6/2/2009

Evaluating Queries

Query Processing

Query Processing: Overview

SQL query

Select logical
query plan
i AN

Select
physical plan

A physical query
plan tree

Execute plan

JNp—
e

Query Processing: Example

SQL query

NP
ree

Select logical
query plan
A logical query

plan free

Select

physical plan

A\ st auery
‘plan tree

Exceute plan

optimization

select Iname
from employee
where ssn =‘123456789’;

query expression tree?

Tiname
|

Ossn="123456789°

employee

physical query? (have operators:
ROWACCESS, FILESCAN,
INDEXSCAN)

6/2/2009

Classical Example: Sorting

* why?
> ORDER BY

° duplicate removal (intersection, union,
DISTINCT)

o sort/merge for join

* how?

° in main memory easy: quick sort

° issue: large relations don’t fit in main memory

Scheduling

e scheduling of access is important
e Example:

° 3 pages of main memory,
° least recently used replacement policy
° pages in main memory:
page I: 1,5,9,...,37
page 2: 2,6,10,...,38
page 3: 3,7,11,...,,39
page 4: 4,8,12,...,40
° how many page accesses to read |-40?

Another Query Plan Example

select €.name, s.name

from employee as e, employee as s
where e.superid = s.id

QEP?

External Sorting |

e goal: minimize page transfers
e assumptions:
° data stored in n pages
° m << n pages fit into main memory

e solution: sort in runs (temporary sorted
subfiles that get merged on disk)

External Sorting: Algorithm

e partition input file into blocks of m pages

« sort internally, write-out into n/m initial
“ ”
runs

e at each level of the recursion
° merge m-1 runs into a new run
° use | page in main memory for each run

° | page in main memory to create merged
page

° write output page if full/reload input page
when processed

External Sorting: Performance

¢ analyze set-up phase

* how many page I/Os at each recursive
level?

* how many recursive levels?
« overall analysis?

e internal sort?

6/2/2009

Rectangle Intersection, Again

* original solution: sweepline
o event list: left/right x-coordinates of rectangles

° active list: rectangles at current x-value

¢ needed for spatial join (on overlap)
» external technique: distribution sweeping

Orthogonal Line Segments

input: S set of vertical/horizontal line
segments

output: pairs of intersecting segments

sweepline algorithm:
° events:x-min coordinates
° active list: horizontal segments at x-value
> when vertical segment is encountered: range
query
> works in time O(n log n + k)

Orthogonal line segments (EM)

e assumption
° n pages of data
° m buffer pages in main memory

e external sort (x-min): O(n log,, n)

¢ split into m horizontal strips of n/m
horizontal segments each

* one active list (stored externally) for each
slab (can be read in parallel with others
one block at a time, since we have m
pages in main memory)

6/2/2009

Process center pieces

! " —
[- - - - —mm————-d
! A » :
Pk — 12
L center — !
oo e L | Strips
2 13
[[
i -]
end 1 1

i picce —> o 14
[. S |

\ |

h h

why can’t we process end-pieces the same way?
what to do about end-pieces?

End-pieces

* apply method recursively
e analysis

° initial set-up

o each recursive level

° depth of recursion?

e overall running time analysis

Rectangle Intersection

input: B, R sets of rectangles
output: all (b,r) in BxR with b intersecting r

solution:

e similar to line segment problem, separate
lists for red and blue rectangles

e but: rectangles don’t fit into strips, they can
span multiple strips

e problem: intersection between (b,r) might be
reported multiple times

* so naive adaptation gives factor of m

6/2/2009

6/2/2009

Rectangle Intersection

« Solution:

o separate list for each interval of strips and
r
eachcolor: [\ [,

goesin £y

Strips

goes in Ly,

Strips

* If r consists of a single end portion contained in strip 7, we scan the
bluc lists £} , such that b < i < k. In cach list, all blue rectangles
b with r.Xe. < b.Xy do intersect 7. The bs such that rx.,, >
b.Xus can be removed from the list. In addition, 7 is insered in

