A Guided Tour of Minimal Indices and Shortest Descriptions
SUBMITTED AS A MASTER’S THESIS
AT THE
UNIVERSITY OF CHICAGO

Marcus Schaefer*

Department of Computer Science
University of Chicago
1100 East 58th Street
Chicago, Illinois 60637, USA

schaefer@cs.uchicago.edu

November 21, 1997

Abstract
The set of minimal indices of a Godel numbering ¢ is defined as MIN, = {e : (Vi < €)[p; #
¢e]}. It has been known since 1972 that MIN, =r 0", but beyond this MIN, has remained
mostly uninvestigated. This thesis collects the scarce results on MIN, from the literature and
adds some new observations including that MIN, is autoreducible, but neither regressive nor (1, 2)-
computable. We also study several variants of MIN, that have been defined in the literature like
size-minimal indices, shortest descriptions, and minimal indices of decision tables. Some challenging

open problems are left for the adventurous reader.

1 Introduction

How long is the shortest program that solves your problem?

There are at least two ways to interpret this question depending on the type of problem involved.
If the program’s task is to output one specific object, we are looking for a shortest description of that
object. This interpretation is closely related to Kolmogorov complexity. Although we have several
things to say about shortest descriptions, the main concern of this thesis are programs that compute a
function. We will then ask about the complexity of computing a minimal index of that function. If we
abstract from concrete machine models, the question translates into minimal indices with respect to a
numbering of the computable, partial functions'.

We call e a minimal index (with regard to a given numbering ¢) if ¢; # . for all i < e. Our main
object of study will be the set MIN,, = {e : e is a minimal index with regard to ¢}.

The study of minimal indices started in the 1960s with research concentrating on the size of au-

tomata. Manuel Blum and Albert Meyer isolated the problem as we know it today, and initiated its

*Partially supported by NSF Grants CCR 92-53582 and CCR-9501794.
1Soare [27] suggests a new terminology for computability which will be used throughout this thesis, for example

computable instead of recursive and computably enumerable (c.e.) for recursively enumerable.

research. There is a twofold interest in MIN,, one academic and one practical. MIN, has served its
term as the standard classroom example of a noncomputable set, and surprised many a student (and
teacher) by behaving differently from the familiar index sets. Reducing (to it is not entirely trivial?,
but until now it was not known why this should be so. We will shed some light on this when we look
at bounded reducibilities. Whereas strange behavior is usually welcome in mathematical circles; in the
case of MIN,, it has led to an inexcusable neglect. The only area where minimal indices still receive
some attention is computational learning theory, and here MIN,, is of practical interest. This line of
research was started by Freivalds and Kinber in the 1970s and continues to the present day [4]. The
underlying motivation is to not to be content with just learning a function, but to find a program that
is not too much longer than the shortest possible.

A generalization of the set MIN,, as defined above was suggested in the early seventies, at least
partially inspired by Blum’s investigations into the axiomatization of complexity measures [1]. The
idea was to allow size-measure on the indices; instead of saying ¢ is smaller than e if ¢ < e, we use a
size measure s to decide; we say ¢ has smaller size than e if s(¢) < s(e). These size measures s measure
anything from time to space complexity, not just program length [29]. Some problems connected with
the generalized version of MIN,, were solved by Bagchi [1] and Pager [25], but many remained, and still
remain, open.

The thesis starts with the investigation of MIN, and then traces the variants considered in the
literature. To the extent of my knowledge this is a fairly complete account with the exception of the
learning-theoretic cousins of MIN,,.

For reducibilities and other notation see the standard references [21, 28].

2 Minimal Indices and Shortest Descriptions

2.1 Definitions

Given a numbering (¢;)icw We call an index e of the computable function ¢, minimal if . is different

from all functions with smaller index in the numbering.

Definition 2.1 Let ¢ be a Gédel numbering. Define

MIN, = {e: (Vi < e)[gi # @]},

the set of minimal indices of .

A G&del numbering is an effective numbering ¢ of all computable partial functions such that for
every effective numbering ¢ a ¢-index can be computed from a v-index. The definition of MIN,, restricts
© to Godel numberings, since they are the natural programming systems. This is also witnessed by
the behavior of MIN,, itself. If we allowed arbitrary numberings of the computable, partial functions,
MIN,, could be almost any set. And even for effective numberings there is the pathological Friedberg
numbering [7] for which MIN,, would be equal to w, i.e., every index would be minimal.

Belonging to MIN,, is the function min, which computes the minimal p-index of a program. More
formally the function is defined as min, (i) = (ue)[¢; = @.]. Then MIN, <t min,, since e € MIN,, if
and only if min,(e) = e. Thus determining the complexity of MIN,, will give us a lower bound (and as

it turns out the exact degree) of the task of computing the minimal index of a function.

2And the reader is invited to try his or her hand before proceeding to the next section.

If instead of computable functions we are interested in finite objects (which are represented as
numbers), we can ask for the shortest description of that object in a given Gddel numbering. This
borders on the realm of Kolmogorov complexity.

Definition 2.2 Let ¢ be a Gédel numbering. Define

Ry = {e: (Vi < e)[pi(0) # ¢c(0)]},
the set of shortest descriptions of ¢.

From now on we will drop the ¢ in MIN, and R, and simply write MIN and R if we think of ¢
as a fixed, but arbitrary Godel numbering. We will write out MIN,, and R, to stress the dependency
on ¢. The same policy applies to other objects from computability theory like ¢/, TOT, or W, which
depend on the particular Gdel numbering relative to which they are defined, we will assume that Goédel
numbering to be the same as the one used to define MIN. This is not only a natural assumption, it can

also be made without any loss of generality, since the results will easily translate to other versions of

¢', TOT, or W..

2.2 Immunity

Perhaps the first result on minimal indices can be found in Manuel Blum’s 1967 paper on machine
size [2]. His Theorem 1 in a slightly modernized and restricted version states that the set MIN is
immune, that is, it does not contain an infinite c.e. subset (and is infinite itself).

Theorem 2.3 (Blum [2]) MIN s immune.

Proof. Suppose there is a computable function f such that the range of f is an infinite subset of
MIN,,. Define the computable function g(e) = f((u¢)[f(¢) > €]). Then g(e) > e for all e, and, since
g(e) € MIN,, we have ¢,y # ¢, for all e, contradicting the Recursion Theorem. i

This proof is probably the easiest way of showing that MIN is not computable. The usual attempts
of m-reducing " or ' to MIN are doomed, as shown in Theorem 2.10.

By a result of Case [22] the set of minimal indices is even strongly effectively immune. Owings gives
a proof of a more general result in the same paper. We include the short, but instructive proof of the
original result.
Definition 2.4 A set A is strongly effectively immune if it is infinite and there is a computable function
f such that

(Ve)[We C A = max(W,) < f(e)].

Theorem 2.5 (Case [22, Theorem 1]) MIN s strongly effectively immune.

Proof. Tix ¢, and let W, = dom(¢p.) for all e. Using the Recursion Theorem define a computable
function f fulfilling:

@i(x) if (7, s) is the smallest (¢, s") with i € W, ; and ¢ > f(e),
Pice)(®) =

1 otherwise.

Now assume W, C MIN,. If there was some i € W, with ¢ > f(e), then @) = ¢; for some such i.
Since i € W, it is the minimal index of the function ¢; which contradicts ¢ > f(e). Hence W, contains
only elements which are at most f(e). Note that the proof did not depend on W, being defined using
. Any other G6del numbering would have done just as well. ad

Although we cannot enumerate an infinite number of minimal indices we can compute an infinite
number of disjoint sets which contain a minimal index, in other words MIN fails to be hyperimmune.

Recall that (D,).e, is the canonical numbering of the finite sets.

Definition 2.6 A set A is called hyperimmune if it is infinite and there is no computable function f
such that

o (Dyi))iew 5 a family of pairwise disjoint sets, and
° Df(i) NA+#0.

Lemma 2.7 (Meyer [20]) MIN is not hyperimmune.
Proof. To see this, we will define a strictly increasing function «(n) inductively such that the
pairwise disjoint sets I, = {z : a(n) < # < «(n + 1)} intersect MIN,, for every n. Start with «(0) = 0.
Let dg, ..., la(n)+1 be p-indices of the constant functions (Az).[0], ..., (Az).[a(n)+ 1]. Such indices can
be found effectively. Let a(n+ 1) be the maximum of 4o, ..., i4(,). Then the interval {z : < a(n+1)}
contains g-indices of at least a(n) + 2 functions. Since {z : # < «(n)} contains at most a(n) + 1
elements, there is a minimal index in {z : a(n) < z < a(n + 1)}.]
The gap between immune and hyperimmune is large, and by introducing a new notion of immunity,
we can give a stronger characterization of MIN which will be useful in the study of bounded reducibilities.
Definition 2.8 (Fenner and Schaefer [6]) A set A is called k-immune if it is infinite and there is

no computable function f such that
o (Dyi))iew 5 a family of pairwise disjoint sets, and
e Dy NA#D, and
o |Dipy < k.

