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Abstract

We show that for every n there are two simple curves on the torus
intersecting at least n times without the two curves folding or spiralling
with respect to each other. On the other hand, two simple curves in a
punctured plane that intersect at least n times (and do not create any
empty bigons) must either form a spiral of depth d or a fold of width
cn/(d + 1) − 1, where c only depends on the number of punctures in the
plane. The construction of the two curves on the torus involves train
tracks and word equations, and the verification that the two curves do
not spiral leads us to an infinite binary word based on the golden ratio
which does not contain any square word ww for which |w| is even.

1 Introduction

Maybe you have found yourself aimlessly doodling away on a piece of paper,
producing psychedelic drawings like
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As you are squeezing one more bend of the curve into the picture you might
have wondered whether the doodle has any inherent structure. The picture
above, for example, contains a fair amount of spiralling and folding. If your
curves intersect often, do they always have to spiral or fold? And does this
depend on the surface on which you are drawing?

Before we discuss these questions, we need to make our notions of folding and
spiralling precise. We are interested in the behavior of two simple curves, that
is, curves without self-intersections. We typically draw one of the curves as a
straight line; it might be part of a triangulation of the surface. The second curve
intersects the first curve a large number of times. Two curves are reduced (with
respect to each other) if their drawing does not contain a lens: a lens (or empty
bigon), is a disc-shaped region bounded by two arcs, one from each curve, that
does not contain any other part of the curve in its interior. Requiring the curves
to be reduced seems to seriously restrict doodling, but we can always eliminate
a lens by punching a hole into the lens, puncturing the surface. The earlier
picture contains four lenses which could be removed by adding four punctures
to the surface.1

An annulus is a disk with one puncture. An arc in A is a curve within A
with endpoints on the boundary of A. If the endpoints are on both boundary
components, we call the arc spanning, otherwise it is peripheral. Two spanning
arcs in an annulus A are said to spiral if they do not form a lens within A and
intersect at least three times. The number of intersections minus 2 is the depth
of the spiral. Two curves α and β spiral if there is an annulus A and two subarcs
α′ ⊆ α and β′ ⊆ β such that α′ and β′ spiral in A (note that α′ and β′ are
spanning arcs in A).

We say that two curves α and β have a fold of width w if there is an annulus
A that does not contain endpoints of either α or β and so that α intersects
A in a peripheral arc α′, and the intersection of β and A contains at least w

1Topologically speaking: lenses are topologically “trivial”, since they can be removed by
an isotopy of either curve. Of course any curve on the plane can be isotoped into a point, so if
we take the more topological view—instead of speaking of reduced curves—we would need to
anchor the four endpoints of the curves by placing them on the boundaries of four punctures
in the plane.
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peripheral arcs each of which intersects α′ twice without forming a lens with α′.
We require a fold to have width at least 1.

The following picture shows that our opening example contained a fold of
width three and a spiral of depth one. (The two annuli are crosshatched).

The following example shows that in spite of an arbitrarily large number of
intersections of α and β there need not be any spiralling and only very narrow
folding in a drawing:

However, for this to be possible with reduced curves, the plane would need
to contain a large number of punctures, so let us assume that we are dealing
with a fixed surface, that is, the number of punctures is fixed.

Does a large number of intersections between two reduced curves
on a fixed surface force either a deep spiral or a wide fold?

We will show in Section 2 that in the punctured plane there is a constant
c = O(p) depending only on the number p of punctures such that any reduced
curves with n intersections contain either a spiral of depth

√
n/c or a fold of

width
√

n/c. In Section 3 we construct two reduced curves on the torus with
arbitrary many intersections which form neither spiral nor fold.

The question above is not an entirely idle problem inspired by doodling on
scraps of paper, it is closely related to graph drawing problems, and the string
graph problem in particular. It is easy to show, adapting a construction due
to Kratochv́ıl and Matoušek [8] for string graphs, that in the presence of n
punctures two curves can be forced to intersect on the order of Ω(2n) times in
the plane without there being a spiral. These curves do, however, contain a fold
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of width Ω(2n). In the companion paper to this paper we construct two reduced
curves in the (unpunctured) plane without any spirals and with arbitrarily many
intersections [15]. By the result mentioned earlier, these two curves have a wide
fold.

In the present paper we construct curves α and β on the torus that form
no spiral and no fold. This closes a promising approach to recognizing string
graphs on surfaces of higher genus. A string graph is the intersection graph of
simple curves in the plane (or another surface). Recognizing whether a graph
is a string graph is an old question [2, 6] that was settled only recently by
proving an exponential upper bound on the number of intersections needed in
a realization of a string graph in the plane [11, 16].

There are three known approaches to proving the decidability of string
graphs in the plane: the topological proof by Pach and Tóth [11], our more
combinatorial proof from [16] and an algebraic proof using trace monoids [13].
The last proof is the only one that currently works for arbitrary surfaces. Un-
fortunately, it only gives a double-exponential upper bound on the number of
intersections in an optimal realization of a string graph on a surface. The proof
from [16] makes essential use of properties of the plane, and does not seem to lift
easily to other surfaces. This leaves the proof of Pach and Tóth which proceeds
by finding a deep spiral in the realization of a string graph which then allows
the simplification of that realization. Our main result of this paper implies that
this approach cannot be lifted in a straightforward manner even to the torus,
since there are pairs of curves that do not form any spirals.

