that

|E| +
∑

uv∈E

twoT (u, v) ≤ k? (2)

If G has a linear arrangement φ of value k then it has a tournament
arrangement of value k, since one can take the linear order T = (V, F )
induced by φ: uv ∈ F ⇔ φ(u) < φ(v). The value of twoT (u, v) in this
tournament is |φ(u)−φ(v)|−1, so |E|+

∑
uv∈E twoT (u, v) =

∑
uv∈E |φ(u)−

φ(v)|.

3Indeed, in an earlier version of the paper we claimed that Theorem 4.2 was an easy
consequence of the construction for the standard crossing number [16]. We no longer
believe this to be true.
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We believe that the optimum of Minimum Tournament Arrange-

ment is always attained on a tournament which is a linear order:

Conjecture 6.1. For every graph G and every integer k the answers to
Minimum Linear Arrangement for (G, k) and Minimum Tournament

Arrangement for (G, k) are the same.

We can prove Conjecture 6.1 for the complete graph. The value of the
minimum linear arrangement of Kn is

(
n+1

3

)
, see, e. g., [5].

Lemma 6.2. The minimum tournament arrangement of Kn has value
(
n+1

3

)
.

Proof. We can count the number of paths of length 2 in T as follows:

A :=
∑

{u,v}∈(V

2
)

twoT (u, v) =
∑

w∈V

d+(w)d−(w), (3)

where d+(w) is the out-degree of w in T and d−(w) is the in-degree of w in
T . Let i(w) = d+(w) − d−(w) be the imbalance of w. Then

B :=
∑

w∈V

i(w)2 =

(
∑

w

d+(w)2

)
+

(
∑

w

d−(w)2

)
− 2A. (4)

We have

n(n− 1)2 =
∑

w∈V

(d+(w) + d−(w))2 =

(
∑

w

d+(w)2

)
+

(
∑

w

d−(w)2

)
+ 2A.

(5)
From (4) and (5) we obtain 4A = n(n − 1)2 − B. Thus the problem of
minimizing A is equivalent to maximizing B.

Assume that T maximizes B. Suppose that i(u) = i(v) for two distinct
vertices u, v ∈ V . If we switch the orientation of uv ∈ T then the contribution
of u and v to B changes by (x + 2)2 + (x − 2)2 − 2x2 = 8 where x = i(u).
Thus for T that maximizes B all the imbalances are different.

Now we claim that for u, v with i(u) < i(v) the edge uv must be in T .
Assume not. Then by reversing vu to uv the contribution of u and v changes
by

(i(v) + 2)2 + (i(u) − 2)2 − i(v)2 − i(u)2 = 8 + 4(i(v) − i(u)) > 0.

Thus the optimal tournament is a linear order, for which the value agrees
with the value of the linear arrangement with the corresponding φ.
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We were unable to settle Conjecture 6.1 but we will show the following
result, which is sufficient for our purposes.

Theorem 6.3. Minimum Tournament Arrangement is NP-complete.

Proof. Minimum Tournament Arrangement is clearly in NP. For NP-
hardness we will follow the NP-hardness proof of Minimum Linear Ar-

rangement from [5, Theorem 1.5]. The reduction is from Max-Cut.
Given an instance G′ = (V ′, E′), k′ of Max-Cut, we construct an in-

stance of Minimum Tournament Arrangement as follows. Let n = |V ′|,
r = n4, and let U be a set of r vertices, U ∩ V ′ = ∅. Let V = V ′ ∪ U and
G = (V,E), where E is defined by: uv ∈ E ⇔ uv 6∈ E′. Finally, let
k =

(
n4+n+1

3

)
− k′n4. We will show that (G′, k′) is a positive instance of

Max-Cut if and only if (G, k) is a positive instance of Minimum Tourna-

ment Arrangement.
First, suppose that (G′, k′) is a positive instance of Max-Cut. In this

case we use the same argument as in [5]. Let S1, S2 be the max-cut of
G′. Now consider the tournament arrangement induced by the linear order
φ, where φ maps the vertices in S1 to {1, . . . , |S1|} and vertices in S2 to
{n4 + n+ 1 − |S2|, . . . , n

4 + n}. A quick calculation shows that the value of
this tournament is at most k.