A set A is called w-immune if it is k-immune for every k.

Note that 1-immunity is the same as immunity and hyperimmunity implies w-immunity. One reason
for the lack of interest in w-immune sets is the folklore result that a set which is immune and co-c.e. is
w-immune [6]. Therefore we do not get any new notions of simplicity between simple and hypersimple.

Our interest in k-immunity here is explained by the following result.

Theorem 2.9 MIN is w-immune.

Proof. The proof is a generalization of the immunity proof using the k-fold Recursion Theorem.
Suppose MIN was not k-immune. Let Dy;) witness this as in the definition of k-immunity. Define a
computable function h(zy,...,zx) = f((1i)[(V2 € Dy))(Vi)[z > x;]]). The function h picks out the
index of the first set in the enumeration for which all elements are bigger than any z;. We use h to
define & computable functions. For 1 < ¢ < k let

gi(x1, ..., x1) = the ith element of Dy, . 2y -

By the k-fold Recursion Theorem there are k indices e1,...,ex such that ¢y, .) = e, for all
1 < i< k. Since g;(e1,...,e5) > € this contradicts the fact that g;(e1,...,e) has to be a minimal
index for some ¢. ad

A careful look at the proof shows that MIN is in fact effectively k-immune in the following sense:
there is a total computable function g such that if W, is a set of canonical indices of pairwise disjoint
sets, all of which intersect MIN and contain at most k elements, then g(e) is an upper bound on the
cardinality of W, .

By the last theorem MIN is a natural example of a set which is not hyperimmune, although it is
w-immune. More on the realm between w-immunity and hyperimmunity can be found in the paper by
Fenner and Schaefer [6].

2.3 The Degrees of MIN

There is a strong connection between immunity properties and completeness under strong reducibili-
ties [6] which allows us to exploit the results of the last section.

The immunity of MIN immediately implies that no c.e., noncomputable set conjunctively reduces to
MIN, and K does not m-reduce to MIN. It can also be shown that no c.e., noncomputable set bounded
disjunctively reduces to MIN.

A more interesting result is the following which was first proved by Fenner and Schaefer.
Theorem 2.10 (Fenner and Schaefer [6]) @' £y MIN.

The proof will adapt a result of Denisov’s according to which no hyperimmune set can be truth-table

complete.
Proof. Define 4 = {e : ¢.(0) = 0} and B = {e : ¢.(0) = 1}. Tt is a standard exercise to show
that these two disjoint c.e. sets are not separated by any computable set. Assume @/ <y MIN. Then
A <pit MIN. Let the computable function f : w — w* and the computable k-ary truth-table o, witness
the reduction, 1.e.,

xr € MIN <— Ozx(XMIN(f(l‘))) =1,
where xAfIN (21, - - -, @) is the characteristic vector (x\qN(#1), - - -, X MIN(Z#)) of MIN. We will prove

that for every n we can effectively find a set of at most 2k elements all of which are greater than n
and one of which lies in MIN. This immediately implies that MIN would not be 2k-immune which
contradicts MIN’s w-immunity. To prove the claim consider two cases.

First suppose that for all n there are z € A and y € B such that a,(xp(f(2))) = ay(xp(f(y))) for
all D C {0,...,n}. In particular the equality will hold true for D = MIN N {0,...,n}. Since ¢ € A
and y € B we know that o, (xpN(f(2))) # oy (XyNn(f(¥))). This means that MIN N (f(x) U f(y))
and DN (f(z) U f(y)) have to disagree, hence it is enough to let the finite set we are looking for be
F=(f@)Uf(y) - 1{0,...,n}.

In the second case we know that there is an n such that for all x € A and y € B there is a
D C {0,...,n} for which az(xp(f(2))) # ay(xp(f(y))). Therefore we can partition the integers
according to the values of (a(xp(f(%)))pcqo,.. n}- This yields finitely many equivalence classes which
respect A and B by assumption. Therefore if we take C' to be the union of all the parts of the partition
which intersect B, then C'is a computable set that separates A and B contradicting their inseparability.
O
Remark. A closer inspection of the proof reveals that it establishes that (' does not k-tt-reduce to
a 2k-immune set. Fenner and Schaefer [6] showed that in fact " does not k-tt-reduce to a k-immune
set, a result which is tight, but more difficult to prove, and the present version is sufficient to deal with
btt-reductions.

The above shows that any reduction of ¢/ to MIN will not be trivial. As a matter of fact the best
result known is a wtt-reduction. Recall that a Turing reduction is called a wit-reduction if there is a
computable bound on the queries asked to the oracle.
Theorem 2.11 (Meyer [20]) 0’ <.t MIN.
Proof. Fix a Gédel numbering ¢. We will show that Ww <witt MIN,,, where Ww ={i: () |}. Since
0" <m 0, this will conclude the proof.

Let a be the minimal index of the function that is undefined everywhere. Define a computable

function f as follows.
)0 af e (h)]
Pr0(@) = { 1T otherwise

To decide whether i € §f, do the following: for every e € MIN, N {0, ..., f(i)} — {a} dovetail . on all
integers to find some . for which ¢.(x.) is defined. Note that all searches terminate, since we excluded
a. Now let = be the maximum of the x.. Then ¢ € Ww if and only if ¢; »(¢) |: the minimal index of the
function ¢f(;) belongs to the set MIN, N {0, ..., f(i)}, so if i € B, then 2 is an upper bound on the
first argument, on which the function ¢y ;) is defined. ad
Corollary 2.12 With MIN,, as an oracle, we can compute the minimal index of a function given a
p-index of that function. That is, for min, defined as min, (i) = (pe)[e; = ¢.] we have min, <7 MIN,,.
Proof. By the proof of the preceding theorem we know that Ww <t MIN,. Hence with a MIN,
oracle we can effectively in ¢ and decide, whether ¢;(x) diverges. Given an index i, we compute initial
segments of all ¢; with j € MIN,N{0, ..., 4} (including the undefined values), until all but one of them
is different from ¢;. The index of this function is the minimal index of ;. ad

We observed earlier that the reverse is also true, namely MIN, <t min,, hence MIN, and min,
have the same Turing degree.
Theorem 2.13 (Meyer |20, Theorem 7]) ¢ <t MIN.
Proof. Fix a Goédel numbering ¢. Since (7 <;, TOT,, it will be sufficient to show that TOT, <t
MIN,,.

Let a be the minimal index of the function that is zero everywhere. Define a computable function
f as follows.

0 if ¢i(x)]
Pr0(@) = { 1 otherivi)se.

Now i € TOTy, iff ¢(;)(x) = 0 for all x iff ming,(f(7)) = @, which is decidable in MIN,, by the preceding
corollary. a

The last theorem has several immediate consequences:
Lemma 2.14

(i) MIN =1 0", because MIN is in 9.
(7) All MIN,, are Turing equivalent.

(iii) MIN is not in 113 (since it is in £3).
)

MIN s not introreducible, i.e., there is an infinite subset of MIN to which MIN does not Turing

reduce. This follows because MIN as a X5 set has an infinite subset computable in §'.

(fv

The second observation leads to the question (first asked by Meyer) whether all MIN,, are tt-
equivalent. Two partial results to this question have been obtained so far.

Theorem 2.15 (Kinber [11]) There are two Géodel numberings ¢, ¢ such that MIN, and MINy are
mcomparable with regard to btt-reductions.

MarandZzjan proves the same result for conjunctive reductions (e-reductions).

Theorem 2.16 (Marandzjan [18, 19]) There are two Gédel numberings ¢, ¥ such that MIN,, and
MINy are incomparable with regard to c-reductions.

This leaves us with the possibility that the tt-degree of MIN, will depend on ¢. Kinber [11]
mentions that it is possible to construct a Gédel numbering, for which MIN,, is tt-complete for ¥3, and
Marandzjan provides a proof which shows that MIN,, can be made d-complete for 3. With some more
care we can even construct a Kolmogorov numbering such that MIN,, is d-complete for ¥J. Remember

that a Godel numbering ¢ is a Kolmogorov numbering if for every Goédel numbering 1 there is a

linearly bounded computable function that transforms #-indices into @-indices. It is well known that
Kolmogorov numberings exist [26, Theorem 1].

