
In the science of cryptanalysis, known methods of breaking into particular ciphers are useless without techniques of determining first the process by which it was encrypted.  This became largely possible in 1922 with the release of Riverbanks Publication No. 22: The Index of Coincidence and Its Applications in Cryptography.  Its author was William Friedman, a man whose legacy and contribution to cryptography David Kahn compares to the sun (Kahn 370, 376).  Friedman’s method was ingenious in that it “treated a frequency distribution as an entity, as a curve whose several points were causally related . . .and to this he applied statistical concepts” which would revolutionize cryptology (Kahn 376).        

To understand the mathematics and theory behind The Index of Coincidence, a basic understanding of probability is needed.  Using the fact that there are 26 letters in the English alphabet, the probability of randomly choosing any given letter is 1/26 for all 26 letters.  Mathematically this is written: P(α) = 1/26 (α where α=any given letter in the alphabet.  Using this as a basis, if one is using replacement and assuming independence, the next step is to realize that P(α followed immediately by α) = (1/26) * (1/26).  


In order to make the connection to cryptography, one acknowledges the use of an alphabet where each letter has a unique probability of occurring in any given plaintext.  Therefore, P(α) = a different value for ( α.  For example and reference, P(a) (32/400; P(b) (6/400; P(c) (12/400; and P(z) (1/400 with respect to the English language (Kahn 100).  Based on what has already been said about probability, it is logical to draw the conclusion that P(a followed immediately by a) = (32/400)(32/400), P(b followed immediately by b) = (6/400)(6/400), and similar would be true for ( α.  


Recall back to solving Vigenere Ciphers.  One method of doing such would be to offset or superimpose ciphertext against itself in order to count “pairs” or identical overlaps.  The more pairs that occurred at a given offset indicated a higher probability of being the correct key length.  When doing this, the concern is not with only a given α, but ( 26 α.  This is our motivation for needing to add the probabilities of any given letter finding its pair at a certain offset.  


For P(α) = 1/26 ( α, the chance of drawing any identical pair of letters is the “sum of the square of their probabilities” (Dawson 82): 

(1/26)(1/26) + (1/26)(1/26) + (1/26)(1/26) + . . . + (1/26)(1/26).
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for z

Mathematically this can be written as the summation: α= z ( α= a  P α2 = 0.0385 (Dawson 82).

So in other words, there will be between 3 and 4 coincidences for every 100 pairs of letters.  


For P(α) = a different value for ( α, the sum of their squares will be: 

(32/400)(32/400) + (6/400)(6/400) + (12/400)(12/400) + . . . + (1/400)(1/400).  

for a

         for b

           
for c


for z
Written as the mathematical summation: α= z ( α= a  P α2 = 0.0683, where there are between 6 and 7 coincidences per 100 pairs of letters (Dawson 82).  These two sums are called Kr and Kp (for random and plaintext).  Kappa is used commonly in mathematics to denote a constant (Kahn 378).  


Friedman used these sums in what came to be (appropriately) known as the Kappa Test.  The purpose of such a test is to determine whether two or more ciphertexts have been identically encrypted (Kahn 378).  If in fact they have been encrypted in the same fashion their index of coincidence will approximately equal 6.83 whereas if not, it should more closely equal 3.85.  To find this index of coincidence one would use the same method used to solve Vigenere Ciphers as done earlier in the quarter.  This process can be described mathematically as follows: 

Let n = a set/given number of letters in two (parts of) ciphertexts

Observed kappa for two texts, Ti = (ti1, ti2, ti3, . . . tin), and Tj = (tj1, tj2, tj3, . . . tjn) will equal the summation μ= n ( μ= 1 (1 if tiμ= tjμ , else 0) / n (Bauer 301).   


To give an example of the usefulness of the Kappa Test we begin with two plaintexts. 

Plaintext 1 (taken from Time Magazine “If it Could Happen to Churchill . . .” by  Andrew Sullivan, March 8, 2004) 224 characters
warti melea dersh aveal waysf acedt hewor setfe ardef eatin battl ebuti ndemo craci esatl eastw arqua litie sthat makef orgre atsta tesma nship inwar timed eterm inati onasi nglef orcus onvic torya black andwh iteco nvict ionfo rwhoi sfrie ndorf oecan often seemc rude

Plaintext 2 (taken from same source) 224 characters

thats theco nserv ative night mareb ushwi nsthe warth edemo crats winwh atloo kslik eapos tware lecti onthe gover nment stays bigbu ttaxe sarer aised topay forit maybe itwon thapp enbut ifitd oeson emanw illbe respo nsibl egeor gewbu sharc hitec tofal ibera ltake over

The two texts were encrypted twice and appear below.  Once identically, and once using different encryption methods.  Using the Kappa Test one can determine in which case they were encrypted identically (and not).  