If, on the other hand, (G′, k′) is a negative instance of Max-Cut, then
every cut in G′ has size less than k′. Let T be any tournament for G. We
have

|E| +
∑

uv∈E

twoT (u, v) =



(
n4 + n

2

)
+

∑

{u,v}∈(V

2
)

twoT (u, v)




− |E′| −
∑

uv∈E′

twoT (u, v).

(6)

By Lemma 6.2, the first quantity on the right-hand side of (6) is at least(
n4+n+1

3

)
. Hence

|E| +
∑

uv∈E

twoT (u, v) ≥

(
n4 + n+ 1

3

)
− |E′| −

∑

uv∈E′

twoT (u, v). (7)

Now |E′| ≤ n2 and
∑

uv∈E′

twoT (u, v) ≤ n3 +
∑

uv∈E′

∑

w∈U

twoT (u, v,w), (8)
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where twoT (u, v,w) is defined in (1).
Consider the right-hand side of (8). Let w ∈ U be the vertex that

contributes the most to the sum. Let S1 ⊆ V ′ be the vertices which point
to w in T and S2 = V ′ \ S1. Then

∑

uv∈E′

∑

w∈U

twoT (u, v,w) ≤
∑

uv∈E′,u∈S1,v∈S2

n4 ≤ (k′ − 1)n4, (9)

since the max-cut in G′ has size at most k′ − 1.
Combining (7), (8), and (9) we obtain

|E| +
∑

uv∈E

twoT (u, v) ≥

(
n4 + n+ 1

3

)
− n2 − n3 − (k′ − 1)n4

>

(
n4 + n+ 1

3

)
− k′n4 = k,

where the last inequality is true for n ≥ 2. Hence (G, k) is a negative instance
of Minimum Tournament Arrangement.

Conjecture 6.1 can be recast as a problem on matrices. Recall that a
matrix A is skew-symmetric if AT = −A; in particular, all diagonal elements
of a skew-symmetric matrix are zero.

Conjecture 6.4. Define the n×n skew-symmetric matrix A by Aij = −1 for
i < j and let B = AAT . Let C be the convex-hull of PBP T where P ranges
over all permutation matrices. If D is an n×n skew-symmetric matrix with
entries from [−1, 1], then there exists an n × n matrix F with non-negative
entries so that DDT + F ∈ C.

Proposition 6.5. Conjecture 6.4 implies Conjecture 6.1; in the reverse di-
rection, Conjecture 6.1 when extended to multigraphs implies Conjecture 6.4.

Proof sketch. Let G = (V,E) be a graph with V = {1, . . . , n}. Let H be
the adjacency matrix of G. Let T be a tournament and let D be the skew-
symmetric matrix defined by Dij = +1 if ij ∈ T and Dij = −1 if ji ∈ T for
i < j. Note that (DDT )ii = n− 1 and for i 6= j

(DDT )ij =
∑

k

DikDjk = (n− 2) − 2twoT (i, j).

Finally, note that

〈DDT ,H〉 = 2|E|(n − 2) − 4
∑

ij∈E

twoT (i, j). (10)
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(The inner product of two matrices X,Y is 〈X,Y 〉 = tr(XY T ).)
Comparing (2) and (10) we see that Conjecture 6.1 is equivalent to: the

maximum of (10), over skew-symmetric matrices D with ±1 off-diagonal
entries, is attained for a matrix corresponding to a linear order.

First, suppose that Conjecture 6.4 is true and let D be the matrix maxi-
mizing (10). There exists F with nonnegative entries such thatDDT +F ∈ C.
We have

max
X∈C

〈X,H〉 ≥ 〈DDT + F,H〉 ≥ 〈DDT ,H〉,

and the maximum of the linear function X 7→ 〈X,H〉 on C is achieved
on some vertex PBP T = (PAP T )(PAP T )T . Hence we could have taken
D = (PAP T ) and obtained at least as good a value for (10).