The theorem gives us a tight result with regard to disjunctive reductions, since (as we mentioned

earlier) not even ()’ bd-reduces to MIN,,.

Theorem 2.17 There s a Kolmogorov numbering ¢ such that MIN,, is d-complete for X3.

Proof. Fix a Kolmogorov numbering 3. We will construct a numbering ¢ by alternately coding
TOTy, so it can be recovered by a tt-reduction, and copying parts of ¢, so ¢ will become a Kolmogorov
numbering itself.

The construction of ¢ will proceed in stages. At stage s all functions of index less than w(s) have
been defined. Exactly i(s) of these have been copied from the Kolmogorov numbering ¢. The other
functions are for coding purposes. The two primitive recursive functions w and ¢ are defined as follows:
w(0) = ¢(0) = 0. The induction is:

i(s+1) = i(s)+w(s)+23i(s) + 1)
w(s+1) = 2w(s)+ 2(i(s) + 1)]
This means that in stage s of the construction w(s)+2(i(s)+1) functions are copied from v and 2(i(s)+1)
functions are used for the coding. Note that it is obvious from the definition that w(s) < 2i(s) for all s.

Construction of ¢.
Stage s. (Define ¢; for w(s) < i< w(s+1).)

Step 1. (Code s € TOTy.) For 27 with w(s) < 2i < w(s) +2(i(s) + 1) let

B i if s(x) |
pail) = { 1 otherwise.
paip1(x) = i for all =x.

Step 2. (Copy vi(s) up to Yi(s41)-1 into p.) For i with w(s) 4 2(i(s) + 1) <1 < w(s + 1) define
i = Yi(s)bi—fw(s)+2(i(s)+1)]-

End of Construction.

Two lemmata conclude the proof of the theorem.
Lemma 1 TOT <4 MIN,,.
Proof. We claim that

s € TOTy <= {w(s)+1,w(s)+3,...,w(s)+ 2i(s) + 1} NMIN,, =

One direction is immediate: if s € TOTy, then ¢,(z) is defined for all . Hence 9; = @9;41 for all
2¢ with w(s) <27 < w(s) +2(i(s) + 1), so {w(s) + L, w(s) + 3,...,w(s) + 2i(s) + 1} N MIN, = 0.

Assume s € TOT,. This means that all functions ¢; with i € {w(s)+1,w(s)+3,..., w(s)+2i(s)+1}
are different from all functions ¢; where w(s) < j < i. Therefore i € {w(s) + L, w(s) +3,...,w(s) +
2i(s)+1} can only be nonminimal if ¢; agrees with some ¢; where j < w(s). Furthermore the functions
at odd indices that are added in Step 1 of the construction are pairwise different. For such an index
to be nonminimal its function has to agree with a function added in Step 2 of the construction. Up
to stage s only i(s) many functions have been added during Step 2. That means one of the i(s) + 1
functions ¢; with ¢ € {w(s) + 1, w(s)+ 3, ..., w(s) + 2i(s) + 1} must be minimal.

This proves that W¢ <4 MIN,. Since TOT <, TOTy, this concludes the proof of the lemma. O

Lemma 2 ¢ is a Kolmogorov numbering.
Proof. The construction starts with a Kolmogorov numbering 1. We will show that the construction
above stretches out ¢ only by a factor, and therefore is still a Kolmogorov numbering.

We can rewrite Step 2 of the construction as follows:

For k with i(s) <k < i(s + 1) define wu(s)420i(s)+1))+5 = Vi(s)+k-

This shows two things: ¢ is a Godel numbering, since it includes all functions enumerated by v,

and secondly the ¢-index of a function is within a linear function of its ¢¥-index:
w(s) 4+ 2(i(s) + 1) + k < A(i(s) + k) + 2

using w(s) < 2i(s), which is immediate from the definitions of w and i. a
MIN,, is d-complete for £33 by the first lemma, where ¢ is a Kolmogorov numbering by the second

lemma. This concludes the proof of the theorem. a

2.4 Weak Notions of Computability and Enumerability

We have already seen that MIN is difficult to compute, since it is complete for the second level of the
arithmetical hierarchy. Is it possible for MIN to be computable or enumerable in some weaker sense?
In this section we suggest that the answer is no, although the reader should compare this to the result
on autoreducibility in the next section.

Perhaps the most famous notion of approximate computability is semirecursiveness as introduced
by Jockusch in 1968 [8]. A set A is called semirecursive if there is a total computable function f in two
arguments such that f(a,b) € An{a,b} if AN {a,b} is not empty.

MIN is not semirecursive. This follows from an easy general result by Jockusch [8]: every immune
and semirecursive set 1s hyperimmune. Since MIN is immune without being hyperimmune, it cannot
be semirecursive.

Semirecursiveness is generalized by the notion of (1, k)-computability which originated in frequency
computation, an area closely related to the theory of bounded queries. Frequency computation is another
attempt at introducing a notion of approximate computability; for a recent paper on the subject see
Kummer and Stephan [16]. Let ya denote the characteristic function of A. Then the characteristic
vector xa(x1,...,xy) is defined as (xa(z1),...,xa(zr)).

Definition 2.18 A set A is said to be (1,k)-computable if there is a computable total function f :
wk — {0,1}* such that for all zy < --- < =z, the characteristic vector x a(z1,...,zt) and f(x1,... =)
are different.

If A is (1, k)-computable for some k, it is called approximable.

Suppose we have A and f as in the definition. Why would A4 be called (1, k)-computable? Instead
of the k-bit vector f(x1,...,xx) consider the vector obtained by flipping all & bits. Denote this vector
by f(x1,...,2%). Then f(x1,...,x)) agrees with the characteristic vector ya(z1,...,2z) in at least
one bit: we can effectively answer one out of & queries to A correctly. This is the original definition of
(1, k)-computability, but we find the definition given above more convenient.

It would be surprising if MIN was approximable, but unfortunately we have not been able to show
that this is not the case. There are two partial results, however. First we show that MIN, is not
approximable for some Gédel numbering, and complement this by a result which implies that MIN,, is

not (1, 2)-computable for any Gédel numbering.
Theorem 2.19 There s a Gddel numbering ¢ such that MIN,, is not approrimable.

Proof. The proof will be a straightforward diagonalization construction of ¢. We will only prove the
existence of a ¢, for which MIN,, is not (1, k)-computable for a fixed k, and argue that the construction
can be easily adjusted to ensure nonapproximability.

Fix a Godel numbering ¢. Call a function f a potential (1, k)-operator if f is total and takes on
values in {0, 1}*.

The construction will meet the requirements:

R, : if ¢y, is a potential (1, k)-operator, then there are #; < ... < 23 such that
1/)n(<l‘1, cey l‘k>) = XMIN4P (1‘1, cey l‘k)

Let a(0) = 0, and a(n + 1) = (a(n) + 1) + k2% (a(n) + 2).

For all n we will let p,(n) = ¥n. This guarantees that ¢ is a G6del numbering. The indices between
a(n) and a(n + 1) will be used to satisfy R,,. To this end we split up the interval I, = {z : a(n) < z <
a(n+ 1)} into 2¥(a(n) + 2) blocks of size k. That is for i = 1,...,2¥(a(n) + 2) define

IL={z:a(n)+ (i —)k < z < a(n) + ik},
so the blocks I’ partition I,,.
Computation of p..
Case 1. (Make ¢ a Gédel numbering.) If e = a(n) for some n, then define ¢, = ¢.

Case 2. (Diagonalize.) Determine the unique n, i, j and z such that e is the j-th element in the
interval I} = {z,...,z+ k — 1}. Compute ¥,((z,z + 1,...,2 + k — 1)). If the computation
terminates with v = (v1...v;) € {0,1}*, then do the following: if v; = 0, then . = g, else let

. be the function that outputs e on every input.

To show that the numbering ¢ so constructed yields a MIN,, which is not (1, k)-computable, it is
sufficient to prove that all R, are fulfilled.

Assume ¢, is a potential (1, k)-operator. Then the computation of ¢, on the 2¥(a(n)+ 2) blocks of
I, must converge. Since there are only 2* different k-bit vectors, ¢, has to take on some value v € {0, 1}*
on at least a(n) + 2 blocks. We claim that for one of these blocks v and the characteristic vector on
this block agree. The zeroes in v are not a problem, since g is copied, making the corresponding index
nonminimal. For a 1 in v we compute a constant function, which is different from any other function
computed for the same purpose in any other block. Hence there are only a(n) + 1 functions (namely
those with indices in {z : z < «(n)}) which could possibly agree with the constant functions. Since
there are a(n) + 2 blocks, there is one block, for which every constant function computed in that block
is minimal. Then v is the characteristic vector on this block, diagonalizing the potential (1, k)-operator
Pn.

