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Abstract

An edge in a drawing of a graph is called even if it intersects every other edge of
the graph an even number of times. Pach and Tóth proved that a graph can always be
redrawn so that its even edges are not involved in any intersections. We give a new and
significantly simpler proof of the stronger statement that the redrawing can be done in
such a way that no new odd intersections are introduced. We include two applications
of this strengthened result: an easy proof of a theorem of Hanani and Tutte (the only
proof we know of not to use Kuratowski’s theorem), and the new result that the odd
crossing number of a graph equals the crossing number of the graph for values of at
most 3. The paper begins with a disarmingly simple proof of a weak (but standard)
version of the theorem by Hanani and Tutte.

1 The Hanani-Tutte Theorem

In 1970 Tutte published his paper “Toward a Theory of Crossing Numbers” [16] containing
the following beautiful theorem.

In any planar drawing of a non-planar graph there are two non-adjacent edges
that cross an odd number of times. In other words: if a graph can be drawn
such that every pair of non-adjacent edges intersects an even number of times,
then the graph is planar.

Tutte acknowledges earlier proofs of the same result, including the paper “Über wesentlich
unplättbare Kurven im drei-dimensionalen Raume” [5] published in 1934 by Chaim Choj-
nacki (who later changed his name to Haim Hanani). While there is general agreement that
the result itself is “remarkable” [12, 3], and “nice” [1], the same cannot be said of its proofs.
Both Hanani and Tutte took the same general approach in their proofs using Kuratowski’s
theorem: If the graph is non-planar it contains a subdivision of K3,3 or K5, so they only
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have to show that any drawing of these graphs contains two non-adjacent edges that cross
an odd number of times. Hanani opts for a more topological approach, while Tutte develops
an algebraic theory of crossing numbers.

We want to present a very intuitive and entirely geometric proof of the result which,
furthermore, does not use Kuratowski’s theorem. We begin by proving a slightly weaker
result.

Let us call an edge in a drawing even if it intersects every other edge an even number of
times.1

Theorem 1.1 (Hanani-Tutte, weak version) If G can be drawn in the plane so that
all its edges are even, then G is planar.

Proof We may assume that G is connected, since components may be redrawn arbitrarily
far apart. Fix a plane drawing D of G in which every pair of edges intersects an even
number of times. We prove the result by induction on the number of edges in G. To make
the inductive step work, we keep track of the rotation of each vertex, that is, the cyclic
order in which edges leave the vertex in the drawing. The mapping from the vertices of G

to their rotations is called the rotation system of D. We will prove the following stronger
statement:

If D is a drawing of a multigraph G so that any pair of edges intersects an even
number of times in D, then G is planar and can be drawn without changing the
rotation system.

We begin with the inductive step: if there are at least two vertices in G, then there is an
even edge e = uv. Pull v towards u as shown in the left part of Figure 1.

u

v

⇒

u
v

⇒

u = v

Figure 1: Pulling an endpoint (left) and contracting the edge (right).

Since e was an even edge, the edges incident to v remain even. The pulling move will
introduce self-intersections in curves that intersect e and are adjacent to v. Since drawings
are typically defined not to have self-intersections, we remove them by using the move shown
in Figure 2 (although we could preserve self-intersections and instead modify the analysis
slightly).

Now that uv no longer has any intersections, we contract it to obtain a new graph G′ in
which the rotations of u and v are combined appropriately (see the right part of Figure 1).

1 We make the standard assumptions on the drawing of a graph, in particular we assume that any pair
of edges intersects only finitely often [11, page 230].
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⇒

Figure 2: Removing a self-intersection.

By the inductive assumption, there is a planar drawing of G′ respecting the rotation
system. In such a drawing, we can simply split the vertex corresponding to u and v, rein-
troducing the edge e between them without any intersections. Hence G is planar respecting
the rotations of all its vertices.

If G contains only a single vertex, then it might have several loops attached to it. Since all
the loops in G are even, it cannot happen that we find edges leaving in order a, b, a, b since
this would force an odd number of intersections between a and b. Hence, if we consider the
regions enclosed within the two loops in a small enough neighborhood of the vertex, either
they are disjoint or one region contains the other. Then it is easy to show that there must
be a loop whose ends are consecutive in the rotation system. Removing this edge we obtain
a smaller graph G′ which, by inductive assumption, can be drawn without intersections and
with the same rotation system. We can then reinsert the missing loop at the right location
in the rotation system by making it small enough.