Now assume that Conjecture 6.4 is false. Let D be a counterexample
to Conjecture 6.4. By linear programming duality (Farkas’ Lemma) there
exists a non-negative matrix Y such that

〈DDT , Y 〉 > max
C∈C

〈C, Y 〉 = max
P∈Sn

〈(PAP T )(PAP T )T , Y 〉.

The space of solutions is dense, so we can choose Y with all its entries
rational. Multiplying Y by the common denominator does not affect the
truth of the inequality, so the entries of Y are non-negative integers. Since
DDT is symmetric, we can replace Y by (Y + Y T )/2 without changing
the inner product, making Y symmetric. Note that the diagonal entries of
the matrices in C are n − 1, and the diagonal entries of DDT are at most
n − 1. Hence we can also assume that all diagonal entries of Y are zero.
In summary, Y corresponds to a loopless multigraph. So we have found an
example where the maximum of (10) with H replaced by Y is not achieved
by a skew-symmetric matrix corresponding to a linear order. Thus Y is a
counterexample to Conjecture 6.1 extended to multigraphs.

6.2 Proof of Theorem 4.2

We make use of a redrawing tool that allows us to remove crossings with
even edges. An edge is called even if it is crossed by every other edge an
even number of times (including the possibility of no crossings).

Lemma 6.6 (Pelsmajer, Schaefer, Štefankovič [15]). If E0 is the set of even
edges in some drawing of a graph G in the plane, then G can be drawn so
that no edge in E0 is involved in any crossings and there are no new pairs of
edges that cross an odd number of times. Moreover, the redrawing does not
change the rotation system of G.
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We begin with the analogue of Theorem 2.1 for ocr and pcr:

Lemma 6.7. Computing odd or pair crossing number of a graph with a given
rotation system is NP-complete. The problem remains NP-complete if the
rotation at each vertex is allowed to flip.

Before proving Lemma 6.7, we show how to use it to complete the proof
of Theorem 4.2.

Proof of Theorem 4.2. We first deal with ocr. Consider a graph G with rota-
tion system. We construct G′ from G as we did in the proof of Theorem 3.1.
Any drawing of G can be turned into a drawing of G′ in a natural way, which
specifies a corresponding rotation system for G′, such that there are corre-
sponding pairs of oddly crossing edges in G and in G′. Hence ocrflip(G) ≤ k
implies ocrflip(G

′) ≤ k and ocrrot (G) ≤ k implies ocrrot (G
′) ≤ k. Since G′ is

cubic, ocrflip(G′) = ocr(G′).
For the other direction, suppose we have a drawing of G′ with at most

k pairs of edges that cross oddly. As we did earlier, we argue that each Hv

that replaces a vertex v of G in G′ must contain two consecutive rows Rv

that have no edges in odd pairs. Lemma 6.6 allows us to redraw all the
Rv so they are not involved in any crossings—without changing the rotation
system or increasing ocr. Note that if any rotation in Rv is flipped then all
of Rv is flipped. The rest of the argument now proceeds as in the original
proof: we can contract each Rv to a single vertex obtaining a subdivision of
the drawing of G. Removing the subdivisions does not increase ocr and leads
to a drawing of G with odd crossing number at most k. If we started with a
drawing realizing ocrflip(G

′) ≤ k, then this argument yields ocrflip(G) ≤ k.
If the initial drawing realized ocrrot (G

′) ≤ k, then ocrrot (G) ≤ k.
Therefore ocrflip(G) ≤ k ⇐⇒ ocrflip(G′) ≤ k and ocrrot (G) ≤ k ⇐⇒

ocrrot (G
′) ≤ k, proving that ocrflip and ocrrot are NP-hard for 3-connected,

cubic graphs.
The proof for pcr is almost the same (except that it is easier to obtain

the drawing of G from the drawing of G′, since the assumption that there are
at most k crossing pairs of edges in the drawing of G′ directly implies that
there are two rows Rv in each Hv that are not involved in any crossings).

