
6/2/2009

1

Evaluating Queries

Query Processing

Query Processing: Overview

Query Processing: Example

select lname

from employee

where ssn = „123456789‟;

query expression tree?

πlname

|

σssn=‘123456789’

|

employee

physical query? (have operators:
ROWACCESS, FILESCAN,
INDEXSCAN)

6/2/2009

2

Classical Example: Sorting

 why?

◦ ORDER BY

◦ duplicate removal (intersection, union,

DISTINCT)

◦ sort/merge for join

 how?

◦ in main memory easy: quick sort

◦ issue: large relations don‟t fit in main memory

Scheduling

 scheduling of access is important

 Example:

◦ 3 pages of main memory,

◦ least recently used replacement policy

◦ pages in main memory:

 page 1: 1, 5, 9, …, 37

 page 2: 2, 6, 10, …, 38

 page 3: 3, 7, 11, …., 39

 page 4: 4, 8, 12, …, 40

◦ how many page accesses to read 1-40?

Another Query Plan Example

select e.name, s.name

from employee as e, employee as s

where e.superid = s.id

QEP?

6/2/2009

3

External Sorting I

 goal: minimize page transfers

 assumptions:

◦ data stored in n pages

◦ m << n pages fit into main memory

 solution: sort in runs (temporary sorted

subfiles that get merged on disk)

External Sorting: Algorithm

 partition input file into blocks of m pages

 sort internally, write-out into n/m initial
“runs”

 at each level of the recursion

◦ merge m-1 runs into a new run

◦ use 1 page in main memory for each run

◦ 1 page in main memory to create merged
page

◦ write output page if full/reload input page
when processed

External Sorting: Performance

 analyze set-up phase

 how many page I/Os at each recursive

level?

 how many recursive levels?

 overall analysis?

 internal sort?

6/2/2009

4

Rectangle Intersection, Again

 original solution: sweepline

◦ event list: left/right x-coordinates of rectangles

◦ active list: rectangles at current x-value

 needed for spatial join (on overlap)

 external technique: distribution sweeping

Orthogonal Line Segments

input: S set of vertical/horizontal line

segments

output: pairs of intersecting segments

sweepline algorithm:

◦ events: x-min coordinates

◦ active list: horizontal segments at x-value

◦ when vertical segment is encountered: range

query

◦ works in time O(n log n + k)

Orthogonal line segments (EM)

 assumption

◦ n pages of data

◦ m buffer pages in main memory

 external sort (x-min): O(n logm n)

 split into m horizontal strips of n/m
horizontal segments each

 one active list (stored externally) for each
slab (can be read in parallel with others
one block at a time, since we have m
pages in main memory)

6/2/2009

5

Process center pieces

 why can‟t we process end-pieces the same way?

 what to do about end-pieces?

End-pieces

 apply method recursively

 analysis

◦ initial set-up

◦ each recursive level

◦ depth of recursion?

 overall running time analysis

Rectangle Intersection

input: B, R sets of rectangles

output: all (b,r) in BxR with b intersecting r

solution:

 similar to line segment problem, separate
lists for red and blue rectangles

 but: rectangles don‟t fit into strips, they can
span multiple strips

 problem: intersection between (b,r) might be
reported multiple times

 so naïve adaptation gives factor of m

6/2/2009

6

Rectangle Intersection

 Solution:

◦ separate list for each interval of strips and

each color: L
b

kh , L
r

kh ,

L
b

kh , L
r

kh ,

Analysis?