C1: 
DHYAP TLSLH KLYZO HCLHS DHFZM HJLKA OLDVY ZLAML HYKLM LHAPU 

C2:
AOHAZ AOLJV UZLYC HAPCL UPNOA THYLI BZODP UZAOL DHYAO LKLTV

        *              *                         * *       *     

C1:
IHAAS LIBAP UKLTV JYHJP LZHAS LHZAD HYXBH SPAPL ZAOHA THRLM 

C2:
JYHAZ DPUDO HASVV RZSPR LHWVZ ADHYL SLJAP VUAOL NVCLY UTLUA

        *            *       *                   * *          

C1:
VYNYL HAZAH ALZTH UZOPW PUDHY APTLK LALYT PUHAP VUHZP UNSLM 

C2:
ZAHFZ IPNIB AAHEL ZHYLY HPZLK AVWHF MVYPA THFIL PADVU AOHWW 

                 *                 *                           

C1:
VYJBZ VUCPJ AVYFH ISHJR HUKDO PALJV UCPJA PVUMV YDOVP ZMYPL 

C2:
LUIBA PMPAK VLZVU LTHUD PSSIL YLZWV UZPIS LNLVY NLDIB ZOHYJ

        *                *             * * *               *   

C1:
UKVYM VLJHU VMALU ZLLTJ YBKL

C2:
OPALJ AVMHS PILYH SAHRL VCLY 

              *                            

In this instance there are 19 coincidences, making the Ko = 19/224 ( .085.

Now turn to the second case:

C1: 
DHYAP TLSLH KLYZO HCLHS DHFZM HJLKA OLDVY ZLAML HYKLM LHAPU 

C2:
MATML MAXVH GIXKO TMBOX GBZAM FTKXU NLAPB GLMAX PTKMA XWXFH 

               *  *  *           *                     *          

C1:
IHAAS LIBAP UKLTV JYHJP LZHAS LHZAD HYXBH SPAPL ZAOHA THRLM 

C2:
VKTML PBGPA TMEHH DLEBD XTIHL MPTKX EXVMB HGMAX ZHOXK GFXGM 

                                                     * *       *   

C1:
VYNYL HAZAH ALZTH UZOPW PUDHY APTLK LALYT PUHAP VUHZP UNSLM 

C2:
LMTRL UBZUN MMTQX LTKXK TBLXW MHITR YHKBM FTRUX BMPHG MATII 

         *   *                                                  

C1:
VYJBZ VUCPJ AVYFH ISHJR HUKDO PALJV UCPJA PVUMV YDOVP ZMYPL 

C2:
XGUNM BYBMW HXLHG XFTGP BEEUX KXLIH GLBUE XZXHK ZXPUN LATKV 

                                     *                          

C1:
UKVYM VLJHU VMALU ZLLTJ YBKL

C2:
ABMXV MHYTE BUXKT EMTDX HOXK 

In this case there are 10 coincidences, with a Ko = 10/224 ( .045.  While these do not exactly align with Kp and Kr respectively as the Kappa Test suggests they might, it is fairly clear that the first instance has a much higher probability of being identically encrypted, and in fact it is.  Further, as with many tools used in cryptography, as the length of text increases, so does the certainty of this index.


Recall that there is a second use for the Kappa Test as was (similarly) used to solve Vigenere ciphers earlier this quarter.  In this case that a single polyalphabetic cipher was used to encipher a sequence of plaintexts, it is often the case that the offset needed to correctly align the texts so that “the letters in each column will have the same keyletter . . . of a very long key, such as was generated by a machine” is not known (Kahn 378).  By doing a Kappa Test at each offset (or rather having a computer do this) it will immediately be clear as to what the key length is.     

Before continuing on, recall the distinctions of monalphabetic and polyalphabetic ciphers.  According to Singh, a monalphabetic cipher is one in which “the cipher alphabet is fixed throughout the encryption” whereas a polyalphabetic one changes during encryption” (393).  In 1935 Solomon Kullback, an assistant of Friedman created the Phi Test, whose purpose was to determine whether a ciphertext is encoded with a single alphabet or not.  The observed or actual phi of a given ciphertext is computed by taking the frequency of each letter of the alphabet ((), multiplying it by the frequency minus 1, and then adding these occurrences up for all 26 letters (Kahn 381).

Observed phi denoted mathematically: phi((o) = (=z ( (=a (f()(f(-1)  

where o = observed and f = frequency (Dawson 84).  It is perhaps important to explain briefly why it is that one multiplies the frequency of each letter by the same number minus 1.  In terms of probability, the concern is still with drawing identical letters in succession, however now replacement is no longer taking place.  The ‘1’ found in (f(-1) identifies that an ( has already been removed (Dawson 84).  