We are left with the proof of Lemma 6.7.

For embedded closed curves in the plane, the Jordan Curve Theorem
tells us that the curve separates the plane into two regions. We can extend
this notion to curves with self-intersections. If C is a closed curve with self-
intersections we can define a notion of sides: two points not on C are on the
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same side of C if any curve connecting them crosses C an even number of
times.4 The notion of being on the same side of C is well-defined, since any
two curves connecting two points form a closed curve and two closed curves
on the plane cross an even number of times, so the two curves connecting
the points must have the same parity of crossing with C.

Now any curve between two points on opposite (not the same) sides of
C must cross C oddly. We will be considering curves in a drawing of a
graph. Since the drawing is planar it is contained within a disk and we
can arbitrarily pick a reference point outside that disk and call that point
outside. This defines for every closed curve in the graph a notion of inside
and outside.

We use G, H and parameters k, w, w′ as defined in the proof of Theo-
rem 2.1 except we now consider G as an instance of Minimum Tournament

Arrangement rather than Minimum Linear Arrangement.
Note that the reduction from Max-Cut to Minimum Tournament

Arrangement in the proof of Theorem 6.3 yields a positive instance (G, k)
which achieves its required value in a linear ordering φ. The drawing of H
in Figure 1 has no edge pairs that cross more than once, so given that linear
ordering φ of G of value at most k, we obtain a drawing of H with the given
rotation system that satisfies ocr = pcr = cr ≤ k′.

We claim that: If ocrflip(H) ≤ k′, then G has a tournament arrangement
of value at most k. Since ocrflip ≤ pcrflip ≤ crflip , it immediately follows
that if pcrflip(H) ≤ k′ or crflip(H) ≤ k′ (or, similarly, if ocrrot (H) ≤ k′,
pcrrot (H) ≤ k′, or crrot (H) ≤ k′) then G has a tournament arrangement of
value at most k. Thus, proving the claim establishes Lemma 6.7.

Let us assume then that ocrflip(H) ≤ k′. The edge weights along the
cycle (u1, . . . , u4n) were chosen large enough so that none of these edges can
cross any other edge oddly. Hence, all of the edges on this cycle are even, and
we can apply Lemma 6.6 to redraw G so that the cycle is embedded without
changing the rotation system or increasing ocr. Since G − {u1, . . . , u4n} is
connected, the whole graph must lie within the same face of the cycle, which
we may assume to be the inner face. In particular, we can assume that none
of the rotations at vertices u1, . . . , u4n are flipped.

As in the proof of Theorem 2.1, we know that k′ < w2, so no two edges
of weight w can cross oddly, and, in particular, no two of the paths Pi

cross each other oddly. Consider paths Si := uiaibiciu2n+1−i, for 1 ≤ i ≤
n. Since the endpoints of Si and Pj (and Si and P2n+1−j) alternate along

4Two curves may not touch each other and they may not cross in a self-intersection
point.
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the outer cycle for 1 ≤ i < j ≤ n, such Si and Pj (and Si and P2n+1−j)
have to cross oddly. Since we also know that no two edges of Pi and Pj

can cross oddly, the odd pair must have one edge each from Qi and Pj

(Qi and P2n+1−j). Each such pair contributes ww′ to ocr. Since there are
n(n − 1) such pairs, the overall contribution to ocr is n(n − 1)ww′. Now
k′ − n(n − 1)ww′ = kw′ + m2 < (w′/2)2, so there cannot be any further
odd pairs in Qi ∪ Pj since its edges have weight at least w′/2. Moreover,
k′−n(n−1)ww′ = kw′ +m2 < m2w′ +m2 = 5m4 +m2 < 7m4 = w, so none
of the edges of weight w cross any other edge oddly (such as the bibj edges)
apart from the crossings between Pj and Qi we already mentioned. Hence,
the only remaining odd pairs contain an edge of type bibj , and another such
edge or an edge of weight w′ or w′/2.

