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Abstract

We show that string graphs can be recognized in nondeterministic exponential time by giving

an exponential upper bound on the number of intersections for a minimal drawing realizing a string

graph in the plane. This upper bound confirms a conjecture by Kratochv́ıl and Matoušek [KM91]

and settles the long-standing open problem of the decidability of string graph recognition (Sin-

den [Sin66], Graham [Gra76]). Finally we show how to apply the result to solve another old open

problem: deciding the existence of Euler diagrams, a fundamental problem of topological inference

(Grigni, Papadias, Papadimitriou [GPP95]). The general theory of Euler diagrams turns out to be

as hard as second-order arithmetic.

1 Introduction

Is it possible that some A is B, some B is C, but no A is C? Easily, you say, and your mind conjures up
a diagram that Euler (and Leibniz, and Sturm before him) would have used to illustrate this situation.

A
B

C

Figure 1: Some A is B, some B is C, but no A is C.

However, it is not always possible to illustrate a situation that is logically consistent by an Euler
diagram in the plane: we can turn the complete graph on five vertices into an example with fifteen
regions, one for each vertex and edge, that cannot be drawn in the plane [Sin66]. Given a set of
specifications, can we effectively determine whether there is an Euler diagram or not?

Diagrammatic reasoning is concerned with the representability of logical relations in the plane and
other spaces. This area has drawn attention from different research groups including Artificial Intel-
ligence and Geometrical Information Systems [All83, GPP95], Spatial Databases [PSV99], Integrated
Circuits [Sin66], and Logic [GPP95, LP97]. One of the major open problems in this area is the decid-
ability of the existence of a representation for a given, logically consistent, formula. Even the special
case illustrated in Figure 1 in which we specify for a collection of regions whether they should intersect
or not has been open since the sixties.

This case is captured by the combinatorial notion of string graphs. String graphs are intersection
graphs of curves in the plane with a vertex for each curve, and an edge representing an intersection
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between two curves. The notion of string graphs was hinted at in a 1959 paper by Benzer [Ben59] on
genetic structures, and isolated in 1966 by Sinden [Sin66] who stated the main problem thus:

It is specified which pairs of a collection of curves (or connected regions) in the plane cross
and which pairs do not cross. When are such specifications consistent?

Sinden was working on the layout problem of integrated circuits (thin film RC circuits to be precise),
and the string graph problem arose naturally in this context, since the technology for creating the
circuits made it possible for some pairs of conductors to cross. On the theoretical side he observed that
all planar graphs are string graphs, and also gave the example described earlier of a graph which is not
a string graph.

Ron Graham, in 1976, introduced the problem to the combinatorial community [Gra76], and in the
same year Ehrlich, Even, and Tarjan [EET76] showed that computing the chromatic number of string
graphs is NP-hard.

Several special cases of the string graph problem were found to be effectively solvable. Benzer’s
paper, for example, suggested the notion of interval graphs, that is, intersection graphs of subintervals
of the real line. Interval graphs, as well as circular-arc graphs, and series-parallel string graphs were
shown to be recognizable in polynomial time [McC01, MNT88], but the general recognition problem
remained open. It was not even known whether the problem is decidable. In 1991 Kratochv́ıl [Kra91b]
proved that recognizing string graphs is NP-hard, showing that a characterization cannot be polynomial
time computable (unless P = NP). At the same time Kratochv́ıl and Matoušek [KM91] proved the
surprising result that some string graphs require an exponential number of intersections to be realized
in the plane. They conjectured an exponential upper bound on the number of intersections.

In this paper we show that this conjecture is indeed true, placing the recognition problem of string
graphs in NEXP. János Pach and Géza Tóth independently obtained a proof of the decidability of
the string graph recognition problem by showing that certain configurations of cells do not occur in a
minimal realization [PT01].

Because the exponential upper bound on intersections is matched by an exponential lower bound, we
cannot hope to improve the complexity analysis by a sharper upper bound. However, it turns out that
although there can be an exponential number of intersections, these intersections are very structured
and allow a compressed representation of polynomial size. Using recent results on the solvability of
word equations Schaefer, Sedgwick, and Štefankovič build on the results of the present paper to show
that string graphs can be recognized in NP [SSŠ01] which is a tight result, since the problem is known
to be NP-hard [Kra91b].

As one of the motiviations of the study of string graphs we mentioned the realizability Euler dia-
grams. In Euler diagrams we distinguish only two possible relations between regions: they intersect, or
they do not intersect. Topological inference allows a much more refined set of predicates to specify the
mutual relation of any pair of regions giving us the very expressive topological expressions. In Section 4
we show that the realizability of topological expressions can be reduced to the string graph problem,
and is therefore in NP as well (using the result from [SSŠ01] that string graph recognition is in NP).

In Section 5 we look at the complexity of the theory of diagrams, in which we allow quantified
expressions. Euler diagrams are the special case in which we only consider existential expressions. The
theory is undecidable, as a matter of fact, it is as hard to decide as truth in second-order arithmetic.