In the base case, we simply draw a single vertex with no edges. 2

We can restate the result in terms of crossing numbers. The crossing number of a drawing
of a graph is the total number of crossings of each pair of edges. The crossing number of
G, cr(G), is the smallest crossing number of any drawing of G. The odd crossing number
of a drawing is the number of pairs of edges that cross an odd number of times. The odd
crossing number of G, ocr(G), is the smallest odd crossing number of any drawing of G. It
follows from the definition that

ocr(G) ≤ cr(G).

Theorem 1.1 shows that ocr(G) = 0 implies cr(G) = 0 (that is, G is planar). The original
result by Hanani and Tutte draws the same conclusion under the weaker assumption that
all pairs of non-adjacent edges intersect an even number of times. This suggests the concept
of the independent odd crossing number, iocr(G), as the smallest number of pairs of non-
adjacent edges of G that intersect an odd number of times in any drawing of G. The original
Hanani-Tutte result [5, 16] can then be stated as follows.

Theorem 1.2 (Hanani-Tutte, strong version) If iocr(G) = 0, then cr(G) = 0.

We will give a proof of the strong version in Section 3.1. As far as we know this is the
first direct and geometric proof of the theorem, not making use of Kuratowski’s theorem.

Remark 1 We include a short survey of previous proofs of both the weak and the strong
version of the Hanani-Tutte theorem. Let us begin with proofs of the strong version. Two
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papers in 1976, one by Kleitman [8], the other by Harborth [6] showed that the parity of
iocr(G) is independent of the drawing of G if G is either K2j+1 or K2j+1,2j+1. Norine [9]
supplies a different proof of this result and observes that it implies the strong version of the
Hanani-Tutte theorem by an application of Kuratowski’s theorem. Székely [15] shows that
iocr(K3,3) = iocr(K5) = 1 simplifying Tutte’s algebraic approach. Again, an application of
Kuratowski’s theorem yields the strong version of the Hanani-Tutte theorem.

There are several proofs of the weak version, typically as corollaries of more general
results. Pach and Tóth [12] showed that intersections along even edges can be removed
even in the presence of edges that are not even. In Section 2 we will show how to obtain
a stronger version of their result using our methods. There also is a proof by Cairns and
Nikolayevsky [4, Lemma 3] using homology which shows that the weak version is true on
surfaces of any genus.

Before moving on to the next section, let us have another look at the proof of Theorem 1.1.
All we need to make its inductive argument work is a spanning tree of even edges; let us call
such a spanning tree even. If we contract along the edges of that spanning tree, we obtain
a single vertex with a bouquet of loops, some intersecting oddly, some evenly. However,
whether two loops intersect oddly or evenly only depends on whether their endpoints in the
rotation system interleave or not, and it is easy to redraw a single vertex and its loops so
that pairs of loops that intersect evenly do not intersect at all, and pairs of loops intersecting
oddly, intersect once. Since contracting along even edges does not change the parity of the
number of intersections between edges, we have just shown: If G has a drawing realizing
ocr(G) that contains an even spanning tree, then ocr(G) = cr(G).

Theorem 1.3 If 2 ocr(G) < λ(G), where λ(G) is the edge-connectivity of G, then ocr(G) =
cr(G).

Proof Fix a drawing of G realizing ocr(G). All we have to show is that in that drawing G

contains an even spanning tree. We can assume that G is connected, and build a spanning
tree T iteratively, starting with an arbitrary vertex. As long as T does not span G yet,
there are always at least λ(G) ≥ 2 ocr(G)+ 1 edges connecting T and G−T . Since at most
2 ocr(G) of these can be involved in an odd crossing, at least one of these edges is even. 2

What about the independent odd crossing number? It seems we need a stronger as-
sumption than the existence of an even spanning tree. Call a drawing evenly 2-connected
if its subgraph of even edges is spanning and 2-connected. Note that a drawing is evenly
2-connected if and only if it contains an even and spanning 2-connected subgraph.

Lemma 1.4 If G has a drawing realizing iocr(G) which is evenly 2-connected, then iocr(G) =
ocr(G) = cr(G).