The companion paper [15] establishes Theorem 3.1—that folds and spirals
can be avoided on the torus—using entirely topological methods; our proof of
this result in the present paper follows a different approach: we capture the
behavior of curves in surfaces using words (over monoids) and word equations.
To this end, we represent curves on the torus using Thurston’s train tracks.
Relevant properties of curves can then be described using word equations: We
construct a family of curves using train tracks and show that they do not form a
spiral by proving that the solution of a word equation associated with the train
track does not contain any squares, that is words of the form ww.2

The word view has an advantage over the topological approach in that it
lends itself more naturally to automation: the solutions to the word equations
we derive can easily be computed and verified, and basic properties of curves
represented by train tracks can be decided efficiently, following ideas from [12].

Also, the word view leads us to new results about square-free words; during
the proof we encounter an infinite binary word which does not contain any
squares of the form ww where |w| is even. Interestingly, the word has both a
natural definition—its nth digit is ⌊nφ mod 2⌋, where φ is the golden ratio—and
a simple recursive construction which connects it to the word equations we use

2Studying curves in surfaces and their properties using words and word equations is an
approach we first used in our papers on string graphs [13, 16] and continued with papers on
algorithms for curves represented by Thurston train tracks or through normal coordinates [12,
14].
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to encode our train tracks.

Remark 1.1. Given an infinite binary word a without squares of the form
ww with |w| even, we can combine it with the infinite word b = 01010101 · · ·
which does not contain any squares ww with |w| odd to build an infinite word
on a 4-letter alphabet that does not contain any squares ww at all (one letter
corresponding to each combination 00, 01, 10, and 11). Thue showed that
square-free words exist over a ternary alphabet [9], but as far as we know all
known constructions involve morphisms of words and are not direct (though
there are some recursive constructions).

If we interleave the letters of a and b, we obtain an infinite binary word which
does not contain any squares ww with |w| > 3. In particular, the interleaved
word contains only a finite number of different squares; this is an old result,
again typically proved through the use of morphisms. The best result known is
that there are words that contain only three different squares, 00, 11, 0101 [5].

2 The Planar Case

Spirals and folds can be avoided entirely on the torus as we will see in the next
section. In the plane with a fixed number of punctures, however, there always
has to be a spiral or fold of size Ω(ℓ1/2), where ℓ is the number of intersections
between two reduced curves.

Theorem 2.1. Two reduced curves intersecting ℓ times in a plane with p
punctures form either a spiral of depth d or a fold of width ℓ/cpd − 1, where
cp = 2(12p + 13)2.

A similar result is implicit in the paper by Pach and Tóth [11] and some of
our arguments resemble theirs. We obtain a slightly better constant cp by using
a genus argument.

Consider two reduced curves α and β which intersect a finite number of
times. Removing the two curves from the plane decomposes the plane into a
number of regions we call cells. A segment of a curve is a connected component
of α \ β and β \ α. We call a segment proper if it does not contain an endpoint
of the curve; the two segments of a curve that are not proper are called its end
segments. A k-cell is a cell whose boundary, after erasing the end segments of
α and β, consists of k proper segments. A cell is good if it is an empty 4-cell,
that is, it does not contain any punctures or endpoints, and it is bad otherwise.

Arbitrarily orient α in one direction. Call a segment of α good if it is proper
and its right side borders a good cell, otherwise the segment is bad. Our first
goal is to bound the number of bad segments.

Lemma 2.2. In a drawing of two reduced curves in a plane with p punctures a
curve has at most 12p + 12 bad segments not counting the two end segments of
the curve.

Proof. Fix a drawing of two reduced curves α and β. Consider the dual multi-
graph G of the drawing: assign a vertex to each cell and connect two vertices by
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an edge if their cells share a proper segment. Note that G may contain multiple
edges, but no loops.

Erase the four end segments from the drawing. Then the drawing has ℓ
vertices, namely the ℓ intersection points of the curves, and 2(ℓ − 1) edges (the
proper segments), and hence, by Euler’s formula there are 2 + 2(ℓ − 1) − ℓ = ℓ
faces, implying that G has ℓ vertices. Moreover, the number of edges of G is
2(ℓ − 1), since an edge in G corresponds to a proper segment of the drawing.
Vertices of degree k in G correspond to k-cells in the drawing. In particular, G
contains at most p vertices of degree 2, since each 2-cell must contain a puncture
(otherwise it would be a lens) and at most 4 vertices of degree 3, since a 3-cell
must contain one of the four endpoints. Let dk be the number of k-cells and let
db
4 and dg

4 be the number of bad and good 4-cells, resp., so d4 = db
4 + dg

4.
Assuming that ℓ ≥ 2, G contains no isolated vertices and we get

2d2 + 3d3 + 4d4 + 5(ℓ − d4 − d3 − d2) ≤ 2|E(G)| = 4(ℓ − 1).

Replacing d4 by db
4 + dg

4 gives us ℓ − dg
4 ≤ 3d2 + 2d3 + db

4 − 4. Every 2-cell
contains a puncture, every 3-cell an endpoint, and every bad 4-cell an endpoint
or a puncture, so 3d2+2d3+db

4 = 2d2+d3+(d2+d3+db
4) ≤ 2p+4+(p+4) = 3p+8.

This implies that ℓ − dg
4 ≤ 3p + 4.