2 Preliminaries

A homeomorphism is a bijective continuous mapping whose inverse is also continuous. A curve, or
string, is a set homeomorphic to [0, 1] which implies that strings, or curves, do not self-intersect and
are compact. Given a collection of curves (Ci)i∈I in the plane, the corresponding intersection graph is
(I, {{i, j} : Ci and Cj intersect}). The size of a collection of curves is the number of intersection points.
We assume that no three curves intersect in the same point. A graph isomorphic to the intersection

2



graph of a collection of curves in the plane is called a string graph. Let cs(G) be the size of a smallest
(in the sense of size defined above) set of curves whose intersection graph is isomorphic to G, and define
cs(m) = max{cs(G) : G has m edges}.1 It is not immediately obvious that cs(G) is a finite number
if G is a string graph. Conceivably, an infinite number of intersections might be required to realize a
string graph. As was observed earlier by Kratochv́ıl, Goljan and Kučera [KGK86], this is not the case:
we can assume that the curves intersect only finitely often. For completeness we include a proof of this
result.
Lemma 2.1 (Kratochv́ıl, Goljan and Kučera [KGK86]) A string graph can be realized by a fam-
ily of polygonal arcs with a finite number of intersections.
Proof Assume we have a string graph realized by a family of curves (Ci)i∈I . Let C = ∪i∈ICi. Note
that C is a compact set. For a point p in C, and an open neighborhood O of p in the plane we say that
O respects the family of curves, if O only intersects curves that contain p. Every point has at least one
such neighborhood (in fact infinitely many), since all curves are compact. (If a compact set intersects
all open neighborhoods of a point, it has to contain that point.) Let O be the collection of all O such
that O is an open neighborhood of a point p ∈ C such that O respects (Ci)i∈I . Then O is an open
cover of C, and, by the Heine-Borel Theorem (which we can apply since C is compact), it contains a
finite cover O′ of C. Therefore, each curve Ci is contained in a finite collection O′

i ⊆ O′ of open sets
none of whom contain any points of curves Cj that Ci does not intersect. Hence we can replace Ci with
a simple polygonal arc Pi in O′

i, while guaranteeing that Pi intersects Pj if Ci and Cj intersect. The
later is possible since there must be a set O ∈ O′ which contains a common intersection point of Ci and
Cj . �

Given a graph G = (V,E) and a set R ⊆ (
E
2

)
= {{e, f} : e, f ∈ E} on E, we call a drawing D of G in

the plane a weak realization of (G,R) if only pairs of edges which are in R are allowed to intersect in D.
We call (G,R) weakly realizable if it has a weak realization. Note that in a weak realization the pairs of
edges specified in R do not have to intersect. We say that D is a realization of G, and call G realizable,
if exactly the pairs of edges in R intersect in D.2 Let us define cw(G,R) as the smallest number of
intersections in a weak realization of (G,R), cw(G) = max{cw(G,R) : (G,R) has a weak realization},
and cw(m) = max{cw(G) : G has m edges}. Similarly define cr(G,R), cr(G), and cr(m) for realizations.
The quantity cr(G) = cw(G,

(
E
2

)
) is known as the crossing number of the graph G, and was shown to

have an NP-complete decision problem by Garey and Johnson in the early eighties [GJ83]. The other
extreme case, cw(G, ∅), is equivalent to planarity testing, and therefore in P.

The following relationships between the functions we defined are well known:

(i) cw(m) ≤ cr(m),

(ii) cr(m) ≤ 4cs(m2 + 4m), and

(iii) cs(m) ≤ 4cw(2m) + 2m.

The first inequality follows from cw(G,R) ≤ max{cr(G,R′) : R′ ⊆ R, and (G,R′) has a realization}.
Kratchov́ıls gave a reduction of realizability to string graphs [Kra91b, Proposition 1]: suppose we are
given (G,R) where G = (V,E). Let V ′ = V ∪ E ∪ {(u, e) : u ∈ e ∈ E}, and E′ = R ∪ {{u, (u, e)}, u ∈
e ∈ E} ∪ {{e, (u, e)}, u ∈ e ∈ E}. Then (G,R) is realizable, if and only if G′ = (V ′, E′) is a string
graph. This reduction implies the second inequality. Finally, the string graph problem can be reduced
in polynomial time to the weak realizability problem [MNT88, Kra91b] as follows. Given a graph
G = (V,E), let G′ = (V ∪ E, {{u, e} : u ∈ e ∈ E}), and R = {{{u, e}, {v, f}} : {u, v} ∈ E}. Then G is
a string graph if and only if (G′, R) is weakly realizable. This reduction implies the third inequality.

1The functions defined in this section are based on similar functions in the papers by Kratochv́ıl and Matoušek [KM91,
Kra98].

2Kratochv́ıl [Kra98, Kra91a, Kra91b] calls (G, R) an abstract topological graph, and uses the word feasible for weakly
realizable.
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Kratchov́ıl and Matoušek [KM91] showed that cw(m) ≥ 2cm for some positive constant c. Our main
result shows that cw(m) ≤ m2m (Kratchov́ıl and Matoušek conjectured an upper bound of 2mk

). This
implies the decidability of string graphs, which was a long-standing open problem in the field.

3 Bounding the Number of Intersections

If we assign each curve in a collection of curves a unique number, we can look at the intersections of
the curves along a particular curve as a word over an alphabet (here we use the fact that the number
of intersections is finite).