For instance, rectangle r, in Figure 7.6 is inserted in L3, and we)
scan the bluc lies % for b < 3aad j > 3, The b CL , is scanmed Analysis?
and an ineersccrion with the bluc rectangle s seport
If r contains a center portion over the strips i, ... j, we scan all lises
€}, wich i < b, j > k and compue the intersccrions. In addicion,
r & insered in £, 1,
In Figare 7.6, recangle 73 has a center portion that spans strip 3.
The lisc £% , must be scanned and the interscction with ¢ is repored.

.

Spatial Join

* join on: topology (overlap, disjoint,
contain, ...), geometry (distance,
direction)

e consider overlap only
o filter: overlap of mbbs

° refinement: overlap of geometries

* depends on indexes available

6/2/2009

Spatial Join Algorithms

* no indexes

o distribution sweep
= hash-join algorithm

e single index

> INL (indexed nested loop)
° two R-tree indexes

o synchronized tree traversal

o two linear trees

single index: INL

for each o in non-indexed relation

perform range query with o.mbb
on indexed relation

no index

hash-join algorithm

e assume buckets fit into main memory
e hash keys of relations R, S into buckets

¢ load smaller bucket, compare to
corresponding bucket

Example: R: 2000 records, S: 500 records
hash into 100 buckets

page 1/0O? (read R, S, write buckets, join)

6/2/2009

no index for spatial data

¢ hash-join depends on join condition being
equality: overlapping rectangles won’t hash
to same bucket

e solution:

> buckets determined by rectangles

may overlap (no redundancy) or be disjoint
(redundancy)

=

hash-join (overlapping)

partition R
all buckets roughly same size

buckets should fit into main memory
minimal overlapping

2. assign rectangles of S to buckets of R
S rectangles might be duplicated

3 join buckets (load smaller bucket into main memory, scan other bucket)

--' IR A

B, “"é,"’ 1

_l -
1§ o
i nE3
L
(a) Objects from set R (build input) in (b) Filtering and replication of objects from
three partition buckets set § (probe input)

joining two linear trees

e raster trees: traditional join

e general linear tree (e.g. linear quadtree or
z-ordering tree)

Property:
5. C, is contained in C,,
FS T [if and only if
B B LIS
| T 7' is prefix of z
]
o AN

e ~a B can use to test overlap

6/2/2009

joining two z-ordering trees

* replace each entry (z, oid) with intervals
(z,ss¢(C))),
where ssc(C,) is lower-right corner of C,

e two squares overlap iff their intervals
overlap

e store each list in a stack

F [L]
K

A
[D]
T T D

R-trees

* naive recursion
e restricted recursion

* sweep-line

R-trees recursively

o STT (Synchronized Tree Traversal)

st7 (Node Ay, Node Ny): set of pairs of ids

result: set of pairs of ids, initially empty
for all &, in N; do
for all &3 in Ny such that e;.mbb 1 e;. mbb # # do
if (the leaf level is reached) then
result += [{ey.)]
else
N, = READPAGE (e pageiD); N, = READPAGE (e pageiD);
result += STT(V,. Ny)
end if
end for
‘end for
return resuft
end

* 1/O performance ok
* CPU cost high

R-trees recursively, improved

STT(RI,R2)
do we need to look at every combination of
{R3,R4,R5} and {R6,R7}?

R-trees, sweepline

* why not use red/blue intersection
algorithm we saw earlier?

e Asymptotics vs constants

e greedy approach:
order red/blue sets
keep picking leftmost rectangle r

keep testing rectangles s of opposite color so that
s.xmin < r.xmax

remove leftmost rectangle

Example

i
T= U

* analysis (bad case?)