Now the bad cells border at most 2|E(G)| − 4dg
4 segments, and

2|E(G)| − 4dg
4 = 4(ℓ − dg

4) − 4 ≤ 12p + 12,

so there are at most 12p + 12 bad segments not counting the end segments of
the two curves.

Proof of Theorem 2.1. Fix a drawing of reduced curves α and β and a direction
of travel along α. Label the segments encountered α0, . . . , αℓ. We write α[i:j]
for the sequence αi, . . . , αj . Each segment is adjacent to a cell on its left and
its right (not all these cells are pairwise distinct, of course). Let us consider the
ℓ− 1 cells α[1:ℓ− 1] encountered along the right side of α excluding the two end
segments. Since at most 12p+12 of these segments are bad, there is a sequence
of at least w = ⌈(ℓ − 1 − (12p + 12))/((12p + 12) + 1)⌉ ≥ ℓ/(12p + 13) − 1
consecutive segments, α[i:i + w − 1], such that the cells on the right of the
segments are all empty 4-cells. This block of 4-cells attaches to α a second time,
again to a block of segments, α[j:j+w−1]; the rest of the argument depends on
where and how it does this. Figure 1 illustrates one possible scenario, in which
the cells reattach to the opposite side of α, overlapping the original block.

If the block of 4-cells attaches on the same side of α, we have found a fold
of width w and we are done since w ≥ ℓ/(12p + 13)− 1 ≥ ℓ/cpd− 1. Hence, we
can assume that the block of 4-cells attaches to the left side of α.

If the two blocks α[i:i + w − 1] and α[j:j + w − 1] overlap in more than
w(d−1)/d segments, we have found a spiral of depth d: in case i < j start with αj

and follow the empty 4-cell on its right. It reattaches to α in αj+(j−i); continuing
this process, we obtain a sequence of empty 4-cells connecting αi+k(j−i) to
αi+(k+1)(j−i) for 0 ≤ k ≤ d. This is possible since all those cells start within the
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α0 αi αj

αi+w−1

αj+w−1 αℓ

Figure 1: A block of 4-cells α[i:i + w − 1] reattaching to α on the opposite side
in α[j:j + w − 1] overlapping the original block α[i:i + w − 1] in α[j:i + w − 1].

range α[i:i+w−1] as j−i < w−w(d−1)/d = w/d and so i+d(j−i) ≤ i+w−1.
Pick one of the two subarcs of β bounding these 4-cells. It has d+2 intersections
with α, so we have found a spiral of depth d. The case j < i is symmetric.

We can therefore assume that the two blocks overlap in at most w(d − 1)/d
segments; then there are at least w/d consecutive segments α[j′:j+w−1], j ≤ j′

that are not involved in the overlap and that have good 4-cells on their left side.
Let α′ be the subarc α[i + w:j + w− 1] (this includes α[j′:j + w − 1] since these
segments are not part of the overlap). Note that α′ together with the segment
of β connecting the beginning of α[i + w] to the end of α[j + w − 1] forms a
closed curve C.

Temporarily replace α with α′ (without changing β). Now α′ has at most
12p + 12 bad segments (we can apply Lemma 2.2 again), so it contains a block
α[k:k + w′ − 1] of good segments, where w′ = ⌈w/(d(12p + 13))⌉ − 1. Since the
cells on the right of these segments are all contained within the closed curve
C, the block of cells has to reattach to α′ on the right hand side, so in α′ we
now have a wide fold. In general, this fold will not be a fold with respect to
α, since α can cut through the cells of the fold. But if we look at the cells of
the fold between α′ and β in the presence of α, we see that all the cells remain
good, with one possible exception: the cell that contains the endpoint of α in
the region bounded by C. Let us pick a block of cells on the right of the interval
α[k:k + w′ − 1]. If all the cells are good, this block has to reattach on the right
or the left side of α as a block. We can then continue on the other side of that
block, as long as all those cells are good as well. If we keep encountering good
cells, this process will continue until we reattach to α on the right side (we
know we must, since we are following the fold with respect to α′). We saw that
there is at most one bad cell we can encounter, so either α[k:k + ⌊w′/2⌋ − 1]
or α[k + ⌊w′/2⌋:k + w′ − 1] will not run into that bad cell. Since the process
starts on the right hand side of α and ends on the right-hand side of α, there
must be a block of cells that attaches to α on the right-hand side with both
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its α-sides (if not, then the first block reattaches to the left side and after that
every block starts attached on the right and then reattaches to the left, but that
is not possible, since the last block has to reattach to the right of α). This block
constitutes a fold of width ⌊w′/2⌋ ≥ w/(2d(12p + 13)2) − 1.

It is easy to construct two reduced curves in the plane that intersect ℓ times
and whose spirals and folds have depth and width at most O(

√
ℓ), so Theo-

rem 2.1 is essentially tight.

3 The Torus Case

Let fn be the nth Fibonacci numbers, with f0 = 0 and f1 = 1. Figure 2 shows
a train track describing an arrangement of curves on the torus (using the usual
planar representation of the torus identifying opposite sides of the square).

1 1

1 1 1 1

1 1

fn − 1 fn+3 − 1

fn+3 − 1

fn+4 − 1

fn+1 − 1

fn − 1

fn − 1

fn+4 − 1

fn+1 − 1

α

Figure 2: A weighted train track on the torus (black lines).