The basic idea behind the exponential upper bound is to show that if such a word is too long, it
contains a substructure which can be redrawn using a smaller number of intersections. This allows us
to bound the number of intersections along every curve in a drawing of smallest size, thereby bounding
the size of the whole drawing.
Lemma 3.1 Every word of length ≥ 2n over an alphabet of size n contains a non-trivial subword in
which every character occurs an even number of times.
Proof Let Σ = {1, . . . , n}, and w ∈ Σ∗, |w| ≥ 2n. To every i ∈ {0, ..., 2n} assign a vector vi in Z

n
2

whose j-th coordinate is the parity of the number of occurrences of the symbol j in the prefix of w of
length i. (In particular, v0 is the all-zero vector.) Since there are 2n + 1 indices, but only 2n vectors in
Z

n
2 , there are 0 ≤ i < j ≤ 2n such that vi = vj . The non-trivial subword of w starting in position i+ 1

and ending in position j fulfills the conditions of the lemma. �

Theorem 3.2 Let G be a graph with m edges, R ⊆ (
E
2

)
such that (G,R) is weakly realizable, and let

D be a weak realization of (G,R) with the minimal number of intersections. Then for any edge e ∈ G

there are less than 2m intersections on the curve realizing e in D.
Proof Suppose not. Let D be a weak realization of (G,R) with the minimal number of intersections
and let e be an edge of G which has more than 2m − 1 intersections in D. Lemma 2.1 tells us that the
number of intersections in the realization is finite. By Lemma 3.1 we can choose a non-trivial segment
of this edge which is intersected an even number of times by any other edge. Draw a window around
this segment containing no other intersections of D. This is possible, since the number of intersections
in the drawing D is finite. Let 2nf (nf ∈ N) be the number of intersections of edge f with e in that
window. For each edge f assign numbers 1, 2, . . . , 4nf to intersections with the window in the order
they appear on f (choose an arbitrary orientation of f). For an example see Figure 2.

4

e

4

5

67

83
1

2

1

2

3

4

1

2

3

Figure 2: Segment of e with surrounding window.

We can assume (by an application of the Jordan-Schoenflies theorem [MT01]) that the window is a
circle, that e within the window is a straight line passing through the center, and that for every f

intersections 2i − 1 and 2i are mirror images of each other (with e as the mirror), i ∈ {1, . . . , 2nf}.
(The intersections with e are the only intersections of D within the window, since this is how we chose
the window.)

Remove everything inside of the window with the exception of e. For each edge f there is connection
between intersection 4i−2 and 4i−1 lying completely outside the window, i ∈ {1, . . . , nf}. Use circular
inversion along the circle to bring all of these connections inside the window. Now mirror everything
inside the window along e.

4



This yields for every edge f a connection between 4i− 3 and 4i, i ∈ {1, . . . , nf}, inside the window.
We can now build a new version of f : start at intersection 1 (which is connected to one of the endpoints
of f), and continue to 4 (inside the window), from 4 to 5 (outside the window), 5 to 8 (inside the
window), and so on up to 4nf which is the last intersection of f with the window before it terminates
at its other endpoint. Hence this new version of f still connects its two original endpoints (here we
needed that f intersects e an even number of times).

Note that we have reduced the number of intersections of f with the window from 4nf to 2nf . Every
intersection between curves inside the circle corresponds to an intersection outside and hence this new
realization respects R. We might have lost intersections between curves, but this is acceptable, since
we only require D to be a weak realization.

The number of intersections along e might have increased, since a connection from outside the
window brought inside by circular inversion might intersect e arbitrarily often. However, we do know
that, overall, we halved the number of intersections between the intersections and the boundary of the
window. We can therefore move the part of e inside the circle to coincide with one of the two arcs into
which e separates the boundary of the window. We choose the arc which results in the smaller number
of intersections with e. Since each edge f causes at most 2nf intersections with the window, this means
that the number of intersections on e within the area of the window has been halved, and hence the
total number of intersections of the drawing has been decreased, contradicting the assumption that D
was of minimal size. �

Corollary 3.3 String graph recognition is in NEXP.
Proof Theorem 3.2, and the fact that cs(m) ≤ 4cw(2m)+2m (see the preliminaries) shows that if G
is a string graph, there is a collection of curves of size M = 2O(m) whose intersection graph is isomorphic
to G. We can consider the drawing of the collection of curves as a planar graph (each intersection point
becoming a vertex) with at most M vertices. By a result of Schnyder [Sch90], and de Fraysseix, Pach,
and Pollack [dFPP90] there is a drawing of this graph on an M ×M grid. Hence in NEXP we can
guess a graph on such a grid and verify whether its intersection graph is isomorphic to G. �

The same argument shows that we can decide the (weak) realizability of a topological graph (G,R)
in NEXP.