Proof Fix an evenly 2-connected drawing of G realizing iocr(G). Consider an arbitrary
vertex v, and a disk-shaped neighborhood of v in which none of the edges leaving v intersect
(other than at v). Erase the area of the disk, and create a mirror-copy of the rest of
the drawing inside the disk by circular inversion. As a result of this operation, all edges
intersecting the boundary of the disk intersect an even number of times. Since G is evenly
2-connected, G− v contains an even spanning tree, and we can contract the mirror-copy of
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that spanning tree within the disk to a single vertex, which we call v (deleting all resulting
loops). The edges leaving v now intersect each other evenly. Repeating this process for
all vertices yields a drawing for which iocr(G) = ocr(G). Since the final drawing is still
evenly 2-connected, and is minimal with respect to ocr(G) we can, as before, conclude that
ocr(G) = cr(G). 2

2 Removing Even Crossings

Pach and Tóth [12, Theorem 1] generalized the weak version of the Hanani-Tutte theorem
by showing that one can always redraw even edges without crossings—even in the presence
of odd edges. Their proof is a nontrivial extension of Tutte’s and Hanani’s approach of
extending Kuratowski’s theorem. We show that our inductive approach gives a much simpler
proof of the Pach-Tóth result. In fact, it yields the stronger conclusion that we can perform
the redrawing without adding pairs of edges that intersect an odd number of times; in
particular the odd crossing number does not increase. We give two applications of our
strengthened result in Section 3.

Theorem 2.1 If D is a drawing of G in the plane, and E0 is the set of even edges in D,
then G can be drawn in the plane so that no edge in E0 is involved in an intersection and
there are no new pairs of edges that intersect an odd number of times.

Proof We assume without loss of generality that G is connected. Fix the plane drawing
D of G, and let E0 be the set of even edges in D. We prove the result by induction on the
number of even edges in the drawing. To make the inductive step work, we keep track of
the rotation of each vertex. We will prove the following stronger statement:

If D is a drawing of a multigraph G with even edges E0, then there is a drawing
D′ of G in which none of the edges in E0 intersect, D′ and D have the same
rotation system and there are no new pairs of edges that intersect an odd number
of times.

As in the proof of Theorem 1.1, we contract an even edge uv (with u 6= v) to obtain G′.
Observe that this does not lead to any new odd intersections, since the contraction does
not affect whether a pair of edges intersects an odd number of times. By the inductive
assumption, there is a planar drawing of G′ respecting the rotations of the vertices, which
does not introduce any new pairs of edges intersecting an odd number of times. In such a
drawing, we split the vertex corresponding to u and v, reintroducing the edge uv so that it
does not intersect any edge. Thus we obtain a drawing of G that respects the rotation of
every vertex, and there are no new pairs of edges that intersect an odd number of times.

In this proof, the resulting base case is more complex than in Theorem 1.1: we have a
drawing D of a multigraph G all of whose even edges are loops. In other words any edge
between two distinct vertices is involved in an odd intersection with some other edge.

Pick an even edge e with endpoint v, and consider the region enclosed by the loop formed
by e. Edges whose endpoints are both in the region and loops at v whose ends approach v

from inside the region are called e-inside. If both endpoints of an edge lie outside the region,
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or if a loop at v approaches its ends from outside the region, we call the edge e-outside.
Since e is even, every edge other than e is either e-inside or e-outside.

We first focus exclusively on redrawing the e-inside edges, leaving the e-outside edges
untouched. Draw a small loop ℓ at v that does not intersect any e-inside edges and lies
outside the region enclosed by e as shown in Figure 3.

v

e

ℓ

Figure 3: Even edge e and loop ℓ at v. (The gray lines are e-outside.)

Think of the drawing as being on a sphere. Then the loop ℓ bounds two disks, one of
which contains all the e-inside edges. That region can be continuously deformed to the
region enclosed by e, so that ℓ goes to e and v remains fixed. As a result every e-inside edge
is properly contained in the region enclosed by e, while the e-outside edges are unchanged
(see Figure 4).

v

e

ℓ

Figure 4: After the deformation.
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Now we shrink e and the e-inside edges enclosed by e towards v until the region enclosed
by e no longer intersects any e-outside edges. (This is possible because in a small enough
neighborhood of v, the e-outside edges appear to be nearly straight lines arranged according
to the rotation at v.) At this point, the edge e does not intersect any other edges in the
drawing; furthermore, the rotation system remained the same, and we did not introduce
any odd intersections (though we might have removed some). This concludes the proof. 2

3 Applications

3.1 The Hanani-Tutte Theorem, Revisited

In this section we prove the strong version of the Hanani-Tutte theorem without recourse
to Kuratowski’s theorem. Our main tool will be Theorem 2.1. Note that the independent
odd crossing number of the graph does not increase when applying Theorem 2.1, a fact we
need below.