It is next necessary to compare this observed phi to both the monalphabetic expected phi and polyalphabetic expected phi.  This are computed as follows:

Let n = number of letters in a ciphertext.  

Monalphabetic Expected Phi: phi((p) = Kp * (n)(n-1) 

Polyalphabetic Expected Phi: phi((r) = Kr * (n) (n-1) (Dawson 86).

The closer the observed phi is to either the expected monalphabetic or polyalphabetic, the more certain one can be as to which type of alphabet was used to encipher the plaintext (Kahn 381).

Using the Kappa Test it was determined that in first case of the example given the two ciphertexts were in fact identically encrypted.  Using the Phi Test it is now possible to in addition determine whether they were encrypted using a monalphabetic or a polyalphabetic cipher.  

In the case of the example:

phi((o) = (22)(21) + (4)(3) +(3)(2) +(7)(6) +(0)(-1) +(2)(1) +(0)(-1) +(26)(25) +(3)(2) +(10)(9) +(8)(7) +(29)(28) +(9)(8) +(2)(1) +(6)(5) +(18)(17) +(0)(-1) +(2)(1) +(7)(6) +(6)(5) +(14)(13) +(14)(13) +(1)(0) +(1)(0) +(16)(15) +(13)(12) = 3382

phi((p) = .0683 * (224)(223) (3412

phi((r) = .0385 * (224)(223) (1923

Clearly, as phi((o) = 3382 much more closely resembles phi((p) = 3412, the identically encrypted ciphertexts used a monalphabetic cipher.  Consistent with this result is the fact that the Phi Test is fairly accurate even with short ciphertexts.  


The last text we will discuss is the Chi Test.  This test, also developed by Kullback, replaced Friedman’s Kappa Test as it much more efficient.  To compute the observed chi value one multiples the frequency of a given letter in the first ciphertext by that of the second ciphertext and then adds up the totals for all 26 letters.

Observed Chi: χo = (=z ( (=a (f(1)(f(2)  (Dawson 90).

Observed chi gets compared to either the expected plaintext chi or the expected random chi depending on whether the ciphertexts are encrypted with a single or multiple alphabets respectively.  These are computed similarly:

Expected Plaintext Chi: χp = n1 * n2 * Kp
Expected Random Chi: χr = n1 * n2 * Kr
If the observed chi is close to the appropriate expected chi then the compared ciphertexts are encrypted identically (Kahn 381).  

To illustrate this fact, recall the example used to discuss the Kappa Test.  

Observed chi when the two texts were encrypted identically: χo = (22)(25) + (4)(4) +(3)(4) +(7)(8) +(0)(1) +(2)(3) +(0)(0) +(26)(20) +(3)(9) +(10)(5) +(8)(3) +(29)(29) +(9)(3) +(2)(5) +(6)(11) +(18)(16) +(0)(0) +(2)(3) +(7)(8) +(6)(5) +(14)(12) +(14)(16) +(1)(5) +(1)(0) +(16)(14) +(13)(15)  = 3401

Observed chi when the two texts were encrypted differently: χo = (22)(11) + (4)(16) +(3)(0) +(7)(3) +(0)(8) +(2)(5) +(0)(12) +(26)(16) +(3)(6) +(10)(0) +(8)(14) +(29)(14) +(9)(25) +(2)(4) +(6)(4) +(18)(8) +(0)(1) +(2)(3) +(7)(0) +(6)(20) +(14)(9) +(14)(5) +(1)(3) +(1)(29) +(16)(3) +(13)(5)  = 2157

Since it was determined with the help of the Phi Test that these texts were encrypted using monalphabetic ciphers, it is appropriate to use the equation χp = n1 * n2 * Kp so χp = 224 * 224 * .0683 (3427.  Note that this value is extremely close to 3401, however quite distant from 2157, indicating that the Chi Test confirms what was previously shown using the Kappa Test.  The first set of ciphertexts contained two identically encrypted texts whereas the second set used two different methods.  


The methods published by William Friedman in The Index of Coincidence and Its Applications to Cryptography and later supplemented by Solomon Kullback drastically altered and improved the efficiency and techniques of cryptanalysis.  The results of their work were simple, yet ingenious statistical methods that have had lasting impacts on this science.  David Kahn refers to Friedman’s contribution alone as “the most important single publication in cryptology” and Friedrich Bauer echoes this (Kahn 376; Bauer 301).  Post-modern cryptography is highly dependent on applications in mathematics and The Index of Coincidence may very well have been the first indication of such.
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