Finally we note that there was nothing requiring us to make k& constant, so we can diagonalize

against all potential (1, k)-operators, for all £ at the same time, yielding the general result. a

Although we were unable to show that the preceding result holds true for all Gédel numberings, we
have been able to obtain a result generalizing (1, 2)-computability in another direction.
Definition 2.20 (Kummer and Stephan [15]) A set A is called (3,2)-verbose if there is a com-
putable function f such that xa(x1,22) € Wie, v,y and Wi, 2,y <3 for all @1, xs.
(3,2)-verboseness comprises several other familiar (and less familiar) properties several of which

formalize weak notions of enumerability.

Fact 2.21 If a set A has any of the following properties then it is (3,2)-verbose:
e (1,2)-computable,
e semirecursive [§],

e semi-c.e. [9], i.e., there is a computable partial function f such that f(a,b) € AN{a,b} whenever
An{a,b} is not emply,

o weakly semirecursive [9], i.e., there is a computable partial function f such that f(a,b) € AN{a, b}
whenever |AN {a,b}| =1,

e regressive, t.e., there is a computable partial function f and an enumeration ag, ay, ... of A without

repetition (but not necessarily effective) such that f(ag) = ag and f(an41) = an.

Hence the next theorem tells us that MIN is neither regressive, nor (1, 2)-computable, nor (weakly)
semirecursive, nor semi-c.e. The fact that MIN is not regressive was first shown by Fenner using a

different proof.
Theorem 2.22 MIN is not (3, 2)-verbose.
For the proof we will use the following lemma about MIN.

Lemma 2.23 There are sets A, B <t ' such that A C MIN C B, and A and B are not separated by
a co-c.e. set, i.e., no C with A C C C B is co-c.e.
Proof. Fix the Godel numbering . Let F = {e : (Vn > 0)[pe(n) T]}. Then F <p @'. Let
A=MINNF and B=MINNF. Then A, B <t {, since using a @' oracle we can find out whether an
index in F is a minimal index. Suppose A C C C B, so MINNF C C C MINU F. We claim that in
this case C'is not co-c.e.; which finishes the proof.

To show that the claim is true, define a computable function f by

(2) (us)e€®,] ifeisin® and z =0
o(z) = .
Prie) 1 otherwise,

where (#))sew is a computable enumeration of (. Note that f(e) € F for all e. If e € @, the first value
of @;(e) contains the first stage at which e is enumerated into ()", otherwise ¢y (. is the function that
is undefined everywhere. Let a be the minimal index of (Az)[]]. For every i € CN{0,..., f(e)} — {a}
there is an #; such that ¢;(z;) is defined. This is true, since 7 is either a minimal index of ¢; (in which
case since ¢ £ a the function ¢; has to be defined somewhere), or 7 is not in F', which means that ¢; is
defined for some n > 0.

Assume that C'is co-c.e. For each i in D = {0,..., f(e)} — {a} start searching for an z; as above.
Simultaneously enumerate C' and eliminate elements appearing in C' from D. Then at some finite
stage, D will only contain indices for which witnesses #; have been found. With this D compute
m(e) = max{p;(z;) : i € D}. Then e € ¢ if and only if ¢ € V);n(e) contradicting that (' is not
computable. a
Proof of Theorem 2.22. Suppose MIN is (3,2)-verbose via the computable function f, i.e.,
XMIN(®,¥) € Wiey) and [Wee)| < 3 for all z and y. Let A and B be chosen as in the lemma.

There are two cases.

e There is x ¢ MIN such that (Vy € A)[(1,1) € Wy 4] and (Vy € B)[(1,0) € Wz)]

10

Fix such an z, and define C'= {y : (1,0) € Wy) or (0,0) € Wy(e)} Obviously C is a co-c.e.
set. We prove that (' separates A and B which contradicts the choice of A and B. If y isin A, then
by assumption (1,1) € Wy,). Farthermore (0,1) € Wy, ,) since it is the correct characteristic
vector. Since Wy, ,) contains at most three elements one of (1,0) or (0,0) can not be in Wy,),
whence y € C. This proves that A C C'. Now assume that y € B. Then (0,0) € Wy,) (since it is
the correct characteristic vector) and (1,0) € Wy (., (by assumption). Then y ¢ C by definition,
proving that B C C.

e For all # ¢ MIN either (Jy € A)[(1,1) € W] or (Fy € B)[(1,0) & Wi(e)]

In this case we have a X9 witness for z ¢ MIN.

r € MIN iff (Vy € A)[(1,1) € Wy] and(Vy € B)[(1,0) € Wi).

The implication from left to right holds because Wy, ,) has to contain the correct characteristic
vector. The other direction uses the fact that if © € MIN there is either a y € B for which
(1,0) € Wiiey) or ay € Asuch that (1,1) € Wy,). Thus # € MIN is equivalent to a formula
that is 119 in A @ B =1 ¢, hence MIN is in 113, which we know to be false by Lemma 2.14.

O

I conjecture that MIN is not approximable. In fact, all that would be necessary to prove this
conjecture is to show that there are A, B € ¥J such that A C MIN C B and A and B are not separated
by a set computablein @, i.e., for all C with A C C' C B, C' £t 0'. By relativizing a theorem of Kummer
and Stephan [16, Theorem 3.2] to #" we would then have that MIN is not even (1, k)-computable by a

function computable in .

2.5 Autoreducibility

Most of the results concerning MIN are of a negative character, due to its extreme thinness. However,
there 1s at least one nontrivial property MIN does have: it is autoreducible, namely there is an oracle
Turing machine which can decide whether e € MIN by making queries to MIN which are different from
e.

The proof will be a modification of the proof that MIN is Turing complete for . We first need a
lemma:
Lemma 2.24 Let ¢ be a Gédel numbering. Given 1, x and a finite set D C w, we can effectively decide
whether ¢;(x) diverges by using MIN,, as an oracle without asking any element of D.
Proof. Fix a Godel numbering . Let a be the minimal index of the function that is undefined

everywhere. Define computable functions f; by

Jo pis(z) |
prii(s) = { 1 othiwi(se)
where j € {0,...,|D|}. Let f(i) = max{f; (%) : j € {0,...,|D|}}. To decide whether ¢;(x) |, do the
following: for every e € MIN, N{0,..., f({)} — (D U {a}) dovetail ¢. on all integers to find some s.
for which ¢.(s.) is defined. Note that all searches terminate, since we excluded a. Now let s be the
maximum of the s.. Then ¢;(x) | if and only if ¢; ;(2) |. The reason is that if ¢;(z) converges, then
the minimal index of at least one of the |D| + 1 functions f; is in MIN, N{0,..., f({)} — (DU {a}). O
Applying the lemma with |D| = 1 gives us the following theorem.

11

Theorem 2.25 MIN is autoreducible.

Proof. Fix a Godel numbering ¢. We will prove that given y and ¢, we can effectively decide whether
¢ € TOT, by making oracle queries to MIN,, without querying y. Since TOT, =1 MIN,, this finishes
the proof.

Consider two computable functions f; (j =0, 1):

Joit pi(e) |
pri(e) = { 1 othirivi)se.
Let a; (j = 0,1) be the minimal index of the function (Az)[;].

Let y and ¢ be given. Using MIN,, as oracle determine whether ¢, (0) converges without making
queries to y. (This is possible by the preceding lemma.) If so fix j € {0, 1} such that ¢, (0) # j, else let
J = 0. We can now compute the minimal index of ¢y, ;) without making queries to y using the same
method as in theorem 2.11: compute initial segments (including undefined values) of functions ¢, with
e € MIN, N{0,..., f;({)} — {y} until all but one of them is different from ¢,. This is possible, since
©1.(i) #F ¥y by choice of j, and we can decide p.(z) | without querying y. Now i € TOT,, iff the index
which is left is ;. ad

This result is nontrivial, since every degree above @/ contains a set which is not autoreducible (as

proven by Jockusch and Paterson [21]).

2.6 Shortest Descriptions

Remember that we defined the set of shortest descriptions of a Gédel numbering ¢ to be

RAP = {6 : (VZ < 6)[302(0) 7£ @6(0)]},

which is computable in (. By this definition it is obvious that R, C MIN,. In particular R is also
strongly effectively immune and w-immune. Furthermore the construction showing that MIN is not
hyperimmune works for R too.