6/2/2009

10

Building Query Execution Plans

select intersect(l.shape, c.shape)
from county c, land_use |

where c.county_name = ‘San Jose’
and overlaps(l.shape, c.shape);

LandUse
ROWACCESS

| FiLESCAN INDEXSCAN

State: LandUse
pipelined execution possible:
Iterators
LandUse
name = 'S, r i o
[Fuescan | [Cinpexscan]

State LandUse

pipelined execution possible
* iterators (open, next, close)
* e.g.rowaccess, retrieve one record at a time
issues:
o refinement not included yet
° CPU time plays a role

Example

« spatial join between roads and land-use
e both relations have R-tree

Problems:
* random access to records
(high I/O)
* repeated access to same records

Refincment step

* 5o refinement needs to be done
carefully

6/2/2009

11

Sequencing

UD1(w) rID1(b)
UD2(v) rID2(c)
lID3(w) riD 3(a)
lID4 (v) rID4(d)
UD5(w) rIDS(c)
D 1(u) rID6(d)
UDS5(w) riD 3(a)
IID8(u) rID1(é,

(@)

D 1(u)
D 1(w)
UD8(u)
D 2(v)
D 4(v)
1D 3(w)
D S(w)
D 5(w)

rID 1(b)
rID 6(d)
rID 1(b)
rID 2(c)
rID 4(d)
rID 3(a)
riD5(c)
riD 3(a)

(b)

117D 1(b)
11 rID 6(d)
18 riD 1(8)
12 rID2(c)
14 rID 4(d)
{3 rID 3(a)
15 riD5(c)
{5 rID3(a)

(c)

13 rID 3(a)
15 rID 3(a)
117D 1(b)
I8 rID1(b)
12 rID2(c)
15 rID5(c)
{1 rID6(d)
14 rID4(d)

(d)

e assume 4 pages fit into main memory;
look at schedule (a)

Sequencing: Segment Sort

UD1(w) rID1(b)
UD2(v) rID2(c)
UD3(w) rID3(a)
D4 (v) rID4(d)
UD5(w) rIDS(c)
D 1(u) rID6(d)
UDS5(w) riD3(a)
UD8(u) rID1(b

(@)

D1 ()
UD1(uw)
UD8(u)
UD2(v)
D 4(v)
D 3(w)
{ID5(w)
1D 5(w)

riD 1(b)
riD 6(d)
riD 1(b)
rID 2(c)
riD 4(d)
rID 3(a)
riDS5(c)
riD 3(a)

(b)

11 rID1(b)
{1 rID 6(d)
18 rID 1(b)
12 rID2(c)
14 rID4(d)
13 rID3(a)
15 riD5(c)
15 riD 3(a)

(0)
()

13 rID 3(a)
15 riD 3(a)
[1 7D 1(b)
18 rID 1(b)
{2 rID2(c)
15 rID5(c)
11 rID6(d)
14 rID 4(d)

(d)

 k:number of pairs (Lx, RIDy) that fit into m-| pages
¢ load k pairs (LIDx, RIDy) into m-| pages
e sort on LID,access land-use replace LID with L records

¢ sort on RID, load records from Road using mth page,
perform refinement step for each record

Why Not
« sort (LID, RID)

after STT ?

Geometric
ntersection

ROWACCESS

use, roa

road)

Refinement step

dID)

adD)
Filter step

° means we can’t pipeline: sorting is a

blocking operator

6/2/2009

12

Multiway Joins

INL STT,
= | Build .
STT____» T jL—(
] %) (b ,/ \; ;
3-Way STT

AR

I A

Sources

 Garcia-Molina, Ullman,Widom, Database
Systems; the complete book, Pearson,
2009.

6/2/2009

13

http://books.google.com/books?id=8jAkMXFgbuIC&client=firefox-a
http://books.google.com/books?id=8jAkMXFgbuIC&client=firefox-a
http://books.google.com/books?id=8jAkMXFgbuIC&client=firefox-a
http://books.google.com/books?id=8jAkMXFgbuIC&client=firefox-a
http://books.google.com/books?id=8jAkMXFgbuIC&client=firefox-a