Theorem 3.1 (Hanani-Tutte, strong version) If iocr(G) = 0 then cr(G) = 0.

Proof The core idea of the proof is to locate cycles in the graph, and, for each cycle,
to make its edges even and then to redraw the cycle without intersections, by applying
Theorem 2.1. We say that such edges have been processed. However, a straightforward
induction over the number of cycles in G consisting of even edges causes problems when
changing the rotation at a vertex and when modifying G by splitting vertices. Hence, the
overall induction will be over the weight

w(G) :=
∑

v∈V

d(v)3,

where V is the vertex set of G and d(v) the degree of v in G. For two graphs with the same
weight, the induction will be over the number of unprocessed edges, where initially all edges
of G are unprocessed. Every processed edge will be even; in fact, a processed edge will have
no intersections. Also, a processed edge always belongs to a cycle of processed edges.

We begin with a drawing of G witnessing iocr(G) = 0. If all edges of the drawing are
even, we are done, since then the graph is planar (by either Theorem 1.1 or Theorem 2.1).
Therefore, there is at least one odd edge, and this edge is necessarily unprocessed. Pick
such an edge e. There are two possibilities: e = uv is a cut-edge, or it is contained in a
cycle. If e is a cut-edge, we can remove it, yielding two smaller graphs G1 and G2. By
induction on the weight, both are planar. Moreover, both have planar embeddings so that
u and v are on the outer face. Hence, we can draw e connecting u and v to obtain a planar
drawing of G.

Therefore, we may assume that e lies on a cycle C. First, let us consider the case that
for every vertex u of C, either every two edges incident at u intersect evenly, or every
edge incident to u is unprocessed. In the latter case, we can modify the rotation at u by
redrawing G in a small neighborhood of u so that the two edges of C incident at u intersect
evenly with each other (if necessary). We can then modify the rotation of the remaining
edges incident at u so each of them intersects both the edges of C incident at u evenly.
Thus, we can assume that the two edges of C incident to u are even.
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By repeating the redrawing as necessary for all vertices on C, we obtain a drawing of
G in which all edges of C are even—without changing iocr(G) or adding intersections to
processed edges. Applying Theorem 2.1 yields a drawing of G in which the edges of C are
free of intersections: they have been processed. Since all previously processed edges are even,
they are also drawn without intersections, as required. Since the number of unprocessed
edges decreases, we may apply induction to obtain a planar drawing of the graph.

Otherwise, for some vertex u of C, u is incident to a processed edge and there are two
edges incident to u that intersect an odd number of times. The processed edge is contained
in a cycle C ′ of processed edges, which is drawn without crossings, and thus divides the
plane into two regions. The two oddly-intersecting edges must be in the same region. Split
the vertex u into two adjacent vertices v and w, with edges incident to u in that region
made incident to v, and the other edges incident to u (including those incident to u on C ′)
made incident to w (see Figure 5).

...... ⇒
......

Figure 5: Splitting the vertex. (The thick edges belong to C.)

Since there are no intersections between the groups, the splitting does not increase the
independent odd intersection number. Since the degrees of v and w are each at least 3 and
d(u) = d(v) + d(w) − 2, d(v)3 + d(w)3 < d(u)3, as desired. Hence, the new graph has a
planar drawing by induction, and vw can be contracted to obtain a planar drawing of G. 2

3.2 Small Crossing Numbers

When applying Theorem 2.1 to draw conclusions about the odd crossing number, we proceed
as follows: Draw G to minimize the odd crossing number ocr(G) (call pairs that intersect an
odd number of times odd pairs, edges are belonging to an odd pair are odd; the remaining
edges are even). Using Theorem 2.1, we can redraw the even edges so they are not involved
in any intersections and so that the new drawing still has odd crossing number ocr(G). Now
the even edges form a plane graph G′ and each odd edge lies entirely within some face of G′.
We can now process the odd edges within each face separately to obtain results on crossing
numbers.