Without going into the formal details of weighted train tracks, let us describe
the basic idea. Ignore, for the moment, the dotted line α, it is not part of the
train track. A line of weight w in the diagram represents w parallel curves. For
example, in the upper left part of Figure 2 we see five groups of parallel curves
merge together. The leftmost group represents fn − 1 parallel curves, the third
group fn+1 − 1 (as we find out by tracing it across the dashed line), and the
fifth group fn+3 − 1 parallel curves. The second and fourth group represent
the end of a single curve. These five groups merge, in a device called a switch,
into a single group of fn+4 − 1 = (fn − 1) + 1 + (fn+1 − 1) + 1 + (fn+3 − 1)
parallel curves, just to split up again into five groups of fn+3 − 1, 1, fn+1 − 1,
1 and fn − 1 parallel curves. Note that all lines in the diagram have a weight,
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and that when multiple lines merge (or split) in a switch, the weights add up
consistently. Hence, if we replace each line with the number of parallel curves
corresponding to its weight, we obtain a system of curves in the torus realizing
the train track. We do not a priori know how the eight ends of the curves pair
up and whether any closed curves are present, and, indeed, this depends on n.
Clearly, there have to be at least four curves. We show that if n ≡ 1 mod 3,
then the train track represents a system of exactly four curves and there are no
closed curve components. Moreover, we argue that α (as shown in the picture)
does not form a spiral, fold or lens with any of those four curves. Since one
of the curves has to cross α at least (fn+1 − 1)/4 times, this will complete the
argument.

To prove these results about the train track in Figure 2, we change our point
of view and reexpress the train track, or, more precisely, the connectivity of the
curves represented by the train track, as a word equation. A word equation
is an equation containing variables and letters from some alphabet, Σ. We
use uppercase letters for variables and lowercase letters for elements of Σ. For
example,

aX = Xa

where |X | = n is a simple word equation with given lengths, that is, the length
of the word that a variable represents is specified. The equation is interpreted
over the free monoid generated by Σ, so equality must hold letter by letter. In
this particular example, the solution is X = an (for any alphabet Σ containing
a). To take another example, consider

aX0X1 = X1aX0

with |X0| = 1, X1 = n. Again, this equation is solvable, by aX0X1 = an+2;
however, the uniqueness of the solution depends on the parity of n. For even n,
there is more than one solution, while for odd n the solution is unique (assuming
Σ contains at least two letters, including a). Finally, the system

abX = Xab

is solvable if and only if |X | is even (in which case the solution is unique). We
write X [i] for the ith letter in X (for a particular solution), and X [i:j] for the
subword X [i]X [i + 1] · · ·X [j] of X .

Figure 3 shows the train track from Figure 2 (no longer embedded) recast as
a word equation. We have labeled four of the endpoints with {a, b, a, b} and left
the other four undetermined (the questions marks are unnamed, but distinct,
variables).

The word equation shown in Figure 3 is

X0aX1bX2X3aX4bX5 = X5?X1?X3X2?X4?X0 (1)

with given lengths |X0| = |X3| = fn − 1, |X1| = |X4| = fn+1 − 1, |X2| = |X5| =
fn+3 − 1 (the question marks have unit length).
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X0

X5

a

?

X1

X1

b

?

X2

X3

X3

X2

a

?

X4

X4

b

?

X5

X0

fn − 1 fn+1 − 1 fn+3 − 1

1 1

fn − 1 fn+1 − 1 fn+3 − 1

1 1

fn+3 − 1 fn+1 − 1 fn − 1

1 1

fn+3 − 1 fn+1 − 1 fn − 1

1 1

fn+4 − 1 fn+4 − 1

α

Figure 3: Intersection of α with a system of curves containing no spirals.

Since the word equation is directly modeled on the connectivity of the train
track, it is clear that any solution to Equation 1 corresponds to a set of simple
curves realizing the train track in Figure 3.3 This set includes four curves labeled
a, b, a, b . Since there are only eight endpoints any other curve in this realization
of the train track must be a closed curve. However, if there is a closed curve
in the realization, we can relabel it in the solution to the word equation with
an arbitrary letter. Hence, if we can show that the solution to Equation 1 is
unique, there cannot be any closed curves in the train track, and the realization
consists of the four simple curves a, b, a, b. Indeed, in Lemmas 3.4 and 3.5 we
show that Equation (1) has a unique solution with the given length constraints
as long as n ≡ 1 mod 3.

How do spirals translate into the world of words? Let w ∈ Σ∗ be the word
we read along the curve α if we replace each intersecting curve with its letter.
If any of the four curves a, b, a or b, call it β, formed a spiral with α, then there
is an annulus A containing at least three intersections of α with β. Consider a
curve γ in the train track which intersects α between two of these intersection
points in A. The curve γ does not intersect β (the curves in the train track
do not intersect) and it cannot double back—forming a bigon—because there
are no punctures in A and we disallowed endpoints in an annulus witnessing
a fold, and thus the bigon would be empty. Hence, γ has to run parallel to
β, implying that w contains a word of the form βxβxβ (where x is the word

3The reverse need not be true: by labeling the four ends on top of Figure 3 by different
letters, we exclude the case that any curve has both its endpoints there, a case that might
very well occur for certain choices of n.
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corresponding to the group of curves wedged between β, and β is the letter
representing the curve β) which contains the square βxβx. Hence, a spiral in
the train track forces a square in the word along α. In Lemma 3.5 we show
that the word X0aX1bX2 in the unique solution to Equation (1) with the given
lengths is square-free. Since X0aX1bX2 records the intersections of the curves
along α, this implies that none of the curves forms a spiral with α.