Claim 6.8. For 1 ≤ i < j ≤ n, aibi crosses Pj oddly and bici crosses P2n+1−j

oddly. Other than this, edges of Qi cross edges of Pj ∪ P2n+1−j evenly.

Proof. The second part of the claim follows from the first part since, as we
argued above, there are only two odd pairs with one edge in Qi and one in
Pj ∪ P2n+1−j . To confirm the first part of the claim, by symmetry we only
need to show that aibi crosses Pj oddly. Since the outer cycle is crossing-free,
we can instead show that ai and bi are on opposite sides of the closed curve
Dj := uj . . . u4n+1−jajuj.

Note that u2n+1−jcj and cjbj cross Pj evenly. Let O be a crossing-free
curve from an outer reference point to u2n+1−j; then Ou2n+1−jcjbj crosses
Dj oddly. Therefore bj is inside Dj.

Since bj is connected to bi via edges on the “b-vertices” that each cross
Pj evenly, bi is also inside Dj . On the other hand uiai is in Pi, so it crosses
Pj evenly. Then, as ui is outside of Dj , ai is also outside of Dj . Hence aibi
must cross Pj oddly.

We define a binary relation ⊳ on the set {1, . . . , n}. For 1 ≤ i < j ≤ n,
let i ⊳ j if Pi crosses ujaj oddly, and j ⊳ i if Pi crosses aju4n+1−j oddly. By
Claim 6.8, exactly one of these holds true, so ⊳ is a tournament arrangement
of G. We will see presently that the value of this arrangement is at most k.

Note that ⊳ is not necessarily a linear ordering. Figure 6.2 shows that it
is quite possible to have a ⊳ b ⊳ c ⊳ a.

Let Ci be the closed curve ui . . . u2n+1−icibiaiui, for 1 ≤ i ≤ n.

Claim 6.9. The vertex bi is contained inside Cj if and only if i ⊳ j (for
i 6= j).
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Figure 7: An example with 1 ⊳ 2 ⊳ 3 ⊳ 1.

Proof. Assume that i < j. Then in addition to the claim as stated we also
need to show that bj is inside Ci if and only if j ⊳ i.

The edges uiai and aibi each cross all edges of Cj evenly except that aibi
may cross ujaj oddly. Therefore ui and bi are on opposite sides of Cj if and
only if aibi crosses ujaj oddly. Since ui is outside Cj, it follows that bi is
inside Cj if and only if i ⊳ j.

Let Oj be a crossing-free curve from uj to an outer reference point. Since
Ojujaj crosses ui . . . u2n+1−i oddly, and no edge of ujajbj may cross Ci oddly
except possibly aibi with ujaj, we conclude that Ojujajbj crosses Ci evenly
if and only if aibi crosses ujaj oddly. Therefore bj is outside Ci if and only
if i ⊳ j. Thus, bj is inside Ci if and only if i 6⊳ j, or j ⊳ i.

Consider an edge bibj of G and ℓ so that i ⊳ ℓ ⊳ j. By Claim 6.9,
the edge bibj has to cross the boundary of Cℓ oddly, contributing at least
w′ odd crossings to ocr. Moreover, the edge bibj must cross the boundary
of the 2-cycle bici oddly: if not, then bj lies within that 2-cycle, but this
is impossible, since none of the edges of bjcju2n+1−j can cross that 2-cycle
oddly, and u2n+1−j is outside it. Hence every edge bibj contributes w′/2 odd
crossings at each of its endpoints. In summary, the edges of G contribute at
least ∑

bibj∈E(G)

∑

i⊳ℓ⊳j

w′
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odd crossings which must be at most k′ − n(n − 1)ww′ = kw′ +m2. Since
m2 < w′ we can conclude that

∑

bibj∈E(G)

∑

i⊳ℓ⊳j

1 < k + 1

so the value is at most k. (Transferring the result to unweighted graphs
proceeds as in the proof of Theorem 2.1.)
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