4 Topological Inference

We mentioned earlier that settling the problem of recognizing string graphs solves an old open problem
from topological inference about regions in the plane [CGP98, Sin66]. A region is a subset of the plane
homeomorphic to the closed unit disc. Let ∂A denote the boundary of the region A. If we specify for a
collection of regions (Ai)i∈I which pairs may intersect and which may not, the question is whether we
can draw these regions to meet the specification? Since the existence of such a drawing is not affected
if we change the universe of discourse from regions to curves, the problem is equivalent to the string
graph problem, and therefore solvable in NEXP.3

Topological inference works over a larger set of predicates than overlap and disjoint. Egenhofer
determined all eight possible relationships of two simply connected regions based on whether the in-
tersection of their interior, boundary and exterior is empty or not [Ege91]. The relations are disjoint,
equal, inside, contains, cover, covered, meet, and overlap. See Figure 3 for definitions. For two simply
connected regions A and B exactly one of these predicates will be true.

We call a Boolean combination of the topological predicates a topological expression. A topological
expression is explicit, if it specifies the relationship between any pair of variables, meaning it is of the
form

∧
A,B∈I PA,B(A,B), where I is the set of variables, and PA,B is one of the eight basic predicates

(for each A,B ∈ I). We can always assume that the expression does not contain the predicates contains
3Because regions are homeomorphic to the unit disc, they are simply connected. The topological inference problem

changes dramatically if we only require regions to be connected. As Kratochv́ıl [Kra91a, Section 2] points out, in that
case any specification can be realized.
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disjoint(A,B) the boundaries and interiors of A and B do not intersect.

equal(A,B) A and B have the same interior.

inside(A,B) the interior and boundary of A
(≡ contains(B,A)) are contained in the interior of B.

covered(A,B) the interior of A is properly contained in the interior of B,
(≡ cover(B,A)) and the boundaries intersect.

meet(A,B) the interior of A is contained in the exterior of B,
and the boundaries intersect.

overlap(A,B) the interior of A intersects the exterior of B,
and vice versa.

Figure 3: The eight relationships between regions (Egenhofer).

or cover, because we can substitute them by inside and covered. Quantifying topological expressions we
obtain topological formulas. Determining the truth of these (where the universe is the set of all regions
in the plane) is the goal of topological inference [GPP95]. Of main interest are the purely existential
formulas, since they express the existence of diagrammatic representations of logical relationships (Euler
diagrams). In this case we also speak of the realizability of a topological expression.

In some special cases the realizability of a topological expressions is known to be in P. Planar map
graphs were introduced in [CGP98]. A k-planar map graph is the intersection graph of a set of regions
with disjoint interiors such that at most k regions meet in a point. Planar graphs are exactly the 3-planar
map graphs (or, what is the same, the 2-planar map graphs). A graph is called a planar map graph if it
is a k-planar map graph for some k. The problem of recognizing planar map graphs is equivalent to the
realizability of explicit topological expressions containing only relations meet and disjoint. In [CGP98]
a polynomial time algorithm for recognizing 4-planar map graphs was given. Thorup [Tho98] found
a polynomial time algorithm for recognizing planar map graphs in general. Other special cases of the
problem have been classified [GPP95, FH02], but the complexity of the general realizability problem of
topological expressions has remained open.

In this section we will show how the decidability of the existential theory of topological expressions
follows from the decidability of string graphs. More precisely we show that the realizability of topological
expressions can be decided in NEXP. The next section complements this result by showing that the
general theory is undecidable.

Talking about a realization of meet(A,B), or covered(A,B) we call any point belonging to ∂A∩ ∂B
a contact point of A and B. In the other cases points belonging to the intersection of ∂A and ∂B we
simply call intersection points.

The Hausdorff distance dist(A,B) of two regions is defined as

dist(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)},

where d(x, y) is the Euclidean distance of two points in the plane. The Hausdorff distance is a metric
for regions, i.e. it is symmetric, satisfies the triangle inequality and dist(A,B) = 0 iff A = B. We let

d(A,B) = inf
x∈A

inf
y∈B

d(x, y).

Note that for closed, nonempty sets d(A,B) > 0 iff A ∩B = ∅. For arbitrary sets d is not a metric.
We will now show how to redraw a realization of an explicit topological expression to bound the

number of contact points in the drawing. Note that for any explicit expression there is always an
equivalent explicit expression not containing equal.

6



Lemma 4.1 Let ϕ be an explicit topological expression not containing equal. If there is a drawing
realizing ϕ, then there is a drawing realizing ϕ in which the number of contact points on each boundary
is bounded by the square of the number of variables in ϕ.
Proof Fix a drawing of ϕ. Let A1, . . . , A|I| be the family of variables occurring in ϕ. We can assume
that the variables are sorted such that for i ≤ j there is no covered(Ai, Aj) in ϕ. If such an ordering
does not exist, then ϕ has no realization (since covered(Ai, Aj) means that Ai is properly contained in
Aj). For each meet(A,B) and covered(A,B) in ϕ we choose a witness point pA,B ∈ ∂A ∩ ∂B. Let

ε1 = min
i,j∈I

{d(∂Ai, ∂Aj) : ϕ contains disjoint(Ai, Aj) or inside(Ai, Aj)}
ε2 = min

i,j∈I
{dist(Ai ∩ ∂Aj , ∂Ai) : ϕ contains overlap(Ai, Aj)}

Note that ε1 > 0, since boundaries are closed and disjoint. Also ε2 > 0, since there is a point in Ai∩∂Aj

which is inside Ai. Let ε = min{ε1, ε2}/2. If B is a region with dist(B,Ai) ≤ ε then

inside(Ai, Aj) ⇒ inside(B,Aj) inside(Aj , Ai) ⇒ inside(Aj , B)
disjoint(Ai, Aj) ⇒ disjoint(B,Aj) overlap(Ai, Aj) ⇒ overlap(B,Aj)

(1)

This means changing the regions slightly (up to a Hausdorff distance of ε) does not change the rela-
tionships inside, disjoint, and overlap. Unfortunately the same is not true for meet and covered. We
will redraw the regions one by one, removing unnecessary contact points while preserving the meet and
covered relationships.