We can conclude that) does not btt-reduce to R. A variation of the Meyer result gives us that
" does wtt-reduce to R, and as in the case of MIN we can construct a Gédel numbering ¢ for which
0" =i Ry,. This, as in the case of MIN leaves us with the possibility that R is tt-equivalent to (',

There has been related work in the area of Kolmogorov complexity. Let Cy,(2) = min{lg(e) : ¢.(0) =
z}, where lg(z) = [log#], the Kolmogorov complexity of the number z (w.r.t. ¢). According to the
textbook by Li and Vitdnyi, Kolmogorov knew that C, as a function of x is not computable, and they
mention that C, is as hard as the halting problem (Exercise 2.7.7. attributed to Peter Gacs). Using
Arslanov’s completeness criterion the result can be sharpened. We include a statement of the version

of the criterion we will need.

Theorem 2.26 (Arslanov [21]) If A is a c.e. set and f < A has no fived-points, i.e., pe # Py(e)
for all e, then A is wit-complete®.

Theorem 2.27 Suppose A is an infinite c.e. set and f a computable partial function which agrees with

Cyp on A. Then W <t f. In particular any such function f has the same wit-degree as (.

3 Arslanov’s criterion for wtt-reductions [21, Proposition I11.8.17] is usually stated for functions which fulfill W, # Wf(e)
for all e. Such a function can be transformed into one which is fixed-point free in our sense (see, for example, Exercise V.5.8
in Soare [28]).

12

Proof. Let B be an infinite computable subset of A, and f as described in the theorem. We will
show how to compute a function g in f which is fixed-point free, i.e., . # @4c). On input e search for
x € B such that f(z) > lge (and hence C,(2) > lge). Then search for some ¢ for which ¢;(0) = =.
Let g(e) = 4. Since ¢ is a Godel numbering we are sure to find such an ¢. Furthermore we know that
we only have to check the first e + 1 numbers in B beyond e to find an « as required. This gives us a
wtt-reduction from g to f. a
With €, as a complexity function we can now give Kolmogorov’s definition of randomness: z is
random (w.r.t. ¢) if its complexity C,, is at least its length lg 2 = [log, 2] + 1.
Definition 2.28 (Li and Vitanyi [17]) Define

RAND, = {z: C,(z) > lgz},

the set of random strings with regard to .

Using Arslanov’s completeness criterion again, one can show that (' <yt RAND,. Martin Kummer
recently gave a surprising refinement of this result.
Theorem 2.29 (Kummer [14]) ¢’ <;; RAND, for all Kolmogorov numberings 1, but there is a
Gédel numbering @, for which (' £ RAND,,.

Kummer also mentions that a similar proof will show that there is a Godel numbering ¢ for which
the set {{x,e) : (i < €)[w;(0) = #]} is not ti-complete. Although this comes closer to the set R of
shortest descriptions as defined here, Kummer’s methods do not seem applicable. Another result of

Kummer’s which does not carry over easily to R, is that RAND,, is superterse.

3 Size-minimal Indices and Descriptions of Smallest Size

3.1 Size-minimal Indices

In the preceding sections we called an index minimal if it was the smallest index of a given function.
In practice we might have different size measure than just the index itself. Most computer scientists
for example would say the size of ¢; is Ig¢, the length of the program, but other size measures have
been considered too. There seem to be two reasonable requirements a size measure should meet: it
should be computable, and there should only be finitely many indices of the same size. More formally
a computable function s from w to w is called a size function if s71(n) = {m : s(m) = n} is finite for
all n. This definition might be found too restrictive in its insistence on the computability of s. We will
return to this question in the section on C-minimal indices. For now we restrict s to be computable.
Consider the following generalization of MIN.

Definition 3.1 (Bagchi [1]) For a Gédel numbering ¢ and a size function s define

MIN,, ; = {e : (Vi)[s(i) < s(e) = @i # @]},

the set of size-minimal indices of ¢. As usual we will drop ¢ if not needed. Dropping s means that s is
the identity function.

Let us first look at a special case: if a canonical index of s~1(n) can be computed effectively from
n we call s a strong size function. In this case most of the results for MIN carry over to MINj, for
example " =1 MIN; (which was proved by Bagchi [1]). We will not pursue this question here, since
the situation becomes much more interesting for general size functions.

A closer examination of MIN; tells us that it lies in X9 like MIN itself and that something slightly

stronger is true.

13

Lemma 3.2 MIN; lies in X5 uniformly in s (and ¢).
Proof. Note that e € MIN; if and only if

3k (Vi > k)[s(i) > s(e)] A
(Vi < k)(Fw)[s(2) < s(e) = pe(@) # pi(@)]].

The (Vi < k)(Fx) can be made part of the first existential quantifier. Then both (Vi > k)[s(¢) > s(e)]
and ¢.(z) # ¢;(x) are decidable with a (' oracle uniformly in s (and ¢), even if s is not total. O

Bagchi [1] proved that ¢ =1 MIN, &', but he leaves unanswered the question of whether §' reduces
to MIN;. We know already that if s is the identity function then we can make MIN,, , tt-complete for
some Godel numbering ¢. Tt is still open whether § Turing reduces to MIN;, but we have the following
result which shows that if such a reduction exists it has to be a proper Turing reduction, and not a
wtt-reduction. In this respect it is interesting to compare this to the result on shortest descriptions in

the next section.

Theorem 3.3 There is a computable size function s (independent of the Gddel numbering) such that
0" does not wtt-reduce to MIN,.

The theorem 1s a consequence of a new result which i1s given below and the classical result by

Friedberg and Rogers that ()’ does not wtt-reduce to a hyperimmune set [28, Exercise 2.16].

Theorem 3.4 There is a computable size function s (independent of the Gddel numbering) such that
MIN; s hyperimmune.

Proof. We will in fact construct a computable size function s such that MIN ; is hyperimmune for
every effective numbering ¢. Let ¥(z, e, z) be a universal function. Then (¢)cecw := (¥(2, €,))ecw Will
contain all effective numberings; and in particular all Gédel numberings as z ranges over w.

Fix a particular Gédel numbering ¢. The construction will be a straight-forward priority argument

fulfilling the requirements

)

Re . if (Dy, (2))rew is a strong disjoint array, then there is an « for which Dy ¢,y "MINy: ; = 0,

forall e,z € w.
Stage t = 0. Initially s is undefined on all values.
Stage t. If s(t) is still undefined at this stage, then define it to have value t. We say (e, z) <t requires

attention at stage ¢ if ., has not received attention yet, and there is a w < ¢ such that
o ¢.;(w) is defined, and
e D, (w) only contains elements whose size is defined and is at least (e, z) + 1.

Let (e, z) be the minimal element that requires attention (if any) and fix the corresponding w. We say
that (e, z) receives attention. Let D = Dy). Effectively find a new (finite) set £ of ¢* indices of
the functions indexed by D such that the elements of £ have not been assigned a length yet. Namely
{7 i€ D} = {¢7 :i € F}. Assign a size of (e, z) to each element in F.

By construction s is a computable, total function, and it is a size function since each requirement
R. . assigns the value (e, z) to a finite number of functions.

Note that a requirement that receives attention is met immediately and never injured afterwards.
Now suppose not all requirements are fulfilled, and let (e, z) be minimal such that R,) is not met. We
can choose a stage t' > (e, z) after which no R; with j < (e, z) acts. Then the sizes assigned from stage

" on will be at least (e, z) 4 1. Since (D, (¢))rew is a strong disjoint array (otherwise R, .y would be

14

fulfilled) there is a w for which Dy, (w) contains only elements of size at least (e, z) + 1 forcing Rye 2y to
act and become fulfilled. ad
Note though that MIN; is not hyperhyperimmune (as Bagchi observes).
Remark. If we have a function f which on input e returns a size-minimal index of ¢, i.e., f(e) € MIN;
and @, = @f(e) (there might be many such functions), then it is easy to see (using the same tricks as
for minimal indices) that #” <t f, and f <p MIN; ¢ .
On the other hand it is easy to see (using the coding techniques with which MIN was made tt-
complete) that there is a computable size function s (independent of the Godel numbering) such that
MIN; is tt-complete for §”.

The set MIN; shares some immunity properties with MIN. For example the proof of w-immunity of
MIN can be easily adapted.

Theorem 3.5 MIN; is w-immune (for all computable size functions s).
Corollary 3.6 ' £y, MIN, (for any computable size function s).

Although we do not expect it to be either effectively or even strongly effectively immune in general
(and it is easy to construct s where it is neither), it is constructively immune. We will prove a more
general result which is based on a proof by Owings [22].

