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Abstract

The set of minimal indices of a G
del numbering � is de�ned as MIN� � fe � ��i � e���i ��

�e�g� It has been known since �	� that MIN� �T ���� but beyond this MIN� has remained

mostly uninvestigated� This thesis collects the scarce results on MIN� from the literature and

adds some new observations including that MIN� is autoreducible� but neither regressive nor ��� ���

computable� We also study several variants of MIN� that have been de�ned in the literature like

size�minimal indices� shortest descriptions� and minimal indices of decision tables� Some challenging

open problems are left for the adventurous reader�

� Introduction

How long is the shortest program that solves your problem�

There are at least two ways to interpret this question depending on the type of problem involved�

If the program�s task is to output one speci�c object� we are looking for a shortest description of that

object� This interpretation is closely related to Kolmogorov complexity� Although we have several

things to say about shortest descriptions� the main concern of this thesis are programs that compute a

function� We will then ask about the complexity of computing a minimal index of that function� If we

abstract from concrete machine models� the question translates into minimal indices with respect to a

numbering of the computable� partial functions��

We call e a minimal index �with regard to a given numbering �� if �i �� �e for all i � e� Our main

object of study will be the set MIN� � fe � e is a minimal index with regard to �g�

The study of minimal indices started in the 	
��s with research concentrating on the size of au

tomata� Manuel Blum and Albert Meyer isolated the problem as we know it today� and initiated its
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research� There is a twofold interest in MIN�� one academic and one practical� MIN� has served its

term as the standard classroom example of a noncomputable set� and surprised many a student �and

teacher� by behaving di�erently from the familiar index sets� Reducing �� to it is not entirely trivial��

but until now it was not known why this should be so� We will shed some light on this when we look

at bounded reducibilities� Whereas strange behavior is usually welcome in mathematical circles� in the

case of MIN� it has led to an inexcusable neglect� The only area where minimal indices still receive

some attention is computational learning theory� and here MIN� is of practical interest� This line of

research was started by Freivalds and Kinber in the 	
��s and continues to the present day ���� The

underlying motivation is to not to be content with just learning a function� but to �nd a program that

is not too much longer than the shortest possible�

A generalization of the set MIN� as de�ned above was suggested in the early seventies� at least

partially inspired by Blum�s investigations into the axiomatization of complexity measures �	�� The

idea was to allow sizemeasure on the indices� instead of saying i is smaller than e if i � e� we use a

size measure s to decide� we say i has smaller size than e if s�i� � s�e�� These size measures s measure

anything from time to space complexity� not just program length ��
�� Some problems connected with

the generalized version of MIN� were solved by Bagchi �	� and Pager ����� but many remained� and still

remain� open�

The thesis starts with the investigation of MIN� and then traces the variants considered in the

literature� To the extent of my knowledge this is a fairly complete account with the exception of the

learningtheoretic cousins of MIN��

For reducibilities and other notation see the standard references ��	� ����

� Minimal Indices and Shortest Descriptions

��� De�nitions

Given a numbering ��i�i�� we call an index e of the computable function �e minimal if �e is di�erent

from all functions with smaller index in the numbering�

De�nition ��� Let � be a G�del numbering� De�ne

MIN� � fe � ��i � e���i �� �e�g�

the set of minimal indices of ��

A G�del numbering is an e�ective numbering � of all computable partial functions such that for

every e�ective numbering � a �index can be computed from a �index� The de�nition of MIN� restricts

� to G�del numberings� since they are the natural programming systems� This is also witnessed by

the behavior of MIN� itself� If we allowed arbitrary numberings of the computable� partial functions�

MIN� could be almost any set� And even for e�ective numberings there is the pathological Friedberg

numbering ��� for which MIN� would be equal to �� i�e�� every index would be minimal�

Belonging to MIN� is the function min� which computes the minimal �index of a program� More

formally the function is de�ned as min��i� � ��e���i � �e�� Then MIN� �T min�� since e � MIN� if

and only if min��e� � e� Thus determining the complexity of MIN� will give us a lower bound �and as

it turns out the exact degree� of the task of computing the minimal index of a function�

�And the reader is invited to try his or her hand before proceeding to the next section�
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If instead of computable functions we are interested in �nite objects �which are represented as

numbers�� we can ask for the shortest description of that object in a given G�del numbering� This

borders on the realm of Kolmogorov complexity�

De�nition ��� Let � be a G�del numbering� De�ne

R� � fe � ��i � e���i��� �� �e����g�

the set of shortest descriptions of ��

From now on we will drop the � in MIN� and R� and simply write MIN and R if we think of �

as a �xed� but arbitrary G�del numbering� We will write out MIN� and R� to stress the dependency

on �� The same policy applies to other objects from computability theory like ��� TOT� or We which

depend on the particular G�del numbering relative to which they are de�ned� we will assume that G�del

numbering to be the same as the one used to de�ne MIN� This is not only a natural assumption� it can

also be made without any loss of generality� since the results will easily translate to other versions of

��� TOT� or We�

��� Immunity

Perhaps the �rst result on minimal indices can be found in Manuel Blum�s 	
�� paper on machine

size ���� His Theorem 	 in a slightly modernized and restricted version states that the set MIN is

immune� that is� it does not contain an in�nite c�e� subset �and is in�nite itself��

Theorem ��� �Blum ��	
 MIN is immune�

Proof� Suppose there is a computable function f such that the range of f is an in�nite subset of

MIN�� De�ne the computable function g�e� � f���i��f�i� � e��� Then g�e� � e for all e� and� since

g�e� � MIN�� we have �g�e� �� �e for all e� contradicting the Recursion Theorem� �

This proof is probably the easiest way of showing that MIN is not computable� The usual attempts

of mreducing �� or �� to MIN are doomed� as shown in Theorem ��	��

By a result of Case ���� the set of minimal indices is even strongly e�ectively immune� Owings gives

a proof of a more general result in the same paper� We include the short� but instructive proof of the

original result�

De�nition ��� A set A is strongly e�ectively immune if it is in�nite and there is a computable function

f such that

��e��We � A� max�We� � f�e��	

Theorem ��� �Case ��� Theorem �	
 MIN is strongly e�ectively immune�

Proof� Fix �� and let We � dom��e� for all e� Using the Recursion Theorem de�ne a computable

function f ful�lling�

�f�e��x� �

�
�i�x� if hi� si is the smallest hi�� s�i with i� � We�s� and i� � f�e��

� otherwise�

Now assume We � MIN�� If there was some i � We with i � f�e�� then �f�e� � �i for some such i�

Since i �We it is the minimal index of the function �i which contradicts i � f�e�� Hence We contains

only elements which are at most f�e�� Note that the proof did not depend on We being de�ned using

�� Any other G�del numbering would have done just as well� �

Although we cannot enumerate an in�nite number of minimal indices we can compute an in�nite

number of disjoint sets which contain a minimal index� in other words MIN fails to be hyperimmune�

Recall that �De�e�� is the canonical numbering of the �nite sets�
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De�nition ��� A set A is called hyperimmune if it is in�nite and there is no computable function f

such that

	 �Df�i��i�� is a family of pairwise disjoint sets� and

	 Df�i� 
A �� ��

Lemma ��� �Meyer ���	
 MIN is not hyperimmune�

Proof� To see this� we will de�ne a strictly increasing function 
�n� inductively such that the

pairwise disjoint sets In � fx � 
�n� � x � 
�n� 	�g intersect MIN� for every n� Start with 
��� � ��

Let i�� 	 	 	 � i��n��� be �indices of the constant functions ��x�	���� 	 	 	 � ��x�	�
�n�� 	�� Such indices can

be found e�ectively� Let 
�n�	� be the maximum of i�� 	 	 	 � i��n�� Then the interval fx � x � 
�n�	�g

contains �indices of at least 
�n� � 
 functions� Since fx � x � 
�n�g contains at most 
�n� � 	

elements� there is a minimal index in fx � 
�n� � x � 
�n� 	�g� �

The gap between immune and hyperimmune is large� and by introducing a new notion of immunity�

we can give a stronger characterization of MIN which will be useful in the study of bounded reducibilities�

De�nition ��� �Fenner and Schaefer ��	
 A set A is called kimmune if it is in�nite and there is

no computable function f such that

	 �Df�i��i�� is a family of pairwise disjoint sets� and

	 Df�i� 
A �� �� and

	 jDf�i�j � k�

A set A is called �immune if it is k�immune for every k�

Note that 	immunity is the same as immunity and hyperimmunity implies �immunity� One reason

for the lack of interest in �immune sets is the folklore result that a set which is immune and coc�e� is

�immune ���� Therefore we do not get any new notions of simplicity between simple and hypersimple�

Our interest in kimmunity here is explained by the following result�

Theorem ��� MIN is ��immune�

Proof� The proof is a generalization of the immunity proof using the kfold Recursion Theorem�

Suppose MIN was not kimmune� Let Df�i� witness this as in the de�nition of kimmunity� De�ne a

computable function h�x�� 	 	 	 � xk� � f���i����z � Df�i����j��z � xj���� The function h picks out the

index of the �rst set in the enumeration for which all elements are bigger than any xj� We use h to

de�ne k computable functions� For 	 � i � k let

gi�x�� 	 	 	 � xk� � the ith element of Dh�x������xk� �

By the kfold Recursion Theorem there are k indices e�� 	 	 	 � ek such that �gi�e������ek� � �ei for all

	 � i � k� Since gi�e�� 	 	 	 � ek� � ei this contradicts the fact that gi�e�� 	 	 	 � ek� has to be a minimal

index for some i� �

A careful look at the proof shows that MIN is in fact e�ectively kimmune in the following sense�

there is a total computable function g such that if We is a set of canonical indices of pairwise disjoint

sets� all of which intersect MIN and contain at most k elements� then g�e� is an upper bound on the

cardinality of We�

By the last theorem MIN is a natural example of a set which is not hyperimmune� although it is

�immune� More on the realm between �immunity and hyperimmunity can be found in the paper by

Fenner and Schaefer ����
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��� The Degrees of MIN

There is a strong connection between immunity properties and completeness under strong reducibili

ties ��� which allows us to exploit the results of the last section�

The immunity of MIN immediately implies that no c�e�� noncomputable set conjunctively reduces to

MIN� and K does not mreduce to MIN� It can also be shown that no c�e�� noncomputable set bounded

disjunctively reduces to MIN�

A more interesting result is the following which was �rst proved by Fenner and Schaefer�

Theorem ���� �Fenner and Schaefer ��	
 �� ��btt MIN�

The proof will adapt a result of Denisov�s according to which no hyperimmune set can be truthtable

complete�

Proof� De�ne A � fe � �e��� � �g and B � fe � �e��� � 	g� It is a standard exercise to show

that these two disjoint c�e� sets are not separated by any computable set� Assume �� �btt MIN� Then

A �btt MIN� Let the computable function f � � � �k and the computable kary truthtable 
x witness

the reduction� i�e��

x �MIN �� 
x��MIN�f�x��� � 	�

where �MIN�x�� 	 	 	 � xk� is the characteristic vector ��MIN�x��� 	 	 	 � �MIN�xk�� of MIN� We will prove

that for every n we can e�ectively �nd a set of at most 
k elements all of which are greater than n

and one of which lies in MIN� This immediately implies that MIN would not be 
kimmune which

contradicts MIN�s �immunity� To prove the claim consider two cases�

First suppose that for all n there are x � A and y � B such that 
x��D�f�x��� � 
y��D�f�y��� for

all D � f�� 	 	 	 � ng� In particular the equality will hold true for D � MIN 
 f�� 	 	 	 � ng� Since x � A

and y � B we know that 
x��MIN�f�x��� �� 
y��MIN�f�y���� This means that MIN 
 �f�x�  f�y��

and D 
 �f�x�  f�y�� have to disagree� hence it is enough to let the �nite set we are looking for be

F � �f�x�  f�y�� � f�� 	 	 	 � ng�

In the second case we know that there is an n such that for all x � A and y � B there is a

D � f�� 	 	 	 � ng for which 
x��D�f�x��� �� 
y��D�f�y���� Therefore we can partition the integers

according to the values of �
x��D�f�x���D�f������ng� This yields �nitely many equivalence classes which

respect A and B by assumption� Therefore if we take C to be the union of all the parts of the partition

which intersect B� then C is a computable set that separates A and B contradicting their inseparability�

�

Remark� A closer inspection of the proof reveals that it establishes that �� does not kttreduce to

a 
kimmune set� Fenner and Schaefer ��� showed that in fact �� does not kttreduce to a kimmune

set� a result which is tight� but more di�cult to prove� and the present version is su�cient to deal with

bttreductions�

The above shows that any reduction of �� to MIN will not be trivial� As a matter of fact the best

result known is a wttreduction� Recall that a Turing reduction is called a wtt�reduction if there is a

computable bound on the queries asked to the oracle�

Theorem ���� �Meyer ���	
 �� �wtt MIN�

Proof� Fix a G�del numbering �� We will show that ��� �wtt MIN�� where ��� � fi � �i�i� �g� Since

�� �m ��� this will conclude the proof�

Let a be the minimal index of the function that is unde�ned everywhere� De�ne a computable

function f as follows�

�f�i��x� �

�
� if �i�x�i� �

� otherwise

�



To decide whether i � ��� do the following� for every e � MIN� 
 f�� 	 	 	 � f�i�g � fag dovetail �e on all

integers to �nd some xe for which �e�xe� is de�ned� Note that all searches terminate� since we excluded

a� Now let x be the maximum of the xe� Then i � ��� if and only if �i�x�i� �� the minimal index of the

function �f�i� belongs to the set MIN� 
 f�� 	 	 	 � f�i�g� so if i � ���� then x is an upper bound on the

�rst argument� on which the function �f�i� is de�ned� �

Corollary ���� With MIN� as an oracle� we can compute the minimal index of a function given a

��index of that function� That is� for min� de�ned as min��i� � ��e���i � �e� we have min� �T MIN��

Proof� By the proof of the preceding theorem we know that ��� �T MIN�� Hence with a MIN�

oracle we can e�ectively in i and x decide� whether �i�x� diverges� Given an index i� we compute initial

segments of all �j with j �MIN�
f�� 	 	 	 � ig �including the unde�ned values�� until all but one of them

is di�erent from �i� The index of this function is the minimal index of �i� �

We observed earlier that the reverse is also true� namely MIN� �T min�� hence MIN� and min�

have the same Turing degree�

Theorem ���� �Meyer ��� Theorem �	
 ��� �T MIN�

Proof� Fix a G�del numbering �� Since ��� �m TOT�� it will be su�cient to show that TOT� �T

MIN��

Let a be the minimal index of the function that is zero everywhere� De�ne a computable function

f as follows�

�f�i��x� �

�
� if �i�x� �

� otherwise�

Now i � TOT� i� �f�i��x� � � for all x i� min��f�i�� � a� which is decidable in MIN� by the preceding

corollary� �

The last theorem has several immediate consequences�

Lemma ����

�i� MIN �T ���� because MIN is in ��
��

�ii� All MIN� are Turing equivalent�

�iii� MIN is not in ��
� �since it is in ��

�	�

�iv� MIN is not introreducible� i�e�� there is an in�nite subset of MIN to which MIN does not Turing

reduce� This follows because MIN as a ��
� set has an in�nite subset computable in ���

The second observation leads to the question ��rst asked by Meyer� whether all MIN� are tt

equivalent� Two partial results to this question have been obtained so far�

Theorem ���� �Kinber ���	
 There are two G�del numberings �� � such that MIN� and MIN� are

incomparable with regard to btt�reductions�

Marand�jan proves the same result for conjunctive reductions �creductions��

Theorem ���� �Marand�jan ��� ��	
 There are two G�del numberings �� � such that MIN� and

MIN� are incomparable with regard to c�reductions�

This leaves us with the possibility that the ttdegree of MIN� will depend on �� Kinber �		�

mentions that it is possible to construct a G�del numbering� for which MIN� is ttcomplete for ��
�� and

Marand�jan provides a proof which shows that MIN� can be made dcomplete for ��
�� With some more

care we can even construct a Kolmogorov numbering such that MIN� is dcomplete for ��
�� Remember

that a G�del numbering � is a Kolmogorov numbering if for every G�del numbering � there is a

�



linearly bounded computable function that transforms �indices into �indices� It is well known that

Kolmogorov numberings exist ���� Theorem 	��

The theorem gives us a tight result with regard to disjunctive reductions� since �as we mentioned

earlier� not even �� bdreduces to MIN��

Theorem ���� There is a Kolmogorov numbering � such that MIN� is d�complete for ��
��

Proof� Fix a Kolmogorov numbering �� We will construct a numbering � by alternately coding

TOT�� so it can be recovered by a ttreduction� and copying parts of �� so � will become a Kolmogorov

numbering itself�

The construction of � will proceed in stages� At stage s all functions of index less than w�s� have

been de�ned� Exactly i�s� of these have been copied from the Kolmogorov numbering �� The other

functions are for coding purposes� The two primitive recursive functions w and i are de�ned as follows�

w��� � i��� � �� The induction is�

i�s � 	� � i�s� �w�s� � 
�i�s� � 	�

w�s � 	� � 
�w�s� � 
�i�s� � 	��

This means that in stage s of the construction w�s��
�i�s��	� functions are copied from� and 
�i�s��	�

functions are used for the coding� Note that it is obvious from the de�nition that w�s� � 
i�s� for all s�

Construction of ��

Stage s� �De�ne �i for w�s� � i � w�s� 	���

Step �� �Code s � TOT��
 For 
i with w�s� � 
i � w�s� � 
�i�s� � 	� let

��i�x� �

�
i if �s�x� �

� otherwise�

��i���x� � i for all x	

Step �� �Copy �i�s� up to �i�s����� into ��
 For i with w�s� � 
�i�s� � 	� � i � w�s� 	� de�ne

�i � �i�s��i��w�s����i�s����		

End of Construction�

Two lemmata conclude the proof of the theorem�

Lemma � TOT �d MIN��

Proof� We claim that

s � TOT� �� fw�s� � 	� w�s� � � 	 	 	 � w�s� � 
i�s� � 	g 
MIN� � �	

One direction is immediate� if s � TOT�� then �s�x� is de�ned for all x� Hence ��i � ��i�� for all


i with w�s� � 
i � w�s� � 
�i�s� � 	�� so fw�s� � 	� w�s� � � 	 	 	 � w�s� � 
i�s� � 	g 
MIN� � ��

Assume s �� TOT�� This means that all functions �i with i � fw�s��	� w�s��� 	 	 	 � w�s��
i�s��	g

are di�erent from all functions �j where w�s� � j � i� Therefore i � fw�s� � 	� w�s� � � 	 	 	 � w�s� �


i�s��	g can only be nonminimal if �i agrees with some �j where j � w�s�� Furthermore the functions

at odd indices that are added in Step 	 of the construction are pairwise di�erent� For such an index

to be nonminimal its function has to agree with a function added in Step � of the construction� Up

to stage s only i�s� many functions have been added during Step �� That means one of the i�s� � 	

functions �i with i � fw�s� � 	� w�s� � � 	 	 	 � w�s� � 
i�s� � 	g must be minimal�

This proves that TOT� �d MIN�� Since TOT �m TOT� this concludes the proof of the lemma� �

�



Lemma � � is a Kolmogorov numbering�

Proof� The construction starts with a Kolmogorov numbering �� We will show that the construction

above stretches out � only by a factor� and therefore is still a Kolmogorov numbering�

We can rewrite Step � of the construction as follows�

For k with i�s� � k � i�s � 	� de�ne �w�s����i�s������k � �i�s��k�

This shows two things� � is a G�del numbering� since it includes all functions enumerated by ��

and secondly the �index of a function is within a linear function of its �index�

w�s� � 
�i�s� � 	� � k � ��i�s� � k� � 


using w�s� � 
i�s�� which is immediate from the de�nitions of w and i� �

MIN� is dcomplete for ��
� by the �rst lemma� where � is a Kolmogorov numbering by the second

lemma� This concludes the proof of the theorem� �

��� Weak Notions of Computability and Enumerability

We have already seen that MIN is di�cult to compute� since it is complete for the second level of the

arithmetical hierarchy� Is it possible for MIN to be computable or enumerable in some weaker sense�

In this section we suggest that the answer is no� although the reader should compare this to the result

on autoreducibility in the next section�

Perhaps the most famous notion of approximate computability is semirecursiveness as introduced

by Jockusch in 	
�� ���� A set A is called semirecursive if there is a total computable function f in two

arguments such that f�a� b� � A 
 fa� bg if A 
 fa� bg is not empty�

MIN is not semirecursive� This follows from an easy general result by Jockusch ���� every immune

and semirecursive set is hyperimmune� Since MIN is immune without being hyperimmune� it cannot

be semirecursive�

Semirecursiveness is generalized by the notion of �	� k�computability which originated in frequency

computation� an area closely related to the theory of bounded queries� Frequency computation is another

attempt at introducing a notion of approximate computability� for a recent paper on the subject see

Kummer and Stephan �	��� Let �A denote the characteristic function of A� Then the characteristic

vector �A�x�� 	 	 	 � xk� is de�ned as ��A�x��� 	 	 	 � �A�xk���

De�nition ���� A set A is said to be �	� k�computable if there is a computable total function f �

�k � f�� 	gk such that for all x� � � � � � xk the characteristic vector �A�x�� 	 	 	 � xk� and f�x�� 	 	 	 � xk�

are di�erent�

If A is �	� k��computable for some k� it is called approximable�

Suppose we have A and f as in the de�nition� Why would A be called �	� k�computable� Instead

of the kbit vector f�x�� 	 	 	 � xk� consider the vector obtained by �ipping all k bits� Denote this vector

by f �x�� 	 	 	 � xk�� Then f �x�� 	 	 	 � xk� agrees with the characteristic vector �A�x�� 	 	 	 � xk� in at least

one bit� we can e�ectively answer one out of k queries to A correctly� This is the original de�nition of

�	� k�computability� but we �nd the de�nition given above more convenient�

It would be surprising if MIN was approximable� but unfortunately we have not been able to show

that this is not the case� There are two partial results� however� First we show that MIN� is not

approximable for some G�del numbering� and complement this by a result which implies that MIN� is

not �	� 
�computable for any G�del numbering�

Theorem ���� There is a G�del numbering � such that MIN� is not approximable�

�



Proof� The proof will be a straightforward diagonalization construction of �� We will only prove the

existence of a �� for which MIN� is not �	� k�computable for a �xed k� and argue that the construction

can be easily adjusted to ensure nonapproximability�

Fix a G�del numbering �� Call a function f a potential �	� k��operator if f is total and takes on

values in f�� 	gk�

The construction will meet the requirements�

Rn � if �n is a potential �	� k�operator� then there are x� � 	 	 	 � xk such that

�n�hx�� 	 	 	 � xki� � �MIN�
�x�� 	 	 	 � xk�	

Let 
��� � �� and 
�n� 	� � �
�n� � 	� � k
k�
�n� � 
��

For all n we will let ���n� � �n� This guarantees that � is a G�del numbering� The indices between


�n� and 
�n� 	� will be used to satisfy Rn� To this end we split up the interval In � fz � 
�n� � z �


�n� 	�g into 
k�
�n� � 
� blocks of size k� That is for i � 	� 	 	 	 � 
k�
�n� � 
� de�ne

Iin � fz � 
�n� � �i � 	�k � z � 
�n� � ikg�

so the blocks Iin partition In�

Computation of �e�

Case �� �Make � a G�del numbering�
 If e � 
�n� for some n� then de�ne �e � �n�

Case �� �Diagonalize�
 Determine the unique n� i� j and z such that e is the jth element in the

interval Iin � fz� 	 	 	 � z � k � 	g� Compute �n�hz� z � 	� 	 	 	 � z � k � 	i�� If the computation

terminates with v � �v� 	 	 	 vk� � f�� 	gk� then do the following� if vj � �� then �e � ��� else let

�e be the function that outputs e on every input�

To show that the numbering � so constructed yields a MIN� which is not �	� k�computable� it is

su�cient to prove that all Rn are ful�lled�

Assume �n is a potential �	� k�operator� Then the computation of �n on the 
k�
�n��
� blocks of

In must converge� Since there are only 
k di�erent kbit vectors� �n has to take on some value v � f�� 	gk

on at least 
�n� � 
 blocks� We claim that for one of these blocks v and the characteristic vector on

this block agree� The zeroes in v are not a problem� since �� is copied� making the corresponding index

nonminimal� For a 	 in v we compute a constant function� which is di�erent from any other function

computed for the same purpose in any other block� Hence there are only 
�n� � 	 functions �namely

those with indices in fz � z � 
�n�g� which could possibly agree with the constant functions� Since

there are 
�n� � 
 blocks� there is one block� for which every constant function computed in that block

is minimal� Then v is the characteristic vector on this block� diagonalizing the potential �	� k�operator

�n�

Finally we note that there was nothing requiring us to make k constant� so we can diagonalize

against all potential �	� k�operators� for all k at the same time� yielding the general result� �

Although we were unable to show that the preceding result holds true for all G�del numberings� we

have been able to obtain a result generalizing �	� 
�computability in another direction�

De�nition ���� �Kummer and Stephan ���	
 A set A is called �� 
�verbose if there is a com�

putable function f such that �A�x�� x�� �Wf�x� �x�� and jWf�x��x��j �  for all x�� x��

�� 
�verboseness comprises several other familiar �and less familiar� properties several of which

formalize weak notions of enumerability�






Fact ���� If a set A has any of the following properties then it is �� 
��verbose


	 �	� 
��computable�

	 semirecursive ����

	 semi�c�e� �
�� i�e�� there is a computable partial function f such that f�a� b� � A
fa� bg whenever

A 
 fa� bg is not empty�

	 weakly semirecursive �
�� i�e�� there is a computable partial function f such that f�a� b� � A
fa� bg

whenever jA
 fa� bgj � 	�

	 regressive� i�e�� there is a computable partial function f and an enumeration a�� a�� 	 	 	 of A without

repetition �but not necessarily e�ective	 such that f�a�� � a� and f�an��� � an�

Hence the next theorem tells us that MIN is neither regressive� nor �	� 
�computable� nor �weakly�

semirecursive� nor semic�e� The fact that MIN is not regressive was �rst shown by Fenner using a

di�erent proof�

Theorem ���� MIN is not �� 
��verbose�

For the proof we will use the following lemma about MIN�

Lemma ���� There are sets A�B �T �� such that A � MIN � B� and A and B are not separated by

a co�c�e� set� i�e�� no C with A � C � B is co�c�e�

Proof� Fix the G�del numbering �� Let F � fe � ��n � ����e�n� ��g� Then F �T ��� Let

A � MIN 
F and B � MIN 
F � Then A�B �T ��� since using a �� oracle we can �nd out whether an

index in F is a minimal index� Suppose A � C � B� so MIN 
 F � C � MIN  F � We claim that in

this case C is not coc�e�� which �nishes the proof�

To show that the claim is true� de�ne a computable function f by

�f�e��x� �

�
��s��e � ��s� if e is in �� and x � �

� otherwise�

where ���s�s�� is a computable enumeration of ��� Note that f�e� � F for all e� If e � ��� the �rst value

of �f�e� contains the �rst stage at which e is enumerated into ��� otherwise �f�e� is the function that

is unde�ned everywhere� Let a be the minimal index of ��x����� For every i � C 
 f�� 	 	 	 � f�e�g � fag

there is an xi such that �i�xi� is de�ned� This is true� since i is either a minimal index of �i �in which

case since i �� a the function �i has to be de�ned somewhere�� or i is not in F � which means that �i is

de�ned for some n � ��

Assume that C is coc�e� For each i in D � f�� 	 	 	 � f�e�g � fag start searching for an xi as above�

Simultaneously enumerate C and eliminate elements appearing in C from D� Then at some �nite

stage� D will only contain indices for which witnesses xi have been found� With this D compute

m�e� � maxf�i�xi� � i � Dg� Then e � �� if and only if e � ��m�e� contradicting that �� is not

computable� �

Proof of Theorem ����� Suppose MIN is �� 
�verbose via the computable function f � i�e��

�MIN�x� y� � Wf�x�y� and jWf�x�y�j �  for all x and y� Let A and B be chosen as in the lemma�

There are two cases�

	 There is x ��MIN such that ��y � A���	� 	� �Wf�x�y�� and ��y � B���	� �� �Wf�x�y���

	�



Fix such an x� and de�ne C � fy � �	� �� �� Wf�x�y� or ��� �� �� Wf�x�y�g� Obviously C is a coc�e�

set� We prove that C separates A and B which contradicts the choice of A and B� If y is in A� then

by assumption �	� 	� � Wf�x�y�� Furthermore ��� 	� � Wf�x�y� since it is the correct characteristic

vector� Since Wf�x�y� contains at most three elements one of �	� �� or ��� �� can not be in Wf�x�y��

whence y � C� This proves that A � C� Now assume that y � B� Then ��� �� � Wf�x�y� �since it is

the correct characteristic vector� and �	� �� �Wf�x�y� �by assumption�� Then y �� C by de�nition�

proving that B � C�

	 For all x ��MIN either ��y � A���	� 	� �� Wf�x�y�� or ��y � B���	� �� ��Wf�x�y���

In this case we have a �� witness for x ��MIN�

x � MIN i� ��y � A���	� 	� �Wf�x�y�� and��y � B���	� �� �Wf�x�y��	

The implication from left to right holds because Wf�x�y� has to contain the correct characteristic

vector� The other direction uses the fact that if x �� MIN there is either a y � B for which

�	� �� �� Wf�x�y� or a y � A such that �	� 	� �� Wf�x�y�� Thus x � MIN is equivalent to a formula

that is ��
� in A �B �T ��� hence MIN is in ��

�� which we know to be false by Lemma ��	��

�

I conjecture that MIN is not approximable� In fact� all that would be necessary to prove this

conjecture is to show that there are A�B � ��
� such that A � MIN � B and A and B are not separated

by a set computable in ��� i�e�� for all C with A � C � B� C ��T ��� By relativizing a theorem of Kummer

and Stephan �	�� Theorem ���� to �� we would then have that MIN is not even �	� k�computable by a

function computable in ���

��� Autoreducibility

Most of the results concerning MIN are of a negative character� due to its extreme thinness� However�

there is at least one nontrivial property MIN does have� it is autoreducible� namely there is an oracle

Turing machine which can decide whether e �MIN by making queries to MIN which are di�erent from

e�

The proof will be a modi�cation of the proof that MIN is Turing complete for ���� We �rst need a

lemma�

Lemma ���� Let � be a G�del numbering� Given i� x and a �nite set D � �� we can e�ectively decide

whether �i�x� diverges by using MIN� as an oracle without asking any element of D�

Proof� Fix a G�del numbering �� Let a be the minimal index of the function that is unde�ned

everywhere� De�ne computable functions fj by

�fj�i��s� �

�
j if �i�s�x� �

� otherwise
�

where j � f�� 	 	 	 � jDjg� Let f�i� � maxffj�i� � j � f�� 	 	 	 � jDjgg� To decide whether �i�x� �� do the

following� for every e � MIN� 
 f�� 	 	 	 � f�i�g � �D  fag� dovetail �e on all integers to �nd some se

for which �e�se� is de�ned� Note that all searches terminate� since we excluded a� Now let s be the

maximum of the se� Then �i�x� � if and only if �i�s�x� �� The reason is that if �i�x� converges� then

the minimal index of at least one of the jDj� 	 functions fj is in MIN� 
 f�� 	 	 	 � f�i�g � �D  fag�� �

Applying the lemma with jDj � 	 gives us the following theorem�

		



Theorem ���� MIN is autoreducible�

Proof� Fix a G�del numbering �� We will prove that given y and i� we can e�ectively decide whether

i � TOT� by making oracle queries to MIN� without querying y� Since TOT� �T MIN� this �nishes

the proof�

Consider two computable functions fj �j � �� 	��

�fj �i��x� �

�
j if �i�x� �

� otherwise�

Let aj �j � �� 	� be the minimal index of the function ��x��j��

Let y and i be given� Using MIN� as oracle determine whether �y��� converges without making

queries to y� �This is possible by the preceding lemma�� If so �x j � f�� 	g such that �y��� �� j� else let

j � �� We can now compute the minimal index of �fj �i� without making queries to y using the same

method as in theorem ��		� compute initial segments �including unde�ned values� of functions �e with

e � MIN� 
 f�� 	 	 	 � fj�i�g � fyg until all but one of them is di�erent from �y� This is possible� since

�fj �i� �� �y by choice of j� and we can decide �e�x� � without querying y� Now i � TOT� i� the index

which is left is aj� �

This result is nontrivial� since every degree above �� contains a set which is not autoreducible �as

proven by Jockusch and Paterson ��	���

��� Shortest Descriptions

Remember that we de�ned the set of shortest descriptions of a G�del numbering � to be

R� � fe � ��i � e���i��� �� �e����g�

which is computable in ��� By this de�nition it is obvious that R� � MIN�� In particular R is also

strongly e�ectively immune and �immune� Furthermore the construction showing that MIN is not

hyperimmune works for R too�

We can conclude that �� does not bttreduce to R� A variation of the Meyer result gives us that

�� does wttreduce to R� and as in the case of MIN we can construct a G�del numbering � for which

�� �tt R�� This� as in the case of MIN leaves us with the possibility that R is ttequivalent to ���

There has been related work in the area of Kolmogorov complexity� Let C��x� � minflg�e� � �e��� �

xg� where lg�x� � dlogxe� the Kolmogorov complexity of the number x �w�r�t� �	� According to the

textbook by Li and Vit�nyi� Kolmogorov knew that C� as a function of x is not computable� and they

mention that C� is as hard as the halting problem �Exercise ������ attributed to Peter G�cs�� Using

Arslanov�s completeness criterion the result can be sharpened� We include a statement of the version

of the criterion we will need�

Theorem ���� �Arslanov ���	
 If A is a c�e� set and f �wtt A has no �xed�points� i�e�� �e �� �f�e�

for all e� then A is wtt�complete��

Theorem ���� Suppose A is an in�nite c�e� set and f a computable partial function which agrees with

C� on A� Then �� �wtt f � In particular any such function f has the same wtt�degree as ���

�Arslanov�s criterion for wtt�reductions �	� Proposition III���	
� is usually stated for functionswhich ful�llWe �� Wf�e�

for all e� Such a function can be transformed into one which is �xed�point free in our sense �see� for example� Exercise V����

in Soare �����

	�



Proof� Let B be an in�nite computable subset of A� and f as described in the theorem� We will

show how to compute a function g in f which is �xedpoint free� i�e�� �e �� �g�e�� On input e search for

x � B such that f�x� � lg e �and hence C��x� � lg e�� Then search for some i for which �i��� � x�

Let g�e� � i� Since � is a G�del numbering we are sure to �nd such an i� Furthermore we know that

we only have to check the �rst e � 	 numbers in B beyond e to �nd an x as required� This gives us a

wttreduction from g to f � �

With C� as a complexity function we can now give Kolmogorov�s de�nition of randomness� x is

random �w�r�t� �	 if its complexity C� is at least its length lgx � blog� xc� 	�

De�nition ���� �Li and Vit�nyi ���	
 De�ne

RAND� � fx � C��x� � lgxg�

the set of random strings with regard to ��

Using Arslanov�s completeness criterion again� one can show that �� �wtt RAND�� Martin Kummer

recently gave a surprising re�nement of this result�

Theorem ���� �Kummer ���	
 �� �tt RAND� for all Kolmogorov numberings �� but there is a

G�del numbering �� for which �� ��tt RAND��

Kummer also mentions that a similar proof will show that there is a G�del numbering � for which

the set fhx� ei � ��i � e���i��� � x�g is not ttcomplete� Although this comes closer to the set R of

shortest descriptions as de�ned here� Kummer�s methods do not seem applicable� Another result of

Kummer�s which does not carry over easily to R� is that RAND� is superterse�

� Size�minimal Indices and Descriptions of Smallest Size

��� Size	minimal Indices

In the preceding sections we called an index minimal if it was the smallest index of a given function�

In practice we might have di�erent size measure than just the index itself� Most computer scientists

for example would say the size of �i is lg i� the length of the program� but other size measures have

been considered too� There seem to be two reasonable requirements a size measure should meet� it

should be computable� and there should only be �nitely many indices of the same size� More formally

a computable function s from � to � is called a size function if s���n� � fm � s�m� � ng is �nite for

all n� This de�nition might be found too restrictive in its insistence on the computability of s� We will

return to this question in the section on �minimal indices� For now we restrict s to be computable�

Consider the following generalization of MIN�

De�nition ��� �Bagchi ��	
 For a G�del numbering � and a size function s de�ne

MIN��s � fe � ��i��s�i� � s�e�� �i �� �e�g�

the set of size�minimal indices of �� As usual we will drop � if not needed� Dropping s means that s is

the identity function�

Let us �rst look at a special case� if a canonical index of s���n� can be computed e�ectively from

n we call s a strong size function� In this case most of the results for MIN carry over to MINs� for

example ��� �T MINs �which was proved by Bagchi �	��� We will not pursue this question here� since

the situation becomes much more interesting for general size functions�

A closer examination of MINs tells us that it lies in ��
� like MIN itself and that something slightly

stronger is true�

	�



Lemma ��� MINs lies in ��
� uniformly in s �and �	�

Proof� Note that e � MINs if and only if

��k�� ��i � k��s�i� � s�e�� �

��i � k���x��s�i� � s�e�� �e�x� �� �i�x���	

The ��i � k���x� can be made part of the �rst existential quanti�er� Then both ��i � k��s�i� � s�e��

and �e�x� �� �i�x� are decidable with a �� oracle uniformly in s �and ��� even if s is not total� �

Bagchi �	� proved that ��� �T MINs���� but he leaves unanswered the question of whether �� reduces

to MINs� We know already that if s is the identity function then we can make MIN��s ttcomplete for

some G�del numbering �� It is still open whether �� Turing reduces to MINs� but we have the following

result which shows that if such a reduction exists it has to be a proper Turing reduction� and not a

wttreduction� In this respect it is interesting to compare this to the result on shortest descriptions in

the next section�

Theorem ��� There is a computable size function s �independent of the G�del numbering	 such that

�� does not wtt�reduce to MINs�

The theorem is a consequence of a new result which is given below and the classical result by

Friedberg and Rogers that �� does not wttreduce to a hyperimmune set ���� Exercise ��	���

Theorem ��� There is a computable size function s �independent of the G�del numbering	 such that

MINs is hyperimmune�

Proof� We will in fact construct a computable size function s such that MIN��s is hyperimmune for

every e�ective numbering �� Let ��z� e� x� be a universal function� Then ��ze �e�� �� ���z� e� ���e�� will

contain all e�ective numberings� and in particular all G�del numberings as z ranges over ��

Fix a particular G�del numbering �� The construction will be a straightforward priority argument

ful�lling the requirements

Re�z � if �D�e�x��x�� is a strong disjoint array� then there is an x for which D�e�x� 
MIN�z �s � ��

for all e� z � ��

Stage t � �� Initially s is unde�ned on all values�

Stage t� If s�t� is still unde�ned at this stage� then de�ne it to have value t� We say he� zi � t requires

attention at stage t if Re�z has not received attention yet� and there is a w � t such that

	 �e�t�w� is de�ned� and

	 D�e�w� only contains elements whose size is de�ned and is at least he� zi � 	�

Let he� zi be the minimal element that requires attention �if any� and �x the corresponding w� We say

that he� zi receives attention� Let D � D�e�w�� E�ectively �nd a new ��nite� set E of �z indices of

the functions indexed by D such that the elements of E have not been assigned a length yet� Namely

f�zi � i � Dg � f�zi � i � Eg� Assign a size of he� zi to each element in E�

By construction s is a computable� total function� and it is a size function since each requirement

Re�z assigns the value he� zi to a �nite number of functions�

Note that a requirement that receives attention is met immediately and never injured afterwards�

Now suppose not all requirements are ful�lled� and let he� zi be minimal such that Rhe�zi is not met� We

can choose a stage t� � he� zi after which no Rj with j � he� zi acts� Then the sizes assigned from stage

t� on will be at least he� zi� 	� Since �D�e�x��x�� is a strong disjoint array �otherwise Rhe�zi would be

	�



ful�lled� there is a w for which D�e�w� contains only elements of size at least he� zi� 	 forcing Rhe�zi to

act and become ful�lled� �

Note though that MINs is not hyperhyperimmune �as Bagchi observes��

Remark� If we have a function f which on input e returns a sizeminimal index of �� i�e�� f�e� �MINs

and �e � �f�e� �there might be many such functions�� then it is easy to see �using the same tricks as

for minimal indices� that ��� �T f � and f �T MINs � ���

On the other hand it is easy to see �using the coding techniques with which MIN was made tt

complete� that there is a computable size function s �independent of the G�del numbering� such that

MINs is ttcomplete for ����

The set MINs shares some immunity properties with MIN� For example the proof of �immunity of

MIN can be easily adapted�

Theorem ��� MINs is ��immune �for all computable size functions s	�

Corollary ��� �� ��btt MINs �for any computable size function s	�

Although we do not expect it to be either e�ectively or even strongly e�ectively immune in general

�and it is easy to construct s where it is neither�� it is constructively immune� We will prove a more

general result which is based on a proof by Owings �����

De�nition ��� A set A is constructively immune if it is in�nite and there is a computable partial

function � such that if We is in�nite� then ��e� � and ��e� � We �A�

Let I�e� � fi � �i � �eg� the set of indices of �e�

De�nition ��� We call H � P��� � P��� an e�ective choice functional if there is a computable g such

that

	 H�I�e�� � I�e��

	 H�I�e�� 
Wg�e� � �� and

	 Wg�e� co�nite�

for all e�

E�ective choice functionals should not be confused with Owings ���� e�ective choice functions which

are computable partial functions H from P��� to � such that H�A� � A for all A � dom�H��

Theorem ��� Suppose that for a set M there is a computable function g such that I�e�
M
Wg�e� � �

and Wg�e� is co�nite for all e� Then M is constructively immune�

Proof� Using the Recursion Theorem de�ne a computable function f ful�lling�

�f�e��x� �

�
�i�x� if hi� ti is the smallest hi�� t�i with i� �We�t� 
Wg�f�e���t� �

� otherwise

and let ��e� be the i for which hi� ti is the smallest hi�� t�i with i� �We�t�
Wg�f�e���t�� Assume thatWe is

in�nite� This implies thatWe
Wg�f�e�� is in�nite� and �f�e� � ���e�� Thus we conclude ��e� � I�f�e���

but ��e� �Wg�f�e�� and hence ��e� �� I�f�e�� 
M and therefore ��e� ��M � �

Corollary ���� If H is an e�ective choice functional� then M � fH�I�e�� � e � �g is constructively

immune�

Proof� For an e�ective choice functional we have M 
 I�e� 
Wg�e� � H�I�e�� 
Wg�e� � �� Hence

we can apply the theorem� �
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Corollary ���� MINs is constructively immune for every computable size function s�

Proof� Let H�I�e�� � fi � I�e� � ��j � I�e���s�j� � s�i��g� We de�ne g computable such that

Wg�e� � fi � s�i� � s�e�g� Then Wg�e� is co�nite since s is a size function� and it witnesses that H is an

e�ective choice functional� Now the corollary applies� since MINs � fH�I�e�� � e � �g� �

Note that� for example� the same result holds for the ithminimal indices�

The next result is immediate from Owings� paper�

Lemma ���� �Owings ���	
 Suppose thatH is a computable partial functional whose domain includes

all in�nite subsets of �� and such that H�A� is a �nite subset of A for all A in the domain of H� Then

H is an e�ective choice functional�

Hence we can draw the following conclusion�

Corollary ���� Suppose that H is a computable partial functional whose domain includes all in�nite

subsets of �� and such that H�A� is a �nite subset of A for all A in the domain of H� Then M �

fH�I�e�� � e � �g is constructively immune�

In Owings paper it is shown that M is e�ectively immune under the assumptions of the corollary�

Xiang ���� showed that the notions of constructive and e�ective immunity are independent�

��� Descriptions of smallest size

Consider the set Rs � fe � ��i��s�i� � s�e� � �i��� �� �e����g� �As usual � remains in the background��

Since Rs � MINs the immunity properties carry over from MINs to Rs�

Corollary ���� 	 Rs is ��immune �for every computable size function s	�

	 There is a computable size function s such that Rs is hyperimmune�

	 Rs is constructively immune�

Hence we also know that �� ��btt Rs �for any computable size function s�� Concerning the degree of

Rs for once we can get a tight result� By the second item of the corollary there is a G�del numbering for

which �� ��wtt Rs� Since Rs is a 
c�e� �d�c�e�� set in which we can compute a �xedpoint free function

we can conclude �� �T Rs using the generalized Arslanov completeness criterion �	���

Proposition ���� �� �T Rs �for all computable size functions s	�

The proposition leaves us with a slightly unsatisfactory situation� we know that a Turing reduction

exists� but we cannot explicitly present it� Part of the reason is that the generalized Arslanov complete

ness criterion is nonuniform� It does not yield a Turing reduction uniformly in s �and as a matter of

fact it cannot� even for d�c�e� sets �	�� Theorem ������ The challenge remains to show that the uniform

analogue of the proposition is false� or to exhibit a direct reduction from �� to Rs which is uniform�

� Minimal indices of total� �nite and in�nite functions

Several natural variants of MIN result from restricting our attention to certain classes of functions� like

total� in�nite� or �nite functions� Thus we might consider MIN
n � MIN
FIN� MINtot � MIN
TOT

or MINinf � MIN
 INF the minimal indices of �nite� total and in�nite functions� respectively� Whereas

a standard proof shows that ��� �T MIN
n� it can be proved that MINtot and MINinf are wttcomplete

for ��� rather than just Turing complete� The basic trick for this result is due to Lance Fortnow� It will

also serve us well in the next section on ��minimal indices�

	�



Theorem ��� �Fortnow �personal communication

 ��� �wtt MINtot�

Proof� We skip the proof that �� �wtt MINtot which follows lines familiar from MIN� De�ne a

computable function f as follows�

�f�e��x� �

�
��s���e�s�x� �� if �e�y� ��

� otherwise�

Then e � TOT if and only if there is an i � f�� 	 	 	 � f�e�g 
MINtot such that �e��i�x��x� � for all x � ��

Since i � TOT the last condition can be decided in �� which wttreduces to MINtot� Since the queries

can furthermore be bounded e�ectively this yields a wttreduction from ��� to MINtot� �

Some slight adjustments will also give ��� �wtt MINinf � These two results are particularly interesting

in the light of the observation that �� �tt B and A �wtt B imply A �tt B �thanks to Martin Kummer

for pointing this out ��	� Proof of Proposition VI������� Hence if we could show that �� �tt MINtot we

would already know that ��� �tt MINtot �and the same for MINinf ��

� �

��minimal indices

The ��minimal indices are yet another very interesting and strange variant of MIN� �rst de�ned by

John Case� Remember that two partial functions f and g are said to be almost always equal �written

as f �� g� if they agree on all but �nitely many inputs�

De�nition ��� �Case ��	
 For a G�del numbering � de�ne

MIN�
� � fe � ��i � e���i ��

� �e�g�

the ���minimal indices of ��

As regards dropping � the same conventions that were used for MIN apply� Let us �rst note some

facts�

Lemma ��� �i� �Case ���� MIN� is ��
��immune� i�e�� it has no in�nite subset in ��

��

�ii� MIN� � ��
� ���

��

�iii� There is a Kolmogorov numbering � such that MIN�
� is d�complete for ��

��

�iv� MIN� is k�immune for every k� hence �� does not btt�reduce to MIN��

�v� MIN� is not hyperimmune�

Proof� For �i� use a result by Arslanov� Nadirov� and Solov�ev on almost �xed points �	�� Theo

rem ��	� Lemma ��	�� Then �ii�� MIN� �� ��
� is an immediate consequence and MIN� � ��

� is easily

checked� Using the Kolmogorov numbering � from Theorem ��	� yields �iii� �even using the same

reduction�� For �iv� note that MIN� � MIN� For �v� the same proof as for MIN works� �

What about the degree of MIN�� The question seems to be more di�cult than for MIN� since

reducing �� to MIN� poses serious problems� Since we only have ��minimal indices� all the information

a computable algorithm can �nd about � could be in the initial faulty part� Therefore the ideas used

for MIN do not work here� The best we can prove is the following theorem�

Theorem ��� MIN� � �� �T �����

The heart of the proof is the following lemma�

Lemma ��� MIN� � �� �T ����

	�



Proof� Fix a G�del numbering �� We will show how to enumerate TOT� in MIN� � ��� Since

obviously TOT� is c�e� in �� this proves the theorem� De�ne two computable functions f and g as

follows�

�f�e��x� �

�
��s����y � x���e�s�y� ��� if ��y � x���e�y� ���

� otherwise�

and

�g�e��x� �

�
��hy� s� zi��y � x � �e�s�y� �� z�� if there is a y � x such that �e�y� ��

� otherwise�

Fix a minimal such that �a �� ��x����� i�e�� a is the ��minimal index of the everywhere unde�ned

function� Consider the following algorithm�

On input e search for i � f�e� with i �MIN� and i �� a and n such that ��x���e�maxfn��g�i��x�g�x� ��

is true� Halt if such i and n are found�

First note that if i � MIN�� and i �� a� then �i is de�ned in�nitely often� hence �g�i� is total� i�e��

�e�maxfn��g�i��x�g�x� � can be e�ectively decided in e� i and x� hence ��x���e�maxfn��g�i��x�g�x� �� can

be decided by the �� oracle� Hence the algorithm will work with a MIN� � �� oracle� If the algorithm

terminates� then in particular �e�x� � for all x� and so e � TOT� We only have to argue that the

algorithm does terminate for e � TOT� Suppose e � TOT� Then f�e� is an index of a total function

which for every x gives an upper bound on the number of steps it takes �e to converge on x� �e��f�e� �x� �

for all x� This function has a ��minimal index i � MIN� such that �f�e��x� � �i�x� for all x � n�

Now �g�i��x� � �i�x� for all x� and hence �e�maxfn��g�i��x�g�x� � for all x� so the algorithm terminates�

�

Proof of Theorem ���� Since MIN� � ��
� it is clear that MIN�� �� �T ����� On the other hand we

just proved that MIN� � �� �T ���� Thus it will be su�cient to show that ���� �T MIN� � ����

By Lemma ��� there is a G�del numbering � such that ���� �T MIN�
�� so we are done if we can

prove that MIN�
� �T MIN�

� � ��� for every G�del numbering �� Fix � and a computable translation

function f from � to �� i�e�� �f�x� � �x for all x� We need an algorithm to decide whether e �MIN�
��

Let m � maxff�i� � i � eg� and I � MIN�
� 
 f�� 	� 	 	 	�mg� Then I contains �� minimal indices �w�r�t�

�� for ��� 	 	 	 � �e� For each �i we can �nd i� � I such that �i �� �i� using the ��� oracle �note that we

do not have to decide �i �� �j to do that� that would be a ��
� complete task�� Now e � MIN�

� if and

only if no i � e has the same ��minimal index �w�r�t� �� as e� �

Although the theorem does not allow us to pin down the degree of MIN� exactly we can at least

conclude that MIN� does not lie in ��
��

Corollary ��� MIN� � ��
� � ��

��

	 ��minimal programs� decision tables and noncomputable size

measures

We mentioned earlier that it might be natural to consider noncomputable size measures� Call a function

s � S � � a weak size function if s���n� is �nite for all n� where S � � is a set of indices we are interested

in� Pager ���� ��� and Young ��
� suggested some examples of weak size functions which are based on

Blum�s complexity measures� In these examples the complexity of a function becomes part of its size�

	�



Let us look at an example which measures the size of �nite functions�

s�e� �

���
��

t� e if t is minimal such that dom��e� � f�� 	 	 	 � tg

and �e�t�x� � for all x � dom��e�

� otherwise

Then s is a weak size function �computable in ��� which tells us the domain of �nite functions and how

long it takes to compute the values in the domain� This seems to be a natural size function taking

into account both time and space� It is essentially the one suggested by Young ��
�� Pager ���� later

generalized it to include in�nite functions� For this particular weak size function we do not need the full

power of ��� to compute a minimal index for every �nite function� since s gives us an upper bound on

both the running time and the index of a sizeminimal index� More formally there is a partial function

f computable in �� such that �e � �f�e� and f�e� �MINs whenever �e is a �nite function�

Remark� In the light of our newfound interest in weak size function let us return to sizeminimal

indices and see what happens there� Bagchi �	� proved that ��� �T MINs � �� for size functions� For

weak size functions this becomes ��� �T MINs � s�� where s� is the jump of the graph of s� This

means that MINs and s cannot be computationally easy at the same time� Bagchi observed that s can

be chosen in such a way �using the Friedberg numbering� that MINs becomes computable� It might

be interesting to note that in the other direction Kummer �	�� used minimal indices to give an easy

priorityfree proof of the existence of a Friedberg numbering�

For the rest of this section we will concentrate on weak size functions� The variant of minimal indices

we look at next is suggested by the work of David Pager ���� ���� For two partial functions f and g we

write f � g if f�x� � g�x� for all x in the domain of f �

De�nition ��� �Bagchi ��	
 Let

MIN
�

��s � fe � ��i��s�i� � s�e� � �e �� �i�g�

the set of ��size�minimal indices of ��

The idea behind the de�nition of MIN
�

s is that if you are looking for a minimal index of a function

that computes f you might not care what happens outside the domain of f � In this case some function

g � f might have a much smaller minimal index than f itself�

It is easy to see that MIN
�

s �T ���� s� �s� allows you to compute all indices of a given size and then

the ��� oracle will do the rest�� As for sizeminimal indices it can be proved that ��� �T MIN
�

s � s��

How di�cult is it to compute �sizeminimal indices of certain classes of functions� Consider� for

example� a function f that computes a �sizeminimal index of every computable partial function given

by its index� That is� f has to ful�ll �e � �f�e� and f�e� �MIN
�

s � Then one easily shows that ��� �T f �

We conclude that although the complexity of MIN
�

s itself might �uctuate with s� the problem of

�nding a �sizeminimal program is never easy� Remember that the same is true of MINs�

At the beginning of this section we discussed a particular weak size function for which it was

computable in �� to �nd sizeminimal indices for �nite functions� What happens if we ask for ��size

minimal indices of �nite functions� Let us re�ne the problem� The restriction to �nite functions suggests

a di�erent representation from the one used so far� Instead of representing the function by its index�

we specify its behavior as a set of pairs� f�xi� bi� � bi � f�� 	g and 	 � i � ng� This means the value of

the function has to be bi on input xi �for all 	 � i � n�� Note that we limit ourselves to f�� 	gvalued

functions� If we represent functions in this way we call them decision tables� Consequently the �xi� bi�

are called the entries of the decision table�

	




The question of how di�cult it is to �nd a �sizeminimal index for a decision table was �rst

investigated by David Pager ���� ���� He proved that even if we restrict ourselves to decision tables

with just two entries� the problem is undecidable� regardless of the complexity of the size function� Let

�x� y� denote the function with the decision table f�x� ��� �y� 	�g�

Theorem ��� �Pager ���	
 For every weak size function s there is a constant c such that no total

computable function f ful�lls

	 �c� x� � �f�c�x��

	 �c� x� �� �e for all e with s�e� � s�f�c� x��

Using his proof and improving it slightly we can show that computing a �sizeminimal index of a

twoentry decision table has at least the complexity of the halting problem�

Theorem ��� If s is a weak size function and f a total function which computes ��size�minimal indices

of two entry decision tables� i�e��

	 �x� y� � �f�x�y��

	 �x� y� �� �e for all e with s�e� � s�f�x� y���

then �� �T f �

In the light of earlier results the last theorem and Pager�s original result seem surprising� since they

only require s to be �niteone� All the tricks we have seen so far �using the recursion theorem� are no

longer applicable but have to be substituted by a more involved argument�

Proof� Assume that f ful�lls the hypothesis of the theorem� Let M be a Turing complete maximal

set �Friedberg�s set will do since it is e�ectively maximal�� Split M into two c�e�� noncomputable sets

S and T � i�e�� M � S  T and S 
 T � �� In this case S and T are strongly inseparable� namely if U

and V are c�e� sets such that S � U � V � T � then S �� U and T �� V �the easy proof can be found

in a paper by Cleave ����� De�ne

g�x� �

���
��

� if x � S

	 if x � T

� otherwise�

Fix an index a of g and let I� be the �nite set of indices which have at most the size of a� namely

H � fi � s�i� � s�a�g� From the indices in H we want to �lter out those which belong to a function

that is 	 in�nitely often outside of M � To this purpose de�ne

I � fi � I� � jM 
 fx � �i�x� � 	gj ��g	

Let X �
T
i�Ifx � �i�x� � 	g �note that if I is empty� then X � ��� For all i � I we have that

M 
 fx � �i�x� � 	g is a �nite set �M is maximal�� and since I is �nite� the set M 
X �
S
i�I M 


fx � �i�x� � 	g is �nite� Since M is in�nite this implies that M 
X is in�nite�

We claim that S 
X is in�nite� If S 
X was �nite� then V � �X �S�T would be a c�e� set which

separates S and T � but for which V �� T is false� contradicting the strong inseparability of S and T �

Hence we can choose an element c � S 
X� Note that if x � T � then f�c� x� � H �since H contains an

index of g�� On the other hand if x �M � then f�c� x� �� H for almost all x by choice of c�

Repeating the argument with the set I� � fi � H � jM 
 fx � �i�x� � �gj � �g� we get a constant

d such that if x � S� then f�x� d� � H� and if x � M � then f�x� d� �� H for almost all x by choice of d�

Since M is the union of S and T this means that x � M if and only if f�c� x� � H or f�x� d� � H for

almost all x� Since M was chosen to be Turing complete �and H is �nite� this �nishes the proof� �

��



Remark� It is easy to see that a function f as in the theorem can be computed with an oracle for s��

the jump of the size function� In case s is computable that implies that the complexity of f is exactly

the complexity of the halting problem�

Corollary ��� Finding a ��size�minimal index for a decision table with two or more entries is at least

as di�cult as solving the halting problem�

Finding �sizeminimal indices for decision tables with one entry can be computable or not� depend

ing on the size function s� as observed by Pager�


 Learning Theory

The last variant of MIN we want to mention is the one considered in learning theory� Instead of insisting

on the exact minimal index of a function we allow some freedom� Remember that we de�ned min��i�

to be the minimal �index of the function �i�

De�nition ��� For a computable function h with h�x� � x for all x let

h�MIN� � fe � e � h�min��e��g	

It is easy to see that given h and � we can construct a G�del numbering � by stretching � out using

h such that hMIN� �� MIN�� That means that all results true for MIN �i�e�� for MIN� for all �� which

are robust under �nite variations are automatically true for hMIN� Also results that are not a�ected

by the stretching out �like the construction of a G�del numbering � for which MIN� is dcomplete for

��
�� can be carried over to the case of nearlyminimal indices�

Learning theory investigates how di�cult it is to learn a function by returning an index in hMIN�

There are also variants which instead of trying to approximatemin��e� allow more freedom by accepting

a �xed �or �nite� number of errors in the function �rather like MIN��� A short history of this area can

be found in a paper by Case� Jain and Suraj ���� But that�s another story and shall be told another

time�

� Open Questions

Several interesting questions remain open� Foremost is Meyer�s original question whether all MIN� are

ttequivalent� Because of the construction of a G�del numbering � for which MIN� is ttcomplete� this

would imply that all MIN� belong to the ttdegree of ����

Knowing that �� ��btt MIN and �� �wtt MIN leaves us with the tantalizing question of whether

�� �tt MIN� If this should indeed be the case� and it could be proved that ��� �wtt MIN� we would

already have ��� �tt MIN� by a general result �use the ttreduction of �� to �gure out whether the

wttreduction will converge�� In this respect it is worth remembering that some variations of MIN like

MINtot and MINinf are wttcomplete for ��
� �and not only Turing complete��

We would like to settle the degree of MIN� by either showing that that �� �T MIN� or by constructing

a G�del numbering for which this is not the case� Even constructing a G�del numbering � such that

�� ��tt MIN� would be interesting� since it might carry over to MIN and answer Meyer�s open question�

We know that MIN� is not approximable for some G�del numbering �� This make this particular

MIN� a natural example of an autoreducible� nonapproximable set �Kummer and Stephan �	�� showed

that approximable sets are autoreducible�� If we could prove that MIN is not approximable the example

�	



would be even more convincing� If� on the other hand� there is a G�del numbering � for which MIN�

is approximable� this would prove that not all MIN� are bttequivalent �because approximable sets are

closed downwards under bttreductions�� A stronger result is already known �Kinber�s theorem�� but

the proof might be easier�

The big open question for sizeminimal indices is whether MINs is Turingcomplete for ���� but there

are also a host of other questions which have not been asked yet� is MINs autoreducible� approximable�

superterse� etc� Similarly it is an open problem to determine what the possible degrees of MIN
�

s are�

One approach to MIN and MINs is through their ��versions� shortest descriptions and descriptions

of smallest size� The hope is that some of the open questions might be easier to answer when asked

about R and Rs� but at the same time might yield an insight on how to approach the original problem�

It seems� however� that we do not understand the relationship between Rs� RAND� and MINs very

well�
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