Suppose then that for A1, . . . , Ai−1 the only contact points on their boundaries are witness points.
We will show how to redraw Ai to make this true for A1, . . . , Ai while preserving the condition that
A1, . . . A|I| realize ϕ.

Let ψ : D �→ Ai be the homeomorphism of the closed unit disc to Ai. Using the Jordan-Schoenflies
theorem (see [MT01]) we extend ψ to a homeomorphism of the whole plane to itself which we call
ψ again. Since ψ is uniformly continuous (if we consider it as being defined on the compactification
of the plane), there exists η such that if (1 − η)D ⊆ E ⊆ D then dist(ψ(E), Ai) < ε. Let F be the
union of ψ−1(Aj) for which covered(Ai, Aj) occurs in ϕ. By the way we ordered the variables this can
only happen for j < i. Since we assumed that A1, . . . , Ai−1 only contain witness points as contact
points on their boundary, we conclude that F ∩ ∂D contains only witness points. Choose E such that
F ∪ (1 − η)D ⊆ E ⊆ D and E ∩ ∂D = {pAi,Ak

: k ∈ I}, that is E intersects ∂D exactly in the witness
points and covers F . Replace Ai by ψ(E). By the implications in (1) all inside, disjoints and overlaps
are preserved. Because E contains all witness points for region Ai, all covered and meet relations are
satisfied after this step, and only the witness points are contact points of Ai. Since contact points of
Aj , j < i did not change, this conditions remain true after redrawing all regions. Finally note that we
used a quadratic number of contact points (potentially one for each pair of variables). �

Before we prove the decidability result for topological inference we need to introduce a refined variant
of realizability. Let (G,R, S) be such that R,S ⊆ (

E
2

)
, and R ∩ S = ∅. We call (G,R, S) realizable if

G can be drawn in the plane, such that only the pairs of edges in R ∪ S intersect, and all the pairs of
edges in S do intersect. It is easy to see that this variant can also be decided in NEXP, since the same
exponential upper bounds on the intersection number applies.
Theorem 4.2 The realizability of a topological expression can be decided in NEXP.

Theorem 4.2 follows from the following lemma which allows us (in NP) to translate the realizability
of a topological expression to the realizability of some (G,R, S). Since that problem can be solved in
NEXP, the realizability of topological expressions can be decided in NEXP.
Lemma 4.3 The realizability of a topological expression NP-reduces to the realizability problem of the
form (G,R, S); that is, for every topological expression ϕ we can in NP compute triples (G,R, S) such
that ϕ is realizable, if and only if one of the (G,R, S) is realizable.
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Proof Given a topological expression ϕ over variables (Ai)i∈I we have to rephrase the problem as a
realizability problem of the form (G,R, S). We begin by simplifying ϕ.

If the topological expression ϕ can be realized, then there is an explicit topological expression ψ

which can be realized, and ψ implies ϕ. In NP we can guess an explicit topological expression ψ over
the variables (Ai)i∈I , and verify in polynomial time that ψ implies ϕ (since ψ specifies the relationship
between every pair of variables, this verification corresponds to evaluating the truth of a formula for
a given assignment). Hence we can assume that ϕ is an explicit topological expression to begin with.
Furthermore, in polynomial time, we remove the relation of equality from ϕ by renaming variables, and
we substitute any occurrence of cover(B,A) with covered(A,B), and contains(B,A) by inside(A,B).

In summary, we can assume that ϕ is an explicit topological expression containing (positive) occur-
rences of the relations disjoint,meet, covered, overlap, inside only.

Suppose that a topological graph (G,R, S) satisfies:

(1) There are vertices z, z1, z2, z3 in G connected to each other by edges which may not intersect any
other edges.

(2) For each Ai there is a vertex ci (center) and a circle graph Bi (boundary) with at least 3 vertices,
and no two edges of Bi may intersect.

(3) Each vertex in Bi is connected to ci, z1, z2, z3; these edges are not allowed to intersect the boundary
Bi, and no edge with endpoint ci may intersect an edge with endpoint z1, z2, or z3.

(4) The boundaries Bi, Bj may share vertices unless disjoint(Ai, Aj), or inside(Ai, Aj) is contained in
ϕ.

(5) If ϕ contains meet(Ai, Aj) or cover(Ai, Aj) then Bi and Bj share at least one common vertex.

(6) Edges of Bi, Bj may intersect only if ϕ contains overlap(Ai, Aj).