Spatial Join

 join on: topology (overlap, disjoint,

contain, …), geometry (distance,

direction)

 consider overlap only

◦ filter: overlap of mbbs

◦ refinement: overlap of geometries

 depends on indexes available

6/2/2009

7

Spatial Join Algorithms

 no indexes

◦ distribution sweep

◦ hash-join algorithm

 single index

◦ INL (indexed nested loop)

 two R-tree indexes

◦ synchronized tree traversal

 two linear trees

single index: INL

for each o in non-indexed relation

perform range query with o.mbb

on indexed relation

no index

hash-join algorithm

 assume buckets fit into main memory

 hash keys of relations R, S into buckets

 load smaller bucket, compare to

corresponding bucket

Example: R: 2000 records, S: 500 records

hash into 100 buckets

page I/O? (read R, S, write buckets, join)

6/2/2009

8

no index for spatial data

 hash-join depends on join condition being

equality: overlapping rectangles won‟t hash

to same bucket

 solution:

◦ buckets determined by rectangles

 may overlap (no redundancy) or be disjoint

(redundancy)

hash-join (overlapping)
1. partition R

◦ all buckets roughly same size

◦ buckets should fit into main memory

◦ minimal overlapping

2. assign rectangles of S to buckets of R

◦ S rectangles might be duplicated

3. join buckets (load smaller bucket into main memory, scan other bucket)

joining two linear trees

 raster trees: traditional join

 general linear tree (e.g. linear quadtree or

z-ordering tree)

Property:

Cz is contained in Cz‟

if and only if

z‟ is prefix of z

can use to test overlap

6/2/2009

9

joining two z-ordering trees

 replace each entry (z, oid) with intervals

(z, ssc(Cz)),

where ssc(Cz) is lower-right corner of Cz

 two squares overlap iff their intervals

overlap

 store each list in a stack

A

B G
C

E
D F

H

I

J K

L

R-trees

 naïve recursion

 restricted recursion

 sweep-line

R-trees recursively

 STT (Synchronized Tree Traversal)

• I/O performance ok

• CPU cost high

6/2/2009

10

R-trees recursively, improved

 STT(R1, R2)

 do we need to look at every combination of

{R3, R4, R5} and {R6, R7}?

R-trees, sweepline

 why not use red/blue intersection

algorithm we saw earlier?

 Asymptotics vs constants

 greedy approach:
order red/blue sets

keep picking leftmost rectangle r

keep testing rectangles s of opposite color so that

s.xmin < r.xmax

remove leftmost rectangle

Example

 analysis (bad case?)

pr pb

6/2/2009

11

Building Query Execution Plans

select intersect(l.shape, c.shape)

from county c, land_use l

where c.county_name = „San Jose‟

and overlaps(l.shape, c.shape);

pipelined execution possible:

Iterators

pipelined execution possible

 iterators (open, next, close)

 e.g. rowaccess, retrieve one record at a time

issues:
◦ refinement not included yet

◦ CPU time plays a role

Example

 spatial join between roads and land-use

 both relations have R-tree

Problems:

• random access to records

(high I/O)

• repeated access to same records

• so refinement needs to be done

carefully

6/2/2009

12

Sequencing

 assume 4 pages fit into main memory;

look at schedule (a)

Sequencing: Segment Sort

 k: number of pairs (Lx, RIDy) that fit into m-1 pages

 load k pairs (LIDx, RIDy) into m-1 pages

 sort on LID, access land-use replace LID with L records

 sort on RID, load records from Road using mth page,
perform refinement step for each record

Why Not

 sort (LID, RID)

after STT ?

 means we can‟t pipeline: sorting is a

blocking operator

6/2/2009

13

Multiway Joins

Sources

 Garcia-Molina, Ullman, Widom, Database

Systems; the complete book, Pearson,

2009.

 Vassilakopoulos, Papadopoulos, Spatial

databases, IGI, 2005

http://books.google.com/books?id=8jAkMXFgbuIC&client=firefox-a
http://books.google.com/books?id=8jAkMXFgbuIC&client=firefox-a
http://books.google.com/books?id=8jAkMXFgbuIC&client=firefox-a
http://books.google.com/books?id=8jAkMXFgbuIC&client=firefox-a
http://books.google.com/books?id=8jAkMXFgbuIC&client=firefox-a