We finally observe that the arrangement of curves does not contain any fold-
ing: if we orient the curves in the train track, we see that they keep intersecting
α in the same direction, whereas a fold requires a curve to intersect α in both
directions (remember that a fold is contained in an annulus). Pending the proofs
of Lemmas 3.4 and 3.5, we have thus established the following result:

Theorem 3.1. For any n there are two simple curves α and β on the torus
that intersect at least n times without forming either a lens, a fold or a spiral.

3.1 Uniqueness

Lemma 3.2. For n ≡ 1 (mod 3) a solution to the equation

Y0Y1 = Y1Y0 (2)

with length constraints |Y0| = fn+2 and |Y1| = fn+1 + fn+3 over an arbitrary
alphabet is uniquely determined by knowing Y [i] for at least one odd and one
even value of i.

Proof. Let ℓ = |Y0Y1| = fn+1 +fn+2+fn+3 = 2fn+3. Assume Y = Y0Y1 = Y1Y0

is a solution to (2). By the equation, Y [i] = Y [(i + fn+2 − 1) mod ℓ + 1].4 The
function f(x) = (x+fn+2−1) mod ℓ+1 splits the positions of Y into gcd(fn+2, ℓ)
orbits such that within each orbit the value of Y is constant. For n ≡ 1 (mod 3),
fn+2 is even, and, since gcd(fn+2, fn+3) = 1, gcd(fn+2, ℓ) = 2. Therefore, the
function f has exactly two orbits in this case: the even and the odd positions.

Lemma 3.3. For n ≡ 1 (mod 3) the equation

X0aX1bX2 = X2?X1?X0 (3)

with length constraints |X0| = fn − 1, |X1| = fn+1 − 1 and |X2| = fn+3 − 1 has
a unique solution, and that solution is (ab)(fn+4−1)/2.

Proof. Consider the equation

X = X0aX1aX2 = X2?X1?X0 (4)

and let X (and thereby X0, X1, X2) be a solution over the alphabet {a, ⋄} mini-
mizing the number of occurrences of the letter a. Then Equation (4) has a unique

4The fn+2nd position in Y after i (with wrap-around) is (i + fn+2 − 1) mod ℓ + 1 since
the first position in Y is 1.
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solution if and only if X does not contain the letter ⋄. Counting occurrences of a
on both sides of X0aX1aX2 = X2?X1?X0 it is clear that both ? must stand in for
the letter a, so X is a solution to the equation X = X0aX1aX2 = X2aX1aX0.
Adding aX1a in front of both sides of this equation shows that X0, X1, X2 fulfill

aX1aX0aX1aX2 = aX1aX2aX1aX0 (5)

Now Y0 = aX1aX0 and Y1 = aX1aX2 form a solution to

Y = Y0Y1 = Y1Y0 (6)

with length constraints |Y0| = fn+2 and |Y1| = fn+1 +fn+3. Moreover, Y [1] = a
and Y [fn+1 + 1] = a, hence, noting that 1 is odd and fn+1 + 1 is even, we can
apply Lemma 3.2 to show that (6) and, thereby, (4), has a unique solution. This
implies that

X = X0aX1bX2 = X2?X1?X0 (7)

has a unique solution if it has any solution. However, it is easy to see that X
made up of alternating a and b is a solution, hence that solution is unique.

We think of the operator · as an involution on Σ, that is, x = x for every
x ∈ Σ. For example, a = a. We also let ⋄ = ⋄ and extend · to words in the
natural way.

Lemma 3.4. Assume n ≡ 1 (mod 3). If the equation

X = X0aX1bX2X3aX4bX5 = X5?X1?X3X2?X4?X0 (8)

with given lengths |X0| = |X3| = fn − 1, |X1| = |X4| = fn+1 − 1, |X2| = |X5| =
fn+3 − 1 has a solution, then that solution is unique and fulfills

X0 = X3, X1 = X4, X2 = X5

and
X0aX1bX2 = X2?X1?X0.

Proof. Assume that X is a solution of Equation (8) over the alphabet {a, b, a, b, ⋄}
minimizing the number of letters in {a, b, a, b}. The solution is unique if and
only if X does not contain the character ⋄.

We claim that if X = X0aX1bX2X3aX4bX5 is a solution to Equation (8)
then so, by the symmetry of the equation, is

X ′ = X3aX4bX5X0aX1bX2 :

namely, if X fulfills Equation 8 with the length constraints, then X0aX1bX2 =
X5?X1?X3 and X3aX4bX5 = X2?X4?X0, so

X3aX4bX5X0aX1bX2 = X2?X4?X0X5?X1?X3.

Now applying · to both sides establishes the claim.
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Since X ′ has the same number of ⋄ characters as X , it is also a minimal
solution. Moreover, X ′ and X agree at the four positions in which a letter is
specified by the equation. Therefore, X and X ′ must equal each other. In other
words, we have X0 = X3, X1 = X4 and X2 = X5. Then

X0aX1bX2 = X5?X1?X3

= X2?X1?X0.