(7) We say that a vertex v is an in-Ri-witness (out-Ri-witness) if it does not belong to Bi and is
adjacent to ci (z1, z2, and z3, rsp.) using an edge (edges, rsp.) which are not allowed to intersect
Bi. If disjoint(Ai, Aj) is in ϕ, then there is an out-Ri-witness on Bj , and an out-Rj-witness on
Bi. If inside(Ai, Aj) then there is in-Rj-witness on Bi. If meet(Ai, Aj), then there is an out-Ri-
witness on Bj between any two vertices shared with Bi, and an out-Rj-witness on Bi between any
two vertices shared with Bj . If covered(Ai, Aj) then there is an in-Ri-witness on the boundary
Bj between any two vertices shared with Bi. If overlap(Ai, Aj) then there is an in-Ri witness and
an out-Ri witness on the boundary Bj , and vice versa.

We claim that if any (G,R, S) fulfilling these conditions has a realization then ϕ can be realized as
an Euler diagram. Consider a realization of (G,R, S). We can assume that z lies outside the triangle
z1, z2, z3. Hence by (1) all other vertices and edges lie inside the triangle. Because of (3) vertex ci
must lie inside of Bi (z1, z2, and z3 being outside). Let region Ri be the interior of Bi together with its
boundary. By (7) any in-Ri-witness lies inside Ri, and any out-Ri-witness lies in the exterior of Ri. For
inside(Ai, Aj), anddisjoint(Ai, Aj) boundaries may not intersect by (4) and (5) and therefore the in/out-
witnesses guarantee the correct relationship between the corresponding regions. For overlap(Ai, Aj) we
have in/out-witnesses of overlap. For meet(Ai, Aj) the interior of Ri cannot intersect Rj , and vice versa
because of the out-witnesses; similarly for covered(Ai, Aj).

We will next show that if ϕ can be drawn as an Euler diagram then there is a (G,R, S) which
satisfies the conditions above, and whose size is polynomial in |ϕ|. This completes the proof, since in
NP we can guess such a (G,R, S).

If ϕ is realizable, then we can redraw a graph realizing it using Lemma 4.1 such that the number of
contact points is at most |I|2. Enclose the diagram within a new region Z. On ∂Z choose three points
z1, z2, z3, choose z outside Z and connect z to z1, z2, z3 with edges outside Z. Choose ci inside each Ri.
Furthermore select at least three vertices on each ∂Ri, including all contact points, and connect them
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to z1, z2, z3 with edges inside Z − Ri and to ci with edges inside Ri (thus (3) is satisfied). Clearly (4)
is satisfied. Since all contact points were chosen on each ∂Ri both (5) and (6) are satisfied, because we
know that if two edges intersect then they intersect in an intersection point of their boundaries. Finally
we can choose in/out witnesses for disjoint(Ri, Rj), inside(Ri, Rj), meet(Ri, Rj), covered(Ri, Rj), and
overlap(Ri, Rj). Note that we chose at most |I|2 witnesses and at most |I|4 in/out witnesses. Hence
(G,R, S) has size polynomial in |ϕ|. �

5 The Theory of Diagrams

We have shown that the existential theory of diagrams is decidable by reducing it to the existential
theory of strings. In this section we show that the first-order theory of diagrams is undecidable.
Theorem 5.1 The first-order theory of diagrams is Δ1

ω-complete.
Δ1

ω is the ωth level of the analytical hierarchy, the level which captures the complexity of deciding
truth in second-order arithmetic (see Odifreddi [Odi89] for details). Our proof proceeds in three steps,
interpreting the first-order theory of strings in the first-order theory of diagrams, interpreting the first-
order theory of diagrams in second-order arithmetic, and finally coding second-order arithmetic into
the first-order theory of strings, showing that all three theories have the same complexity.
Proposition 5.2 The first-order theory of strings can be computably interpreted in the first-order theory
of diagrams. More precisely for every Σk formula about strings we can compute an equivalent Σk+2

formula about diagrams.
Proof We model a curve s as a pair of regions (A,B) such that A ∩ B = s. To this end we
define predicates over diagrams, curve(A,B) ∈ Σ2 which is true if and only if A ∩ B is a curve, and
intersect((A,B), (C,D)) ∈ Σ2 which is true if the two curves represented by (A,B) and (C,D) intersect.
Assuming we have these predicates we can easily translate each sentence about curves into an equivalent
sentence about diagrams (see for example the proof of the Reduction Theorem [Hod93]). We can also
arrange the quantifiers in such a way that the translated sentence lies in Σk+2.

For the definition of curve and intersect we make use of a predicate union(C,A,B) which is true if
and only if C ⊆ A ∪B.

union(C,A,B) ⇐⇒ C ⊆ A ∪B
: ⇐⇒ (∀D)[contains(C,D) ⇒ ¬(disjoint(D,A) ∧ disjoint(D,B)]

curve(A,B) ⇐⇒ A ∩B is a curve

: ⇐⇒ meet(A,B) ∧
(∃C)[cover(C,A) ∧ cover(C,B) ∧ union(C,A,B)]

intersect((A,B), (C,D)) ⇐⇒ the curves A ∩B and C ∩D intersect

: ⇐⇒ curve(A,B) ∧ curve(C,D) ∧
(∃E,F )[cover(A,E) ∧ (cover(C,E) ∨ cover(D,E)) ∧
(cover(A,F ) ∨ cover(B,F )) ∧ cover(D,F ) ∧ meet(E,F )]