Example 3.2 For example, let us reconstruct the argument by Pach and Tóth which shows
that cr(G) ≤ 2 ocr(G)2. Consider a subgraph H of G drawn in the plane consisting of the
(odd) edges within a face of G′ and the (even) edges on the boundary of the face. We can
redraw the odd edges of H so that each pair intersects at most once; after the redrawing
we have at most

(|E(H)|
2

)

crossings within that face of G′. If we do the same for every face

of G′ we can conclude that cr(G) is at most the sum of
(

|E(H)|
2

)

where H ranges over the
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odd subgraphs in the faces of G′. Furthermore, we know that there are at most 2 ocr(G)
odd edges in total, hence cr(G) ≤

(2 ocr(G)
2

)

≤ 2 ocr(G)2. �

This plan is also useful when the odd crossing number is quite small, though not neces-
sarily zero. Recall that by definition ocr(G) ≤ cr(G), and that by the result of Hanani and
Tutte, ocr(G) = 0 implies cr(G) = 0. This suggests that perhaps ocr(G) = cr(G) for all
graphs G (see [10, 17, 1]). While this conjecture turns out to be false [13], we can show,
using our approach, that ocr(G) = cr(G) if ocr(G) is small enough.

As we explained above, let G′ be the subgraph of G consisting of the even edges, and fix
a drawing of G in which G′ is planar. We consider each face separately: suppose that H

is a subgraph drawn in the plane consisting of the (odd) edges within a face of G′ and the
(even) edges on the face boundary. We will show that if there are only a few odd crossings
in H, then H can be redrawn with exactly ocr(H) crossings, with each component of the
face boundary either having its embedding unchanged or having its embedding “flipped” in
the plane. If we sequentially process faces in this way and agree that when a face boundary
is flipped, so is the rest of the drawing currently on that side of the boundary, then the
entire graph is redrawn with ocr(G) crossings, as desired.

In particular, we will obtain the following theorem.

Theorem 3.3 If G is a graph with ocr(G) ≤ 3, then ocr(G) = cr(G).

Interestingly, this mirrors a result for the rectilinear crossing number, rcr(G), which is
the smallest number of crossings in a straight-line drawing of G: Bienstock and Dean [2]
showed that rcr(G) = cr(G) for graphs G with cr(G) ≤ 3. They also constructed graphs G

with cr(G) = 4 and rcr(G) arbitrarily large.
The previous discussion reduces the proof of the theorem to the following lemma.

Lemma 3.4 Let H be a multigraph, and let B be the subgraph consisting of its even edges
and all their endpoints. Suppose that H is embedded in the plane so that B is a plane graph,
a single face F of B contains every odd edge of H (except for endpoints), and every edge of
B is on the boundary of F . (Then the boundary of F is B.)

Let op(H) be the number of odd pairs. If op(H) ≤ 3, then the odd edges may be redrawn
so that op(H) decreases or the number of crossings equals op(H).

Proof We may assume that H is connected, since otherwise we translate components to
be far apart and deal with each component separately.

Contract an even edge uv that is not a loop, combining the rotations of u and v appro-
priately to get a rotation for the new vertex, and adjusting the drawing of H appropriately.
Repeat, until each component of F is a bouquet of loops, each with an empty interior (ex-
cept at most one, which would be the boundary of the outer face and have empty exterior).
Delete all such loops. If we now redraw edges, preserving the rotation at each vertex, then
the loops may be redrawn and the vertices can be split, recovering the original drawing of
F with the original rotation system, without introducing any new crossings.

We are now considering a connected multigraph G drawn so that every edge is involved
in an odd crossing, with op(H) pairs of edges that cross an odd number of times. Note that
the ends of a loop cannot appear consecutively in a rotation since it could be redrawn with
no crossings.
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If G has only one vertex, then, as before, the loops can be redrawn with only op(H)
crossings while preserving the rotation of the vertex. Thus we may assume that G has at
least two vertices.

If v is incident to only one nonloop edge uv, we move v to be very close to u, redrawing
uv so as not to intersect any other edge. We can then draw each loop e at v so that (1) e

is small enough to not cross any edge other than those incident to v, (2) e does not cross
uv, and (3) e crosses each loop at v at most once, and only crosses if the ends of the two
loops alternate in the rotation at v. Since the loops at v can be drawn with no fewer odd
crossings, and since uv no longer crosses any edge an odd number of times, op(H) decreases
as desired.

Now suppose that v is incident to exactly two nonloop edges e = uv and e′ = vw.
Temporarily ignore the loops at v. The concatenation of the drawings of e and e′ form a
curve, along which we move v until v is close enough to u so that the modified drawing
of e crosses no other edge. We can then remove any crossings from the modified e′ as in
Figure 2; note that if uw crosses another edge an odd number of times then either uv or
vw used to cross that edge an odd number of times. Thus, op(H) must decrease, ignoring
contributions from loops at v. Now we show that we can also draw the loops at v so as not
to increase their contribution to the number of odd crossings from the original drawing.