Now any solution of X0aX1bX2 = X2?X1?X0 can be turned into a solution
of X0aX1bX2 = X2?X1?X0 by replacing a with a and b with b (leaving any
⋄ letters untouched). By Lemma 3.3 the solution to X0aX1bX2 = X2?X1?X0

is unique and does not involve any ⋄ character. Consequently, the solution to
X0aX1bX2 = X2?X1?X0 is unique and does not include a ⋄ character. But
then the minimal solution X of Equation (8) does not contain a ⋄ character and
is therefore the unique solution to that equation.

3.2 Existence and Squares

We have shown that a solution to Equation (1) if it exists is unique. In this
section we show that Equation (1) with the given lengths has a solution and
that this solution is square-free.

Lemma 3.5. Let n ≡ 1 (mod 3). Equation 1 over {a, b, a, b} with given lengths
|X0| = |X3| = fn − 1, |X1| = |X4| = fn+1 − 1, |X2| = |X5| = fn+3 − 1
has a solution X = X0aX1bX2X3aX4bX5 and for that solution X0aX1bX2 is
square-free.

By Lemma 3.4 we know that the solution we construct will be the unique
solution.

Proof. Consider the equation

Z = X0aX1bX2 = X2?X1?X0 (9)

with given lengths |X0| = fn − 1, |X1| = fn+1 − 1, and |X2| = fn+3 − 1. Defin-
ing X3 = X0, X4 = X1 and X5 = X2 gives us X0aX1bX2 = X2?X1?X0 =

X5?X1?X3 and X3aX4bX5 = X0aX1bX2 = X2?X1?X0 = X2?X1?X0 = X5?X1?X3,
or, in other words, a solution to Equation (1) with the given lengths. Hence to
show that Equation (1) has a solution, it is enough to show that Equation (9)
is solvable.

Let us write Zu
v for the result of replacing all occurrences of u in Z with

v. We allow the specification of multiple replacements, for example, Zab
ab is the

result of replacing a with a and b with b.
We split Equation (9) into two equations. It is obvious that Z is a solution

to Equation (9) if and only if Zab
ab is a solution to

Z ′ = X0aX1bX2 = X2?X1?X0 (10)
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over alphabet {a, b} with given lengths |X0| = fn − 1, |X1| = fn+1 − 1, |X2| =

fn+3 − 1, and Zbb
aa is a solution of

Z ′′ = X0aX1aX2 = X2?X1?X0 (11)

over alphabet {a, a} with given lengths |X0| = fn − 1, |X1| = fn+1 − 1, |X2| =
fn+3 − 1.

In Lemma 3.3 we saw that equation (10) has the unique solution Z ′ =
(ab)(fn+4−1)/2. Note that Z ′ does not contain any odd square, that is a square of
the form ww for which |w| is odd. Therefore, Z cannot contain any odd square.
Hence, to conclude the argument, it is sufficient to show that Equation (11)
has a solution, and that this solution does not contain any even squares, that
is a square of the form ww for which |w| is even. This proof uses a different
approach and we leave it to Section 4: Lemma 4.9 shows that there is a solution
to Equation (11), and Lemma 4.6 together with Corollary 4.8 shows that this
solution does not contain an even square.

4 The Golden Ratio and Square-free Binary Words

A square is a word of the form ww, where w is not the empty word; we call the
square even or odd, depending on the parity of |w|. A word is square-free if it
does not contain a square as a subword. Any binary word of length at least 4
contains a square, while there are infinite words over a ternary alphabet which
are square-free (discovered by Axel Thue [10, 9]).

This seems to close the case of binary words, but there are variations to be
considered. For example, there are infinite binary words containing at most 3
squares, 00, 11 and 0101 [4, 5, 7]. In this section we show that there are infinite
binary words that do not contain any even squares.

Theorem 4.1. There is an infinite binary word that does not contain an even
square.

Traditionally, square-free words are constructed by repeatedly applying square-
free morphisms (morphisms that map square-free words to square-free words) to
an initial square-free word. We proceed differently by showing that a particular
sequence, namely the sequence a = (an)n∈N defined by

an = ⌊nφ mod 2⌋ = ⌊nφ⌋ − 2⌊nφ/2⌋. (12)

does not contain an even square, where φ = (
√

5+1)/2 is the golden ratio. The
sequence a is listed in Sloane’s Encyclopedia of Integer Sequences [3, Sequence
A085002]; it encodes the bits of φ: a2ℓ is the ℓth binary bit of φ.

4.1 The Bits of the Golden Ratio

Somewhat surprisingly, the bits of a can be generated by a simple recursive
law which we exploit in the next section to show that a encodes a solution to
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Equation (11). In this section we establish the necessary properties of a and
moreover show that it does not contain any even squares.

We need two basic facts about the distribution of nφ mod 1 and Fibonacci
numbers. Let ⌊x⌉ be the integer nearest to x, and ‖x‖ := |x− ⌊x⌉| the distance
of x ∈ R to its nearest integer. We will use the well-known identity fk =
fk−1φ + φ̂k−1, where φ̂ = (1 −

√
5)/2.

Lemma 4.2. Let k be an integer. If 0 < ℓ < fk, then ‖fkφ‖ < ‖ℓφ‖.
Proof. Since fk/fk−1 is a continued fraction convergent of φ, standard approxi-
mation results about continued fractions imply that |fk−1φ− fk| ≤ |ℓφ− ℓ′| for
0 < ℓ < fk and any ℓ′; hence

min
0<ℓ<fk

‖ℓφ‖ = ‖fk−1φ‖.