In the verification that these predicates model the properties they are supposed to, we need the com-
pactness of the regions. The predicate curve(A,B) expresses that there is a region C which is the union
of the two meeting regions A and B. Since A and B are simply connected and do not intersect this
implies that they meet in a curve. To see that intersect((A,B), (C,D)) expresses intersection of two
curves note that E and F as in the predicate have to meet in a point that belongs to all four regions.
�

Proposition 5.3 The theory of diagrams can be interpreted in second-order arithmetic.
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Proof We will only sketch the basic ideas needed to interpret diagrams in second-order arithmetic.
A region is homeomorphic to the unit disk, hence it can be described by a countable set of real numbers
dense in it. In second-order arithmetic we can talk about real numbers, and countable sets of real
numbers. With this we can write a basic predicate that tests whether a real number is contained in the
closure of a countable set of real numbers. We can also test whether a real number is contained within
the interior of the closure of a countable set of real numbers, by asking for all reals in a neighborhood
of the real number to be contained in the closure. With these two basic predicates we can express the
eight predicates that express the possible relationships between regions as predicates over countable
sets of reals. �

Proposition 5.4 Second-order arithmetic can be interpreted in the theory of strings.
Proof We begin by defining several predicates from the basic predicate intersect(x, y). The idea is
to model points in the plane as the unique intersection point of two curves.

a ⊆ b ⇐⇒ a is a subset of b

: ⇐⇒ (∀x)[intersect(x, a) ⇒ intersect(x, b)]

unique(a, b) ⇐⇒ a and b have a unique intersection point

: ⇐⇒ intersect(a, b) ∧
(∀x ⊆ a)(∀y ⊆ b)[intersect(x, b) ∧ intersect(y, a) ⇒ intersect(x, y)]

cross(a, b, c) ⇐⇒ a and b have a unique intersection point, and it lies on c

: ⇐⇒ unique(a, b) ∧ (∀x)[x ⊆ a ∧ intersect(x, b) ⇒ intersect(x, c)]

intpt(a, b, c, d) ⇐⇒ a and b have a unique intersection point, and it lies on c and d

: ⇐⇒ cross(a, b, c) ∧ cross(a, b, d)

union(a, b, c, d) ⇐⇒ a = b ∪ c ∪ d and b ∩ d = ∅
: ⇐⇒ b, c, d ⊆ a ∧ ¬ intersect(b, d) ∧

(∀x)[intersect(x, a) ⇒ intersect(x, b) ∨ intersect(x, c) ∨ intersect(x, d)]

interior(a, b) ⇐⇒ a and b only have interior intersection points

: ⇐⇒ union(a, a1, a2, a3) ∧ unique(a1, a2) ∧ unique(a2, a3) ∧
union(b, b1, b2, b3) ∧ unique(b1, b2) ∧ unique(b2, b3) ∧∧

i,j∈{1,3}
¬ intersect(ai, bj)

finint(a, b) ⇐⇒ a ∩ b is a finite set

: ⇐⇒ (∀x, y)[intpt(x, y, a, b) ⇒ (∃a′ ⊆ a)(∃b′ ⊆ b)[intpt(a′, b′, x, y) ∧ interior(a′, b′)]]

allinton(a, b, c) ⇐⇒ a ∩ b ⊆ c

: ⇐⇒ (∀u ⊆ a)[intersect(u, b) ⇒ intersect(u, c)]

sameint(a, b, c) ⇐⇒ a ∩ b = a ∩ c
: ⇐⇒ allinton(a, b, c) ∧ allinton(a, c, b)

The compactness of the curves involved is necessary to guarantee the correctness of most of these
definitions. The main predicate is finint(a, b) which expresses that a and b have finitely many intersec-
tion points only. This is verified by requiring each intersection point to be contained within an open
neighborhood on each curve (the interiors of a′ and b′). Since a and b are compact, there can only be
finitely many such points.
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We also need a family of formulas that we will later use to express cardinality. Note that the length
of these formulas depends on k, hence we cannot use them in the definition of finint.

unique k(a, b) ⇐⇒ |a ∩ b| = k

: ⇐⇒ (∃a1, . . . , ak ⊆ a)[
∧

1≤i≤k

unique(ai, b) ∧
∧

1≤i<j≤k

¬ intersect(ai, aj) ∧

(∀x ⊆ a)[intersect(x, b) ⇒ [
∨

1≤i≤k

intersect(x, ai)]]

less(a, b, c, d) ⇐⇒ |a ∩ b| < |c ∩ d| <∞ (assuming a ∩ c = ∅)
: ⇐⇒ (∃x)[finint(x, a) ∧ finint(x, c) ∧ sameint(a, b, x) ∧ sameint(c, d, x) ∧

(∀u ⊆ x)[unique(u, a) ⇒ (∃v)[u ⊆ v ⊆ x ∧ unique 2(v, c) ∧ unique(v, a)]]]

If less(a, b, c, d) and a and c are disjoint, then the number of intersection points of a and b is strictly
less than the number of intersection points of c and d (and both are finite). This allows us to define
equipollence.

eqint(a, b, c, d) ⇐⇒ |a ∩ b| = |c ∩ d| <∞ (assuming a ∩ c = ∅)
: ⇐⇒ ¬ less(a, b, c, d) ∧ ¬ less(c, d, a, b)

For the following let us fix the strings U = [0, 1] and N = {(x, x sin(1/x))} ∪ {(0, 0)} which will be
used as parameters. Furthermore choose pairwise disjoint sets Ni ⊆ N such that Ni and U intersect in
exactly i points (for all i ∈ N).