If v is a cut-vertex, then we can draw the loops at v large enough so that they intersect
nothing but one another; also they can be drawn so that two loops at v intersect at most
once, and only intersect when forced to by the rotation at v. Otherwise, there is a nonloop
cycle through v. Temporarily ignore everything but v, the loops at v, and an additional
loop placed in the rotation at v where the nonloop cycle goes. We can draw the bouquet of
loops optimally (so that number of odd crossings equals number of crossings equals number
of loops whose ends alternate in the rotation) with the special loop drawn much larger than
the others. Then we replace the special loop by the previously ignored portion of the graph
drawing. The odd crossings in the finished drawing are the (disjoint) union of such crossings
obtained in the two steps we used. Note that the loops are not involved in any more odd
crossings than was forced by the rotation at v. Therefore, in either case, op(H) decreases
overall.

Thus, each vertex must be incident to at least three nonloop edges.
Next, consider any vertex v of degree 3. If one edge e incident to v has an odd number

of crossings with each other edge incident to v, then we can add a twist to e near v so
that e crosses each of the other edges exactly once more. This lowers the number of odd
crossings by 2. If that does not occur, then at most one pair of edges incident to v cross
an odd number of times. Suppose that uv and vw are two such edges. Then we can flip
the rotation at v and redraw these edges in a small neighborhood of v to add exactly one
crossing between them; this lowers the odd crossing number by exactly one. This shows
that for any vertex of degree 3, no two of its incident edges form an odd pair.

Next, suppose that there is a counterexample with exactly 2 vertices, and choose one
with a minimum number of edges. We show that it has no loops. It helps to switch the
viewpoint from vertices with a rotation system to a map on the annulus: Consider a map
on the annulus for which ocr(M) 6= cr(M) and a drawing with ocr(M) odd crossings and
more than ocr(M) crossings. A loop is then an edge e whose endpoints are on the same
boundary components of the annulus. Observe that the number of odd crossings that e
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makes depends only on the homotopy class of the drawing. Therefore, given a drawing of
M − e with ocr(M − e) odd crossings, adding e yields a drawing of M with ocr(M) odd
crossings as long as e is drawn in a certain (fixed) homotopy class. By assumption, there is
a drawing of M − e with ocr(M − e) crossings. We can draw e in a given homotopy class
so that it runs alongside the boundary of the annulus, ensuring that it makes the same
number of crossings as odd crossings. This gives us a drawing of M with ocr(M) crossings,
a contradiction. It follows that in order to show that for all maps M on the annulus with
ocr(M) ≤ 3 we must have ocr(M) = cr(M), it suffices to consider maps with no loops.

Suppose that op(H) ≤ 2. Since every current edge is part of one of the op(H) odd pairs,
there are at most 2 op(H) edges—which is at most 4. Then the degree sum is at most 8, so
there are less than 3 vertices; in fact there are exactly 2 vertices, say, u and v. If there are 4
edges, then they are partitioned into two odd pairs. There cannot be only 3 edges incident
to a vertex since they form no odd pairs, and one other edge cannot create two odd pairs.
So we may assume that there are 4 edges from u to v and no loops. Label the rotation at
u clockwise to be 1, 2, 3, 4; this determines the labeling at v, since the rotation system is
given. Since the rotation at v may be flipped, we have 3 cases, depending on what label
is opposite of 1 at v: If it is 3, then we can redraw with no crossings. If it is 4, then we
can draw edges 1 and 4 so that neither are involved in crossings, and edges 2 and 3 cross
exactly once. If 2 is opposite 4 at v, then we can draw so that edges 1 and 4 cross once,
and edges 2 and 3 cross once, and there are no other crossings.

We may now assume that op(H) = 3. The number of edges is at most 6, so the degree
sum is at most 12, and there are at most 4 vertices. In particular, if there are 4 vertices,
then the graph is 3-regular. If one vertex v is adjacent to the other three, then two of them
must be adjacent to each other. No matter what the rotation is at the other vertex, the
graph can be drawn with at most 2 crossings. Otherwise the graph can only be a 4-cycle
with two non-adjacent edges doubled; this can be drawn with at most 2 crossings as well.