However, ‖fk−1φ‖ = ‖fk − φ̂k−1‖ = ‖− φ̂k−1‖ = |φ̂k−1| > |φ̂k| = ‖fk+1 − φ̂k‖ =
‖fkφ‖, and the lemma follows.

Lemma 4.3. Let k ≥ 2 be an integer. Then

⌊fkφ⌉ mod 2 =

{

1 if k ≡ 0, 1 (mod 3)
0 if k ≡ 2 (mod 3).

Proof. Since |φ̂k| < 1/2 for k ≥ 2 we can conclude that ⌊fkφ⌉ = ⌊fk+1 − φ̂k⌉ =
fk+1; since fk+1 is even if and only if k + 1 ≡ 0 (mod 3), the lemma is proved.

Lemma 4.4. Let k, ℓ ≥ 1 so that k + ℓ = fn for some n ≥ 3. Then

ak =
{ aℓ if n ≡ 0, 1 (mod 3)

1 − aℓ if n ≡ 2 (mod 3).
(13)

Lemma 4.4 implies that the last fn−2 bits of a[1:fn−1−1] are determined by
a[1:fn−2] in a very simple way that only depends on n mod 3. In the next sec-
tion we investigate this recursive structure separately, and show that it satisfies
Equation 11.

Proof. For the purposes of this proof, let am = ⌊mφ mod 2⌋, where m ∈ Z;
note that this extension of a is symmetric in the sense that it satisfies

am = 1 − a−m (14)

for all m 6= 0. Let k, ℓ and n be as in the statement of the lemma. Define
α = fnφ−⌊fnφ⌉ and β = ℓφ−⌊ℓφ⌋. By Lemma 4.2 we have |α| < |ℓφ−⌊ℓφ⌉| ≤ β.
Now

ak = ⌊(fn − ℓ)φ mod 2⌋
= ⌊(⌊fnφ⌉ + α − ⌊ℓφ⌋ − β) mod 2⌋
= ⌊(⌊fnφ⌉ − ⌊ℓφ⌋ − β) mod 2⌋
= (⌊fnφ⌉ + ⌊(−⌊ℓφ⌋ − β) mod 2⌋) mod 2

= (⌊fnφ⌉ + 1 − aℓ) mod 2.
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in the third equality we used |α| < β, in the fifth equality we used (14). The
result now follows from Lemma 4.3.

We still need to show that the sequence a defined in Equation (12) does not
contain any even squares. For this we need the following results about multiples
mod 1 of φ.

Lemma 4.5. Let ℓ be an integer. Let m, m′ be such that fm ≤ ℓ < fm+1 and
fm′ < ℓ ≤ fm′+1. Let

S = {0, φ, 2φ, . . . , (ℓ − 1)φ} mod 1

be a set of multiples of φ modulo 1 (that is, on a circle of length 1).

(i) The longest segment non-intersecting S has length φ−(m−2).

(ii) The closest pair of points in S is at distance φ−m′

.

Proof. Both claims follow from the proof of the three-distance theorem by Sós;
we used the version presented in [1] to calculate the three distances for our
sequence. Claim (ii) also follows directly from Lemma 4.2 (if iφ mod 1 and
jφ mod 1 are a closest pair, then so are 0 and (i − j)φ).

The following lemma proves Theorem 4.1:

Lemma 4.6. There are no n, k ∈ N so that a[n:n+2k−1] = a[n+2k:n+4k−1].
In other words, a does not contain any even squares.

Proof. Suppose that such n and k exist. Let ∆ = 2kφ mod 2. Let m′ be such
that fm′ < k + 1 ≤ fm′+1 and let m be such that fm ≤ 2k < fm+1. Note
m > m′ and hence

2φ−m′ − φ−(m−2) = φ−(m−2)(2φ(m−2)−m′ − 1) > 0. (15)

By Lemma 4.5 (with ℓ = k + 1, using the lower bound on the distance of 0 and
φk mod 1) we have

φk mod 1 ∈ [φ−m′

, 1 − φ−m′

]

and hence ∆ ∈ [2φ−m′

, 2 − 2φ−m′

]. Let x = nφ and let

S = {x, x + φ, x + 2φ, . . . , x + (2k − 1)φ} mod 1.

By Lemma 4.5 set S contains a point b0 ∈ [0, φ−(m−2)] and b1 ∈ [1−φ−(m−2), 1].
Let n0, n1 be such that bi = φni mod 1 (for i = 0, 1) and let b′i = φni mod 2
(for i = 0, 1).

If ∆ < 1 then

2 > ∆ + b1 ≥ 1 − φ−(m−2) + 2φ−m′

> 1

and hence an1
= ⌊b′1 mod 2⌋ 6= ⌊b′1 + ∆ mod 2⌋ = an1+2k.

16



If ∆ > 1 then

1 < ∆ + b0 ≤ 2 − 2φm′

+ φ−(m−2) < 2

and hence an0
= ⌊b′0 mod 2⌋ 6= ⌊b′0 + ∆ mod 2⌋ = an0+2k.

Remark 4.7. As one of the referees pointed out it appears that the length of
square words in a are all of the form f3k+2 for k ∈ N. We verified this conjecture
empirically for a[1:f20 − 1] (using the recursive construction of a presented in
the next section).