Definition 3.7 A set A is constructively immune if it is infinite and there is a computable partial
funetion v such that if W, is infinite, then ¢(e) | and (e) € W, — A.
Let I(e) = {i: ¢; = .}, the set of indices of ..

Definition 3.8 We call H : P(w) — P(w) an effective choice functional if there is a computable g such
that

o [T(I(e)) CI(e),
o H(I(e)) "Wy =0, and
o Wy(e) cofinite,

for all e.

Effective choice functionals should not be confused with Owings [22] effective choice functions which
are computable partial functions H from P(w) to w such that H(A) € A for all A € dom(H).

Theorem 3.9 Suppose that for a set M there is a computable function g such that I(e)NMNWy() = 0

and Wy .y s cofinite for all e. Then M 1s constructively immune.

Proof. Using the Recursion Theorem define a computable function f fulfilling:

@;(x) if (i,t) is the smallest (¢, ¢') with ¢/ € W, N Wisen,e

1 otherwise

Prie)(®) = {

and let v (e) be the i for which (i) is the smallest (', ') with i € W. v NW(f(c))+. Assume that W, is
infinite. This implies that W.NW,(;(.)) is infinite, and ¢ (o) = py(c). Thus we conclude ¥ (e) € I(f(e)),
but ¥(e) € Wy((e)) and hence ¥(e) & I(f(e)) N M and therefore v(e) ¢ M. a

Corollary 3.10 If H is an effective choice functional, then M = {H(I(e)) : e € w} is constructively

immaune.

Proof. For an effective choice functional we have M N 1I(e) N Wy = H(I(e)) N W) = 0. Hence
we can apply the theorem. a

15

Corollary 3.11 MIN; s constructively immune for every computable size function s.

Proof. Let H(I(e)) = {¢ € I(e) : (Vj € I(e))[s(j) > s(i)]}. We define g computable such that

Wycey = {i : s(d) > s(e)}. Then Wy(.) is cofinite since s is a size function, and it witnesses that H is an

effective choice functional. Now the corollary applies, since MIN; = {H(I(e)) : ¢ € w}. a
Note that, for example, the same result holds for the ¢th-minimal indices.

The next result is immediate from Owings’ paper.

Lemma 3.12 (Owings [22]) Suppose that H is a computable partial functional whose domain includes
all infinite subsets of w, and such that H(A) is a finite subset of A for all A in the domain of H. Then

H 1s an effective choice functional.

Hence we can draw the following conclusion.
Corollary 3.13 Suppose that H s a computable partial functional whose domain includes all infinite
subsets of w, and such that H(A) is a finite subset of A for all A in the domain of H. Then M =
{H(I(€e)) : e € w} is constructively immune.

In Owings paper it is shown that M is effectively immune under the assumptions of the corollary.

Xiang [30] showed that the notions of constructive and effective immunity are independent.

3.2 Descriptions of smallest size

Consider the set R, = {e : (Vi)[s(i) < s(e) = ¢;(0) # ¢.(0)]}. (As usual ¢ remains in the background.)
Since Ry C MIN; the immunity properties carry over from MIN; to R;.

Corollary 3.14 o R, isw-immune (for every computable size function s),
o There is a computable size function s such that R is hyperimmune,

e R, is constructively immune.

Hence we also know that §' £,y Rs (for any computable size function s). Concerning the degree of
R, for once we can get a tight result. By the second item of the corollary there is a Gédel numbering for
which (" £y Rs. Since R, is a 2-c.e. (d.c.e.) set in which we can compute a fixed-point free function
we can conclude §" <t R, using the generalized Arslanov completeness criterion [10].

Proposition 3.15 ¢’ =1 R (for all computable size functions s).

The proposition leaves us with a slightly unsatisfactory situation: we know that a Turing reduction
exists, but we cannot explicitly present it. Part of the reason is that the generalized Arslanov complete-
ness criterion is nonuniform. It does not yield a Turing reduction uniformly in s (and as a matter of
fact it cannot, even for d.c.e. sets [10, Theorem 6.4]). The challenge remains to show that the uniform

analogue of the proposition is false, or to exhibit a direct reduction from @’ to R, which is uniform.

4 Minimal indices of total, finite and infinite functions

Several natural variants of MIN result from restricting our attention to certain classes of functions, like
total, infinite, or finite functions. Thus we might consider MINT™ = MIN N FIN, MIN** = MINNTOT
or MIN'™ = MINNINF the minimal indices of finite, total and infinite functions, respectively. Whereas
a standard proof shows that " =1 MINf™ it can be proved that MIN®** and MIN'™ are wtt-complete
for (" rather than just Turing complete. The basic trick for this result is due to Lance Fortnow. It will

also serve us well in the next section on =*-minimal indices.

16

Theorem 4.1 (Fortnow (personal communication)) @ <., MIN™",

Proof. We skip the proof that ' <, MIN'*' which follows lines familiar from MIN. Define a

computable function f as follows:

s e s\ if e ’
rer(®) :{ %ﬂ fpeden otlfer(vg\//)isi,

Then ¢ € TOT if and only if there is an 7 € {0,..., f(e)} NMIN'" such that ¢, o,z (2) | for all z € w.
Since ¢ € TOT the last condition can be decided in (' which wtt-reduces to MIN'**. Since the queries
can furthermore be bounded effectively this yields a wtt-reduction from §" to MIN®et, a

Some slight adjustments will also give 0" <. MIN™ | These two results are particularly interesting
in the light of the observation that " <\, B and A <y B imply A <i; B (thanks to Martin Kummer
for pointing this out [21, Proof of Proposition VI.5.8]). Hence if we could show that §' <y MIN** we
would already know that §" <;; MIN'* (and the same for MIN").

5 =*minimal indices

The =*-minimal indices are yet another very interesting and strange variant of MIN, first defined by
John Case. Remember that two partial functions f and g are said to be almost always equal (written

as f =" g) if they agree on all but finitely many inputs.
Definition 5.1 (Case [3]) For a Gédel numbering ¢ define

MIN = {e: (Vi < e)[p; #” @]},

the ="-munimal indices of p.
As regards dropping ¢ the same conventions that were used for MIN apply. Let us first note some

facts.

Lemma 5.2 (i) (Case [3]) MIN® is X9-immune, i.e., it has no infinite subset in X3.
(i7) MIN* € 13 — ¥9.
(#i1) There is a Kolmogorov numbering ¢ such that MIN’; is d-complete for 113.
)

(iv) MIN® is k-immune for every k, hence ' does not btt-reduce to MIN™.

(v) MIN™ is not hyperimmune.

Proof. For (i) use a result by Arslanov, Nadirov, and Solov’ev on almost fixed points [10, Theo-
rem 2.1, Lemma 4.1]. Then (i7): MIN® € XY is an immediate consequence and MIN* € 113 is easily
checked. Using the Kolmogorov numbering ¢ from Theorem 2.17 yields (¢%i) (even using the same
reduction). For (iv) note that MIN® C MIN. For (v) the same proof as for MIN works. a

What about the degree of MIN*? The question seems to be more difficult than for MIN, since
reducing (" to MIN™ poses serious problems. Since we only have =*-minimal indices, all the information
a computable algorithm can find about ¢ could be in the initial faulty part. Therefore the ideas used

for MIN do not work here. The best we can prove is the following theorem.
Theorem 5.3 MIN® ¢ ¢/ =1 (/.

The heart of the proof is the following lemma.
Lemma 5.4 MIN* @ (/ > 0.

17

Proof. Fix a Godel numbering ¢. We will show how to enumerate TOT, in MIN* @ @'. Since
obviously TOT,, is c.e. in @’ this proves the theorem. Define two computable functions f and g as

follows:

_) (es)[(Yy < @)[pe s(y) L] if (Vy < 2)[pe(y) 1],
Pre)(@) =

1 otherwise,

and

(2) (uly, s, 2Ny > 2 A e s(y) |=2#]] if there is a y > # such that ¢.(y) |,
el T) = .
Pa(e) 1 otherwise.

Fix @ minimal such that ¢, =" (A2)[]], i.e., a is the =*-minimal index of the everywhere undefined
function. Consider the following algorithm.

On input e search for i < f(e) with i € MIN® and ¢ # a and n such that (Vl‘)[s%,max{n,@g(,)(x)}(l‘) 1]
is true. Halt if such ¢ and n are found.