We need to show how to translate unnested atomic statements of second-order arithmetic into the
theory of strings. For each number variable x reserve a string variable sx; we require sx ⊆ N . For set
variables X reserve string variables sX . We require allinton(U, sX , N). Translate as follows:

i = x as (∃u, v)[finint(u, v) ∧ eqint(Ni, U, u, v) ∧ eqint(u, v, sx, U)]
x+ y = z as (∃u, v, w1, w2, w3)[finint(u, v) ∧ union(v, w1, w2, w3) ∧ ¬ intersect(w2, u)∧

eqint(sx, U, u, w1) ∧ eqint(sy, U, u, w3) ∧ eqint(sz, U, u, v)
i ∈ X as allinton(Ni, U, sX)

These predicates are sufficient to build all of second-order arithmetic. Hence we have shown that
second-order arithmetic can be interpreted in the theory of strings with parameters U,N,N1, . . .. While
we cannot define the pair (U,N) we only need to be able to define a pair of strings that has exactly
ω + 1 intersections. This, however, is easy:

universe(u, v) ⇐⇒ ¬finint(u, v) ∧ (∃x ⊆ u)[unique(x, v) ∧
(∀y : x ⊆ y ⊆ u)[¬unique(y, v)] ∧ (∀y ⊆ u)[¬ intersect(y, x) ⇒ finint(y, v)]]

The predicate universe(u, v) expresses that u and v intersect infinitely often in ω+ 1 many points. The
accumulation point is the unique point in which x and v intersect. Every neighborhood of this point
contains intersection points of u and v. Furthermore, there are no other accumulation points since all
subcurves of u disjoint from x only have finitely many intersections with v. Curves u and v such as
these can serve instead of the particular sets U and N used above, hence we can simply require that
universe(U,N).

We then define Ni to be the smallest substring of v that has i intersections with u, is disjoint from
N0, . . . , Ni−1, and such that there are no intersection points of u and v between Ni−1 and Ni. �
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6 Concluding Remarks

While it is satisfying to know that string graphs can be effectively, if not efficiently, recognized, the gap
between NP and NEXP is large, and a more precise classification is called for. As we mentioned earlier,
the problem is settled in a paper by Schaefer, Sedgwick, and Štefankovič which shows that string graphs
can be recognized in NP [SSŠ01]. By Lemma 4.3 this implies that the topological inference problem
can also be decided in NP.

Kratochv́ıl [Kra98] suggested a different approach to obtaining an exponential upper bound. He
conjectured that in any smallest weak realization of a (G,R) any edge which is crossed at least once is
crossed exactly once by some other edge. He showed that his conjecture implies cw(m) ≤ m(2m−1−1)/2.
The status of the conjecture remains open (a counterexample presented in an earlier version of this article
turned out to be faulty).

Is the string graph recognition problem decidable on surfaces of higher genus? Our proof essentially
relies on the inversion operation which will not be available to us (at least not in the straightforward
manner we used it) in surfaces other than the 2-sphere. In [SSŠ01] we show that this problem can be
solved using very recent results on trace monoids.

Related to the string graph problem is the problem of computing the crossing number of a graph (the
smallest number of intersections necessary to draw the graph in the plane). This problem has long been
known to be NP-complete. Martin Grohe [Gro01] recently showed it to be solvable in time O(f(k)n2),
where k is the number of intersections, and f(k) = O(22p(k)

), for some polynomial p, implying that it
is fixed parameter tractable, since for fixed k the complexity is quadratic. We obtain an interesting
variant of the crossing number problem by asking for the smallest number of pairs of edges that need
to intersect to draw the graph in the plane (where each such pair can intersect any number of times).
Call this the crossing pairs number of a graph G [PT00]. Our proof technique implies that if there is
a drawing of G in which at most k pairs of edges intersect, then there is a drawing of G with at most
2k22k intersections. We can then use Grohe’s result to conclude that the crossing pairs number of a
graph G is fixed parameter tractable. With the techniques from [SSŠ01] we can also show that the
problem lies in NP, however, we do not know whether the problem is NP-hard.
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[MNT88] J. Matoušek, J. Nešetřil, and R. Thomas. On polynomial time decidability of induced-minor-
closed classes. Comment. Math. Univ. Carolin., 29(4):703–710, 1988.

[MT01] Bojan Mohar and Carsten Thomassen. Graphs on Surfaces. Johns Hopkins University Press,
2001.

[Odi89] Piergiorgio Odifreddi. Classical recursion theory. North-Holland, Amsterdam, 1989.

[PSV99] Christos H. Papadimitriou, Dan Suciu, and Victor Vianu. Topological queries in spatial data-
bases. Journal of Computer and System Sciences, 58, 1999.
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