4.2 A Recursive Look at the Golden Ratio

Let w3 = 1 and

wn =

{

wn−1(wn−1[1:fn−2])
R if n ≡ 0, 1 (mod 3)

wn−1(wn−1[1:fn−2])
R if n ≡ 2 (mod 3)

,

where wR denotes the reverse of w and w the bitwise complement of w. The
first few words are displayed in the following table.

n wn |wn|
3 1 1
4 11 2
5 1100 4
6 1100011 7
7 110001100011 12
8 11000110001110011100 20
9 110001100011100111001110001100011 33
10 110001100011100111001110001100011100111001110001100011 54

Note that |wn| = fn − 1. By construction wn−1 is a prefix of wn, so it is
meaningful to define w = limn→∞ wn. In Lemma 4.4 we showed that a satisfies
the recursive construction law we used to define w, so the following result does
not come as a surprise.

Corollary 4.8. w = a.

Proof. We show that w[1:fn − 1] = a[1:fn − 1] by induction on n. Equality
holds in the base cases n = 3, 4. By Lemma 4.4, (a[fn−1:fn − 1])R = a[1:fn−2]
if n ≡ 0, 1 (mod 3), and (a[fn−1:fn − 1])R = a[1:fn−2] for n ≡ 2 (mod 3). In
either case, the last fn−2 bits of a are determined by the first fn−2 bits of a in
exactly the same way that the last fn−2 bits of wn are determined by the first
fn−2 bits of wn (using the recursive definition of wn). Moreover, by inductive
assumption, the first fn−2 bits of w and a agree, completing the proof.
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In particular, by combining Corollary 4.8 with Lemma 4.4 we get

wn =

{

wR
n if n ≡ 0, 1 (mod 3)

wR
n if n ≡ 2 (mod 3).

(16)

We still need to show that wn as defined above encodes a solution Z ′′ to
Equation (11)

Z ′′ = X0aX1aX2 = X2?X1?X0.

with given lengths |X0| = fn − 1, |X1| = fn+1 − 1, |X2| = fn+3 − 1. This is
accomplished by the following lemma.

Lemma 4.9. If n ≡ 1 (mod 3) then wn+4 fulfills

wn+4 = X0SX1SX2 = X2?X1?X0

over alphabet {0, 1} for some X0, X1, X2 with given lengths |S| = 1, and |X0| =
fn − 1, |X1| = fn+1 − 1, |X2| = fn+3 − 1. In particular, Equation (11) has the

solution Z ′′ = (wn+4)
SS
aa .

Proof. Choose X0, X1, X2, Y0, Y1, Y2 over alphabet {0, 1} so that

wn+4 = X0S0X1S1X2 = Y 2?Y1?Y 0,

where |S0| = |S1| = 1, and |X0| = |Y0| = fn − 1, |X1| = |Y1| = fn+1 − 1,
|X2| = |Y2| = fn+3 − 1. To establish the lemma, it is enough to show that
S0 = S1 and Xi = Yi for 1 ≤ i ≤ 3.

Since n ≡ 1 (mod 3) by Equation (16) we know that wn+4 fulfills wR
n+4 =

wn+4. Hence (X0)
R = Y0, and, since X0 = wn+4[1:fn − 1] = wn, we have

Y0 = (X0)
R = (wn)R = wn = X0.

Similarly, (X2)
R = Y2, and, since X2 = wn+4[1:fn+3 − 1] = wn+3, we have

Y2 = (X2)
R = (wn+3)

R = wn+3 = X2.
Also, (X1)

R = Y 1 and X1 = wn+4[fn+1:fn+2−1] = wn+2[fn+1:fn+2−1] =
(wn+2[1:fn+1 − 1])R = wR

n+1 (the second and the last equality hold because the
wk are prefixes of each other and the third equality uses Equation (16); therefore
Y1 = (X1)

R = ((wn+1)
R)R = wR

n+1 = X1.
Finally, we have to show that the bits S0 and S1 in position fn and fn+2 of

wn+4 are the same:

S0 = wn+4[fn+2]

= wn+3[fn+2] = wn+2(wn+2[1..fn+1])
R[fn+2]

= (wn+2[1..fn+1])
R[1] = wn+2[fn]

= wn+4[fn]

= S1

which completes the argument.
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binatorics on words. Enseign. Math. (2), 44(1-2):103–132, 1998.

[2] S. Benzer. On the topology of the genetic fine structure. Proceedings of the
National Academy of Science, 45:1607–1620, 1959.

[3] Benoit Cloitre. Sequence A085002, 2003. http://www.research.att.com/
∼njas/sequences/A085002.

[4] R. C. Entringer, D. E. Jackson, and J. A. Schatz. On nonrepetitive se-
quences. J. Combinatorial Theory Ser. A, 16:159–164, 1974.

[5] Aviezri S. Fraenkel and R. Jamie Simpson. How many squares must a
binary sequence contain? Electron. J. Combin., 2, 1995.

[6] Ron L. Graham. Problem 1. In Open Problems at 5th Hungarian Collo-
quium on Combinatorics, 1976.

[7] Tero Harju and Dirk Nowotka. Binary words with few squares. Bulletin of
the European Association for Theoretical Computer Science, 89:164, June
2006. Technical Contributions.
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