First note that if 7 € MIN*, and i # «a, then ¢; is defined infinitely often, hence Pg(i) 1s total, i.e.,
goeymax{nng(l)(x)}(x) | can be effectively decided in e, 7 and x, hence (Vl‘)[s%,max{n,@g(,)(x)}(l‘) 1] can
be decided by the @' oracle. Hence the algorithm will work with a MIN* ¢ () oracle. If the algorithm
terminates, then in particular ¢.(x) | for all #, and so e € TOT. We only have to argue that the
algorithm does terminate for e € TOT. Suppose e € TOT. Then f(e) is an index of a total function
which for every x gives an upper bound on the number of steps it takes ¢, to converge on z: Perosie) (x) |
for all x. This function has a =*-minimal index i € MIN® such that @) (x) = @i(x) for all > n.
Now @y¢)(x) > @i(x) for all 2, and hence goeymax{nng(l)(x)}(x) | for all z, so the algorithm terminates.
O
Proof of Theorem 5.3. Since MIN* € II} it is clear that MIN* & (' <1 (’”. On the other hand we
just proved that MIN* & @ >+ 0. Thus it will be sufficient to show that ¢’/ < MIN* & §".

By Lemma 5.2 there is a Godel numbering ¢ such that §"” =p MINZ, so we are done if we can
prove that MIN’; <7 MIN;’L @ 0" for every Goédel numbering ¢. Fix @ and a computable translation
function f from ¢ to ¥, i.e., ¥y = @, for all z. We need an algorithm to decide whether e € MIN’;.
Let m = max{f(i) :i < e}, and [= MINZL N{0,1,...,m}. Then I contains =* minimal indices (w.r.t.
¥) for @o, ..., .. For each ¢; we can find ¢/ € I such that ¢; =* ;s using the §" oracle (note that we
do not have to decide ¢; =* ¢; to do that, that would be a ¥ complete task). Now e € MIN’; if and
only if no i < e has the same =*-minimal index (w.r.t. ¢) as e. a

Although the theorem does not allow us to pin down the degree of MIN* exactly we can at least
conclude that MIN* does not lie in 5.

Corollary 5.5 MIN* € 1§ — x3.

6 C-minimal programs, decision tables and noncomputable size

measures

We mentioned earlier that it might be natural to consider noncomputable size measures. Call a function
5:S — w a weak size function if s~1(n) is finite for all n, where S C w is a set of indices we are interested
in. Pager [24, 25] and Young [29] suggested some examples of weak size functions which are based on

Blum’s complexity measures. In these examples the complexity of a function becomes part of its size.

18

Let us look at an example which measures the size of finite functions.

t+ e if ¢ is minimal such that dom(p.) C {0,...,t}
s(e) = and . 4(z) | for all z € dom(y.)

1 otherwise

Then s is a weak size function (computable in §") which tells us the domain of finite functions and how
long it takes to compute the values in the domain. This seems to be a natural size function taking
into account both time and space. Tt is essentially the one suggested by Young [29]; Pager [25] later
generalized it to include infinite functions. For this particular weak size function we do not need the full
power of " to compute a minimal index for every finite function, since s gives us an upper bound on
both the running time and the index of a size-minimal index. More formally there is a partial function
f computable in §" such that ¢. = ;) and f(e) € MIN, whenever ¢, is a finite function.

Remark. In the light of our newfound interest in weak size function let us return to size-minimal
indices and see what happens there. Bagchi [1] proved that " <t MIN; & (' for size functions. For
weak size functions this becomes @ <t MIN; & s’, where s’ is the jump of the graph of s. This
means that MIN; and s cannot be computationally easy at the same time. Bagchi observed that s can
be chosen in such a way (using the Friedberg numbering) that MIN; becomes computable. Tt might
be interesting to note that in the other direction Kummer [12] used minimal indices to give an easy

priority-free proof of the existence of a Friedberg numbering.

For the rest of this section we will concentrate on weak size functions. The variant of minimal indices
we look at next is suggested by the work of David Pager [23, 24]. For two partial functions f and g we
write f C g if f(x) = g() for all z in the domain of f.

Definition 6.1 (Bagchi [1]) Let

MING | = {e: (Vi)[s(i) < s(e) = . @il},

the set of C-size-minimal indices of .

The idea behind the definition of MINSg is that if you are looking for a minimal index of a function
that computes f you might not care what happens outside the domain of f. In this case some function
g O f might have a much smaller minimal index than f itself.

It is easy to see that MINSg <1 0" @ s (s’ allows you to compute all indices of a given size and then
the " oracle will do the rest). As for size-minimal indices it can be proved that §” <p MINSg @ s

How difficult is it to compute C-size-minimal indices of certain classes of functions? Consider, for
example, a function f that computes a C-size-minimal index of every computable partial function given
by its index. That is, f has to fulfill p. = @) and f(e) € MINSQ. Then one easily shows that ¢ <p f.

We conclude that although the complexity of MINSg itself might fluctuate with s, the problem of
finding a C-size-minimal program is never easy. Remember that the same is true of MINj,.

At the beginning of this section we discussed a particular weak size function for which it was
computable in # to find size-minimal indices for finite functions. What happens if we ask for C-size
minimal indices of finite functions? Let us refine the problem. The restriction to finite functions suggests
a different representation from the one used so far. Instead of representing the function by its index,
we specify its behavior as a set of pairs: {(x;,8;) : b; € {0,1} and 1 < < n}. This means the value of
the function has to be b; on input #; (for all 1 < i < n). Note that we limit ourselves to {0, 1}-valued
functions. If we represent functions in this way we call them decision tables. Consequently the (#;,b;)

are called the entries of the decision table.

19

The question of how difficult it is to find a C-size-minimal index for a decision table was first
investigated by David Pager [24, 25]. He proved that even if we restrict ourselves to decision tables
with just two entries, the problem is undecidable, regardless of the complexity of the size function. Let
((#,y) denote the function with the decision table {(x,0), (v, 1)}.

Theorem 6.2 (Pager [25]) For every weak size function s there is a constant ¢ such thal no lotal
computable function f fulfills

L C(ca $) g Prie,x)s
o ((c,x) L . for all e with s(e) < s(f(e,x))

Using his proof and improving it slightly we can show that computing a C-size-minimal index of a
two-entry decision table has at least the complexity of the halting problem.
Theorem 6.3 Ifs is a weak size function and f a total function which computes C-size-minimal indices

of two entry deciston tables, i.e.,
* ((#,9) € Pi(ay);

o ((z,y) € . for all e with s(e) < s(f(x,y)),
then O/ <t f.

In the light of earlier results the last theorem and Pager’s original result seem surprising, since they
only require s to be finite-one. All the tricks we have seen so far (using the recursion theorem) are no
longer applicable but have to be substituted by a more involved argument.

Proof. Assume that f fulfills the hypothesis of the theorem. Let M be a Turing complete maximal
set (Friedberg’s set will do since it is effectively maximal). Split M into two c.e., noncomputable sets
Sand T,ie, M = SUT and SNT = @. In this case S and T are strongly inseparable, namely if U
and V are c.e. sets such that S CU CV C T, then S=*U and T =* V (the easy proof can be found
in a paper by Cleave [5]). Define

0 ifees

gz)=<¢ 1 ifzecT

1 otherwise.
Fix an index a of ¢ and let I; be the finite set of indices which have at most the size of a, namely
H = {i: s(¥) < s(a)}. From the indices in H we want to filter out those which belong to a function
that is 1 infinitely often outside of M. To this purpose define

I={icl |[Mn{z:p(x)=1} = oo}

Let X = (Y;c;{x @ @i(x) = 1} (note that if [is empty, then X = w). For all i € I we have that
M N {z:pi(x) =1} is a finite set (M is maximal), and since [is finite, the set M N X = J;c; M N
m is finite. Since M is infinite this implies that M N X is infinite.

We claim that SN X is infinite. If SN X was finite, then V = (X — S)UT would be a c.e. set which
separates .S and 7', but for which V' =" T is false, contradicting the strong inseparability of S and T'.
Hence we can choose an element ¢ € SN X. Note that if # € T, then f(c,z) € H (since H contains an
index of g). On the other hand if # € M, then f(c,z) ¢ H for almost all by choice of c.

Repeating the argument with the set I’ = {i € H : [M N {x : p;(2) = 0}| = oo}, we get a constant
d such that if x € S, then f(z,d) € H, and if x € M, then f(z,d) ¢ H for almost all z by choice of d.
Since M is the union of S and T' this means that # € M if and only if f(¢,2) € H or f(x,d) € H for
almost all z. Since M was chosen to be Turing complete (and H is finite) this finishes the proof. a

20

Remark. It is easy to see that a function f as in the theorem can be computed with an oracle for s',
the jump of the size function. In case s is computable that implies that the complexity of f is exactly

the complexity of the halting problem.