Suppose that there are 3 vertices now. There are either 5 or 6 edges in this case. If
there is no edge between two vertices u and w, then each must have three edges to the
other vertex v. The three edges from u to v and one edge from v to w can be drawn with
no crossings, then each of the other two edges can be added creating at most one crossing
each. Thus we may assume that the graph contains a triangle. Since each vertex is incident
to at least three nonloops, there are at least 2 doubled edges. There cannot be just these
edges, since the single edge would not cross any other edge. The edges at v can be drawn
to contribute at most one crossing, and a sixth edge can be drawn to contribute at most 2
crossings no matter what the rotation system is, so cr(H) ≤ 3 as desired.

Now we may assume that there are exactly two vertices, u and v. It will be convenient
to think of this graphs as a map on the annulus again; as proved earlier, we may assume
that there are no loops. No matter what the rotations are, 4 edges can be drawn with at
most one crossing, and a fifth edge can be added with at most 2 more crossings. Thus we
can assume that there are 6 edges, and a drawing in which they are partitioned into 3 odd
pairs. Fix the rotation flip that yields this. Then for any single edge, the parity of the
number of twists is the sole factor that determines which edges it crosses an odd number of
times. Thus, if we pick three edges that form no odd pairs, we may assume that they form
no crossings at all. Sequentially add the other three edges; in order to cross only its partner
an odd number of times, the rotations must be equivalent to (1, 2, 3, 4, 5, 6), (2, 1, 4, 3, 6, 5),
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which can be drawn with exactly 3 crossings. 2

4 Conclusion

The core result of this paper, Theorem 2.1, shows that we can remove even crossings without
introducing any odd crossings. With this tool at hand, we were able to give new and entirely
geometric proofs of the Hanani-Tutte theorem and the Pach-Tóth result that cr(G) ≤
2 ocr(G)2. We believe that this strengthened form is crucial for obtaining improved upper
bounds on cr(G) in terms of ocr(G). As evidence we offer our proof of the equality of cr(G)
and ocr(G) up to values of 3 (even the question whether ocr(G) = 1 implies cr(G) = 1 had
previously been open). We can also apply the theorem to show that every graph G has a
drawing D with ocr(G) = ocr(D) and cr(D) ≤ 9ocr(G)+1, a result which has consequences
for the parameterized complexity of computing the odd crossing number [14].

The method of contracting edges in graphs with rotation systems bears further investi-
gation. While it is not a new idea—for example, it is used to prove Fáry’s theorem that
every planar graph has a straight-line drawing—we believe it to be a fruitful, intuitive idea
that has not yet achieved its potential and allows many further variations. One can, for
example, apply it to edges that are not even. Using this approach, we can show that

cr(G) ≤ |V (G)|4 ocr(G)

for any multigraph G [13]. For multigraphs with a fixed number of vertices it shows that
there is at most a linear gap between crossing number and odd crossing number.

Finally, since our proof of the Hanani-Tutte theorem does not use Kuratowski’s theorem,
it offers the possibility of finding a purely topological proof of Kuratowski’s theorem. We
were recently informed by Hein van der Holst that he has found such a proof [7].
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[5] Chaim Chojnacki (Haim Hanani). Über wesentlich unplättbare Kurven im drei-
dimensionalen Raume. Fundamenta Mathematicae, 23:135–142, 1934.

[6] Heiko Harborth. Parity of numbers of crossings for complete n-partite graphs. Math.
Slovaca, 26(2):77–95, 1976.

[7] Hein van der Holst. Some recent results in topological graph theory (invited talk).
Eurocomb 2005. http://www.math.tu-berlin.de/EuroComb05/Talks/Invited/

VIII-vanderHolst.pdf (accessed August 3rd, 2006).

[8] Daniel J. Kleitman. A note on the parity of the number of crossings of a graph. J.
Combinatorial Theory Ser. B, 21(1):88–89, 1976.

[9] Serguei Norine. Pfaffian graphs, t-joins, and crossing numbers. To be published by
Combinatorica.

[10] János Pach. Crossing numbers. In Discrete and computational geometry (Tokyo, 1998),
volume 1763 of Lecture Notes in Comput. Sci., pages 267–273. Springer, Berlin, 2000.

[11] János Pach. Geometric graph theory. In Handbook of discrete and computational
geometry, 2nd edition, CRC Press Ser. Discrete Math. Appl., pages 219–238. CRC,
Boca Raton, FL, 2004.
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