Corollary 6.4 Finding a C-size-minimal index for a decision table with two or more entries is at least
as difficult as solving the halting problem.
Finding C-size-minimal indices for decision tables with one entry can be computable or not, depend-

ing on the size function s, as observed by Pager.

7 Learning Theory

The last variant of MIN we want to mention is the one considered in learning theory. Instead of insisting
on the exact minimal index of a function we allow some freedom. Remember that we defined min,(7)

to be the minimal y-index of the function ¢;.

Definition 7.1 For a computable function h with h(z) > x for all x let
h-MIN, = {e : e < h(ming,(e))}.

It is easy to see that given h and ¢ we can construct a Gédel numbering 1 by stretching ¢ out using
h such that h-MIN, =* MIN,. That means that all results true for MIN (i.e., for MIN,; for all) which
are robust under finite variations are automatically true for A-MIN. Also results that are not affected
by the stretching out (like the construction of a Gédel numbering ¢ for which MIN,, is d-complete for
%9) can be carried over to the case of nearly-minimal indices.

Learning theory investigates how difficult it is to learn a function by returning an index in A-MIN.
There are also variants which instead of trying to approximate min,(e) allow more freedom by accepting
a fixed (or finite) number of errors in the function (rather like MIN®). A short history of this area can
be found in a paper by Case, Jain and Suraj [4]. But that’s another story and shall be told another

time.

8 Open Questions

Several interesting questions remain open. Foremost is Meyer’s original question whether all MIN,, are
tt-equivalent. Because of the construction of a G&édel numbering ¢ for which MIN,, is tt-complete, this
would imply that all MIN,, belong to the tt-degree of (.

Knowing that ¢ £ty MIN and §' <.+ MIN leaves us with the tantalizing question of whether
(" <it MIN. If this should indeed be the case, and it could be proved that (" <. MIN, we would
already have)" <, MIN, by a general result (use the tt-reduction of @)’ to figure out whether the
wtt-reduction will converge). In this respect it is worth remembering that some variations of MIN like
MIN®® and MIN™ are wtt-complete for ©9 (and not only Turing complete).

We would like to settle the degree of MIN® by either showing that that §’ <t MIN* or by constructing
a Godel numbering for which this is not the case. Even constructing a Gddel numbering ¢ such that
(" £ MIN™ would be interesting, since it might carry over to MIN and answer Meyer’s open question.

We know that MIN,, is not approximable for some Gédel numbering . This make this particular
MIN,, a natural example of an autoreducible, non-approximable set (Kummer and Stephan [15] showed

that approximable sets are autoreducible). If we could prove that MIN is not approximable the example

21

would be even more convincing. If, on the other hand, there is a Gddel numbering ¢ for which MIN,,
is approximable, this would prove that not all MIN,, are btt-equivalent (because approximable sets are
closed downwards under btt-reductions). A stronger result is already known (Kinber’s theorem), but
the proof might be easier.

The big open question for size-minimal indices is whether MIN, is Turing-complete for #”, but there
are also a host of other questions which have not been asked yet: 1s MIN; autoreducible, approximable,
superterse, etc. Similarly it is an open problem to determine what the possible degrees of MINSg are.

One approach to MIN and MINj; is through their #’-versions: shortest descriptions and descriptions
of smallest size. The hope is that some of the open questions might be easier to answer when asked
about R and Ry, but at the same time might yield an insight on how to approach the original problem.
It seems, however, that we do not understand the relationship between R;, RAND, and MIN; very

well.

Acknowledgments Thanks go to Martin Kummer [13] for giving me an extensive overview of the
history of the MIN-problem, Bill Gasarch for suggesting [22], and Lance Fortnow for help with some
of the results. Further thanks to Steve Fenner for long discussions on bounded reducibilities which
eventually made it into a separate paper [6]. Several helpful remarks came from an anonymous referee
who in particular deserves credit for pointing out the possibility of a short proof of Theorem 2.10 similar
to the one presented here (using the recursion theorem instead of inseparable sets). Finally T would

wish to thank Sophie Laplante and Amber Settle for diligent proofreading.

References

[1] Amitava Bagchi. Economy of Descriptions and Minimal Indices. MAC Technical Memorandum,

MIT, 1972.
[2] Manuel Blum. On the size of machines. Information and Control, 11, 257-265, 1967.
[3] John Case. email communication, 1996.

[4] John Case, S. Jain, M. Suraj. Not-So-Nearly-Minimal-Size Program Inference. Lecture Notes in
Artificial Intelligence, 961, 77-96, 1995.

[5] J. P. Cleave. Some Properties of Recursively Inseparable Sets. Zeitschr. f. math. Logik und Grund-
lagen d. Math., 16, 187-200, 1970.

[6] Stephen Fenner, Marcus Schaefer. Bounded Immunity and Btt-Reductions. Unpublished
manuscript, 1997; a preliminary version appeared as: A note on a variant of immunity, btt-
reducibility, and minimal indices. Technical Report TR96-8-13, University of Southern Maine,
http://wuw.cs.usm.maine.edu/report/TR96-8-13.ps, 1996.

[7] R.M. Friedberg. Three theorems on recursive enumeration. Journal of Symbolic Logic, 23, 309-316,
1958.

[8] Carl G. Jockusch. Semirecursive sets and positive reducibility. Trans. Amer. Math. Soc., 131,
420-436, 1968.

[9] Carl G. Jockusch. Weakly Semirecursive Sets. The Journal of Symbolic Logic, 55, 2, 637-644, 1990.

22

[10] Carl G. Jockusch, Jr., M. Lerman, R. I. Soare, R. M. Solovay. Recursively enumerable sets modulo
iterated jumps and extensions of Arslanov’s completeness criterion. Journal of Symbolic Logic, 43,4,

1288-1323, 1989.

[11] Jefim Kinber. On btt-degrees of sets of minimal numbers in Goédel numberings. Zeitschr. f. math.

Logik und Grundlagen d. Math., 23, 201-212, 1977.

[12] Martin Kummer. An easy priority-free proof of a theorem of Friedberg. Theoretical Computer
Science, 74, 249-251, 1990.

[13] Martin Kummer. email communication, March, 1996.

[14] Martin Kummer. On the Complexity of Random Strings. 12th Annual Symposium on Theoretical
Aspects of Computer Science, 1046, 25-36, 1996.

[15] Martin Kummer, Frank Stephan. Some Aspects of Frequency Computation. Technical Report
21/91, Universitat Karlsruhe, October, 1991.

[16] Martin Kummer, Frank Stephan. Recursion Theoretic Properties of Frequency Computation and
Bounded Queries. Information and Computation 120(1), 59-77, 1995.

[17] Ming Li, Paul Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications. Springer
Verlag, New York, Second Edition, 1997.

[18] G. B. Marandzjan. On the sets of minimal indices of partial recursive functions. Mathematical
Foundations of Computer Science 1979, Lecture Notes in Computer Science 74, 372-374.

[19] G. B. Marandzjan. Selected Topics in Recursive Function Theory. Technical Report 1990-75,
August 1990, Department of Computer Science, Technical University of Denmark.

[20] Albert R. Meyer. Program Size in Restricted Programming Languages. Information and Control,
21, 382-394, 1972.

[21] Piergiorgio Odifreddi. Classical recursion theory. North-Holland, Amsterdam, 1989.

[22] James C. Owings. Effective Choice Functions and Index Sets. Journal of Computer and System
Sciences, 32, 370-373, 1986.

[23] David Pager. On the Problem of Finding Minimal Programs for Tables. Information and Control,
14, 550-554, 1969.

[24] David Pager. Further Results on the Problem of Finding Minimal Length Programs for Decision
Tables. Journal of the ACM, 21, 2, 207-212, 1974.

[25] David Pager. On the Efficiency of Algorithms Journal of the ACM, 17, 4, 703-714, 1979.

[26] C. P. Schnorr. Optimal Enumerations and Optimal Godel Numberings. Mathematical Systems
Theory, 8, 182-191, 1974.

[27] Robert I. Soare. Computability and Recursiveness. Bulletin of Symbolic Logic, 3, 284-321, 1996.

[28] Robert I. Soare. Recursively Enumerable Sets and Degrees. Springer, New York, 1987.

23

[29] Paul D. Young. A Note on "Axioms" for Computational Complexity and Computation of Finite
Functions. Information and Control, 19, 377-386, 1971.

[30] Li Xiang. Effective immune sets, program index sets and effectively simple sets. In Southeast Asian
Conference on Logic, New York, 1981.

24

